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number of Dirac pulses in a stream.
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Abstract

In this paper we address the recovery of a finite stream of Dirac pulses from
noisy lowpass-filtered samples in the discretéztime setting. While this problem
has been successfully addressed for the noiseless case using the concept of signals
with finite rate of innovation, such techniques are not efficient in the presence of
noise. In the FRI framework, thé determination of the location of Dirac pulses is
based on the singular value decomposition of a matrix whose rank in the noise-
free case equals the number‘efiDirac pulses and the signal can be related to the
non zero singular valuest However, in noisy situations this matrix becomes full
rank and the singular/value decomposition is subject to subspace swap, meaning
some singular valuésiassociated with noise become larger than some related to
the signal. Thisphenomenon has been recognized as the reason for performance
breakdown inthe method. The goal of this paper is to propose a novel algorithm
that limitsthe alteration of these singular values in the presence of noise, thus
significantlysimproving the estimation of Dirac pulses.
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1. Introduction

In this paper, we examine the problem of estimating the parameters of a
signal composed of a sum of Dirac pulses (DPs) from noisy lowpass filtered
samples. This can be viewed as an idealized super-resolution problem which
consists in trying to recover high-resolution information from coarse scale,mea=
surements. There is a vast literature on this subject and on applications ranging
over optical imaging [1], astronomy [2], medical imaging [3] to mi€roscopy [4].
Assuming the lowpass filtered samples are associated with a eontinuous-time
setting, many different methods have been designed including those,based on
total variation of measures [5] [6] [7] [8] [9] or /;-minimizatien [10].

However, the discrete-time setting is more appropriate to) practical situ-
ations. In that framework, various non-linear super-resolution schemes have
been developed including greedy [11], root finding/{12] [13]} matrix pencils [14],
Bayesian methods [15] and compressed sensing approaches’[16]. Except for root
finding techniques, the just mentioned methodssare :somewhat limited in that
they assume the DPs are located on the grid,“which is not relevant in many
practical situations. Some authors [6] hawe,recently tried to bridge the gap
between approaches based on total variation of measures and its discrete-time
counterpart, often called LASSO method in‘the literature, and have shown that
the problem of the recovery of DPs is essentially different: while the support
of DPs can be exactly recovered in, the'continuous-time framework such is not
the case in the discrete-timessetting. JFurthermore, these recovery processes are
proved to be unstable evén at low noise level.

In the present paper, we focus on a particular class of root finding techniques
initially proposed in'{17] [12]’enabling the exact computation of the parameters
of DPs using a small number of lowpass filtered samples, the optimal sampling
rate being attainedifor some specific filters like the periodic Dirichlet or Gaussian
kernels, or/those reproducing polynomials or exponential functions [18]. These
types ofsmethods, often referred to as optimal sampling techniques, are based, in
the alsenge of moise, on the so-called annihilating filter method to estimate DPs
parameters. / Essentially, this technique computes a filter whose Z-transform
zeros enable direct computation of DPs location. Since this approach is not
robust to noise, such a filter can be alternatively computed via the singular
value'decomposition (SVD) of a matrix built from the discrete Fourier transform
(DFT) of the signal [12]. However, to be efficient in noisy situations, the order
of the filter computed with such an SVD-based technique has to be much larger
than the number of DPs, and this over-modeling gives rise to spurious filter zeros
which can be incorrectly identified as signal poles [19]. Furthermore, and as we
will see, the benefit of increasing the order of the filter will prove to be highly
dependent on the sampling kernel. Once the location of DPs are estimated, the
weights are most of the time computed using a least-square fitting approach.



The principle of the DPs parameters estimation proposed in [19] was based
on the remark that, in SVD-based techniques, the K (the number of DPs in
the stream) largest singular values (SVs) are slightly impacted by noise. This
is however only true to a certain extent and, under low SNR condition, a phe-
nomenon called subspace swap occurs: some SVs associated with noise become
larger than others related to the signal. In [20], by assuming the sampling kernel
reproduces some exponential functions, a condition was given to determineshe
noise level at which the subspace swap occurs, but no remedies were proposed/

Our objective in this paper is to define a new algorithm to denoise the matrix
used in the SVD-based approach, which will help improve the stability of SVs,
and thus the estimation of DPs location. For ensuring wide applicability, few
hypotheses are made on the sampling kernel except that it fis lowpass. The
benefits of our algorithm will be illustrated on the problemyof the estimation of
the parameters of close DPs in which case performance typically degrades.

In Section 2, we first formulate the problem of estimating the parameters of
a stream of DPs from noisy lowpass filtered samples , give an overview of the
techniques used depending on the context, and introduce some useful notation.
In Section 3, we recall approaches based onthe.concept of signals with finite
rate of innovation, focusing on SVD-based techniques. Having illustrated the
limitations of the latter technique, we défine a new algorithm for the retrieval
of DPs parameters based on an improved ‘estimation of SVs, in Sections 4 and
5. The method consists of two differentysteps: 1) a data denoising step (Section
4) and 2) the determination of DRs locations using a matrix of denoised data in
SVD-based techniques (Section 5)sIn"Section 6, the selection of the parameters
of the proposed method is discussed and a new algorithm to assess the number of
DPs present in a streamdntroduced. Performance analysis of the DPs retrieval
technique and a comparison with existing methods is then presented in Section
7. In this regard, we first illustrate the improvement brought by the proposed
denoising procedure ‘over the most commonly used technique in the studied
context, namely Cadzow denoising [12], and then focus on the comparison of the
proposed algerithmifor DPs location estimation with some classic approaches
like matching pursuit [21], matrix pencil [22] and MUSIC algorithm [23]. Finally,
we illustrate the performance of our new method on more complex examples,
in particularywhen the filter used to compute the samples is not symmetric and
when thestream contains pulses with negative weights.

