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Abstract—There are many challenges when it comes to de-
ploying robots remotely including lack of operator situation
awareness and decreased trust. Here, we present a conversational
agent embodied in a Furhat robot that can help with the
deployment of such remote robots by facilitating teaming with
varying levels of operator control.

Index Terms—remote robots; autonomous systems; conversa-
tional agent

I. INTRODUCTION

Robotic and autonomous systems are being deployed in
remote, hazardous locations such as agriculture farms, off-
shore wind farms, oil and gas platforms, and for space/defense
applications. In these scenarios, human operators need to be
kept continuously in the loop with the remote robots for safety
reasons and in case they need to step in and take control.
Keeping situation awareness high is particularly challenging
with robots that are out-of-sight, indeed studies have shown
that remote robots instill less trust than local robots for this
reason [1].

In this paper, we describe late breaking work of a voice-
enabled automated assistant to help manage these types of
scenarios, where robots are doing tasks autonomously and
remotely. The goal is to create an assistant who manages multi-
robot activity, specifically emergency response and inspection
on an offshore oil-rig, facilitating teaming by acting as a
go-between for the remote robots and the human. Here, we
embody the voice-enabled assistant as a FurHat Robot [2]
(see Block 5 in Figure 1). Key research questions include:
1) how much control should the human operator have? 2)
how much information do they need to manage the situation
without being overloaded, and 3) how does this affect operator
trust in the conversational agent assistant’s ability to get the
job done?

This paper describes the first step towards building such
an assistant through a Wizard of Oz (WoZ) data collection.
The data collected can be used to inform the design of such
an assistant and bootstrap data-driven and hybrid interactive
systems, such as the one described in [3]. Here, we describe
the WoZ data collection and provide a short summary of the
dataset features and example dialogs with varying levels of
user control.

II. WIZARD OF OZ DATA COLLECTION

The semi-autonomous web-based Wizard interface used for
this data collection is shown in Figure 1. The interface was
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Fig. 1: The WoZ interface, with an insert of the Furhat robot
(5). (1) Prompts available, (2) active robots, (3) available
robots, (4) chat window and (6) view of the participant.

inspired by work reported in [4]. However, some differences
were introduced to deal with the unique aspects of robot
control and situation-awareness required by the scenario.

This scenario involves an emergency on an offshore oil rig,
where there are 3 types of robots active: ANYmal, Husky and
Quadcopter Unmanned Aerial Vehicles (UAVs). Specifically,
participants are given a limited time (3 minutes) to extinguish a
fire and assess the damage. If they do not complete these tasks
within the time, they are told to evacuate the rig. Participants
were informed that they should avoid evacuation at all costs.
The relevant information to run the emergency scenario was
scripted in a markup language file. This information is initially
loaded into the system’s Situation Knowledge Base and is
dynamically updated during the course of the dialog. In
addition, a database with the robots and their capabilities is
also loaded into the Situation Knowledge Base. During the
interaction, the Wizard has two live lists for the robots (Blocks
2 and 3 in Figure 1): one listing the robots currently in use and
one listing available robots. Robots are activated by pressing
the corresponding key. When a robot is active, an utterance is
available to report the current status of that robot.

The goal of the WoZ interface is to keep a natural pace in the
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High User Control Low User Control
A: Which robot should we send
to put out the fire?

A: I’ll check which robots are
available to resolve the fire.

P: The Husky please A: Husky 1 is available.
A: Moving Husky to processing
module East Tower.

A: Should Husky 1 be sent to
processing module East Tower?

P: Can you send a Quadcopter
to the North Tower as well?

P: Yes.

A: Okay. A: Okay.

TABLE I: Example dialog excerpts with varying control.

interaction by limiting the utterances available to the Wizard
and therefore facilitating more rapid responses. This behavior
is facilitated through the design of interaction flow based on a
Finite State Automaton (FSA), where each state represents a
dialog state. For each state a number of hand-crafted prompts
are uploaded and selected by the Wizard by pressing the
corresponding keyboard key. These prompts contain slots
corresponding to items that are fetched during the interaction
from the Situation Knowledge Database, such as robot status.
Utterances could also include tags with instructions to change
Furhat’s non-verbal behaviour. In addition to the utterances
generated from the flow, the Wizard has at his disposal a
number of predefined utterances (“Yes”, “No”, “Okay”, “Hold
on, 2 seconds”, “Action performed”, “Sorry, can you repeat
that?” and “I don’t have that information at the moment”)
and backchannels. In addition, there are also utterances with
weather status, with the time remaining before evacuation,
with the risk of the emergency spreading to different areas
of the rig and a repeat last utterance key. These utterances
would appear in Block 1 of the interface shown in Figure 1.

The WoZ system was implemented using the FARMI frame-
work [5], which provides additional tools for performing
synchronized recordings of various data streams, using the
timestamps from the computer, which acts as a central hub of
the framework. In this setup, participant audio was recorded,
as well as all keystrokes from the Wizard (for utterance and
robot selection) and the sequence of states from the dialog
flow. Finally, the Wizard has the possibility to type utterances
in a text box below the chat window (Block 4 in Figure 1).
The chat window shows the most recent utterances spoken by
the Furhat robot. Block 6 in Figure 1 shows the webcam used
to observe the participants. The interface could be extended
to show speech recognition output, as well as streaming video
from the remote robots’ perspective during live trials.

III. THE INTERACTION DATA

25 participants were recruited from a pool of University
students from a variety of disciplines. Table I gives example
dialog. In the scenario, the participants (P) were instructed
to partake in two types of dialog: one where the assistant
(A) takes more control of the planning and execution of the
task (2nd column of the table) and the another, where the
participant is encouraged to take more control (1st column of
the table).

Descriptive statistics are given in Table II. As only 2%
(on average) of the prompts needed to be typed, this reflects

Feature Mean (Standard Deviation)
Time on Task (sec) 228.2 (28.3)

Number of User turns 9.78 (7.67)
Time between User Turns (sec) 25.5 (9.08)

Number of System turns 43.6 (4.76)
Time between System Turns (sec) 5.38 (0.62)

Avg Turn Length (words) 3.02 (1.59)
% typed utterances 2 (3)

Overall Trust (score out of 100) 79.2 (13.4)

TABLE II: Mean (standard deviation) values for interaction
features.

that the FSA and predetermined dialog acts cover the dialog
phenomena well. The difference in the time between turns for
system and user may be attributed to the varying roles in the
interaction, as exemplified by the dialog in Table I. Further
detailed results of this study and analysis of the data will be
presented in a future publication.

IV. DISCUSSION

Slower-than-human interaction pace is a recognized disad-
vantage of these types of WoZ studies. Our qualitative analysis
from the post-test questionnaire indicates that the interaction
pace was indeed something that could be improved. Whilst
the WoZ interface allows for a high level of automation, there
do still seem to be delays in cases where the participant
requests the Wizard’s opinion, and thus where automation is
not necessarily available.

Finally, the trust scores were gathered using Schaefer’s
model [6] and are given in Table II, showing that overall
participants’ interaction with the robotic assistant resulted in
a level of high trust. This is encouraging in terms of potential
adoption of both remote robotic and autonomous systems
combined with a voice-enabled assistant.

V. CONCLUSION AND FUTURE WORK

This paper describes an initial step of creating a powerful,
semi-automatic interface for collecting data to inform the de-
sign and development of a voice-enabled assistant for remote
robot control. Future work includes iteratively replacing the
Wizard decisions with automatic decisions, through methods
such as Reinforcement Learning.
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