2. Problem Statement

Let us consider a signal on [0, 1] composed of a stream of K DPs, located at
tr, with associated weights ¢, for k € {1,--- | K}, i.e.,

K
f(t) = Z Ck(Stk7 (1)
k=1



filtered by some low-pass kernel ¢ to obtain

K

m(t) = 3 ealt — ) = (F)(2). (2)

k=1

We assume the {¢j}r=1,... x are distinct values on [0, 1]. Finally, the signal
is corrupted by white Gaussian noise 77 to obtain the following noisy signal

my () = m(t) + n(t). (3)

Defining ¢ = {cg }r=1,... .k and 1 = {l }r=1,... K, one seeks to retrieveerarid 1
from my(t). In the discrete-time setting, one assumes m,, is uniformly sampled
over [0,1] with rate 57, i.e.

my(o) = m(5) +n(55), 0< g < My @)

and the problem is then to recover the DPs parameters from m,, ().

The literature on these problems is vast. In the‘continuous-time framework,
a classical formulation is to try and find somefunction ¢ minimizing:

L1
min —

min_ 5 m, — ©(o)[9lg|(T). (5)

where |g|(T) is the total variation of the'measure g and T the torus R /Z [24].
Such a problem has recently receiveda lot of attention in the literature [25]
[26] [27], but is very difficult to handle because it is infinite dimensional and
its resolution highly depends on ®. It is however shown in [5] that, when ¢ is
C?, the support of f is governed by a specific solution to the dual problem of
(5), and that, when/the)signal‘to-noise ratio is high enough, the exact number
of DPs can be foundiby solving (5) and their locations converge to the true
locations when/the noise level goes to zero. It is also shown in [5] that the errors
on locations-and amplitudes decay linearly with the noise level, meaning the
exact recovery of the stream of DPs is not achievable in noisy situations. We
must alSo mention that a very close formalism is used in [7] to show how total
variation/approaches can be used for super-resolution.

In theydiscrete-time setting, when the DPs are assumed to be on the grid
used to /collect the noisy samples, and when /; minimization replaces the total
variation of measures, one ends up with the so-called LASSO method. Extend-
ing the work by Fuchs [28], it is shown in [24] that the minimization problem
récovers up to twice as many DPs as the input measures, because DPs can get
duplicated on immediate nearest neighbors on the grid, which motivated the
definition of the notion of extended support to study the stability of the recov-
ery process [29]. The study in [24] is particularly interesting in that it bridges
the gap between continuous and discrete time formulations in the noiseless case,
but work still needs to be done to fully understand the behavior of DPs recovery
with these techniques at high noise level.



In the same discrete-time framework, a slightly different formalism is pro-
posed in [30], where the authors assume the DPs are located on the grid and
the weights are positive, and then minimize:

min [[my, — &(g)[1 s.t. 9 20, (6)

meaning the weights in the stream of DPs are positive. This problem can” be
recast as a linear program since m,, is real valued and ®(g) rewritten as Dx
with D a real matrix and x are weights. In that paper, the spectrumief ¢
is supposed to be contained in [—My, M|, and, since the maximum number
of DPs in the stream is M, the super-resolution factor (SRF),is defined as:
M/(2Mp+1), and corresponds to the ratio between the scale we wish toysee the
details and at which we see the data. It is shown in [30] that when ||x||o < Mo,
the resolution of (6) leads the recovery of f, but only i the noisé-free case.
When there is noise, the sparsity is not sufficient as our ability to estimate x
from m,, fundamentally depends on how regular the position-ef the DPs are. In
the noisy case, it is also proved that the recovery ‘depends on SRF but slightly
on the shape of the filter’s spectrum.

The signal defined in Eq. (1) can alternatively be viewed as a signal with
finite rate of innovation (FRI), for whichyspecific\techniques were developed to
retrieve signal parameters [17][12]. These technigues can be implemented in the
time domain [31] [20][18], in particular,when ¢ reproduces polynomials or some
exponential functions. Alternatively,\they can be implemented in the Fourier
domain [12], namely, one considers the Fourier transform of m,, assuming the
kernel ¢ belongs to L'(0,1) and is I-periodic, and then writes:

K

Fo (€)=Y cxe ™™ F()(€) + F(n) (&), (7)

k=1

where F(f) denotes the Fourier transform of f. For instance, such a formulation
is often used.when @.is the periodic Dirichlet kernel. In such a case, considering

K
n € {0, -4M — 1}, we end up with: F(m,)(n) = Y cre” ™" F(p)(n) +
k=1

F(n)(n)./ To, obtain similar equation as (7) is still possible when ¢ is known
only“on the/grid by assuming t; belongs to the grid, i.e. tx = lﬁ’“ for some
I € {0,; -~ , M —1}, and then considering the discrete Fourier transform (DFT)
ofiEq..(4), one obtains the M-periodic sequence:

K
L dgpn oA
gl = > cre™ 3N Jln] + aln], n e {0, , M1}, (8)
k=1
M—1 o
in which g[n] := Y g(5%)e*™ . The framework we propose to study in this
q=0

paper is precisely this one because it requires very few hypotheses on ¢ except
that the latter is known only at grid points. The price to pay is to assume the



DPs are on the grid. One should bear in mind, that similar equation to (8) can
be obtained without assuming the DPs are located on the grid, but then more
must be known on the filter ¢. So, assuming ¢ is lowpass, such that F(¢) is
supported on {—My, ..., My}, our goal is to retrieve the DPs parameters from:

K
ﬁ%hﬂ::EZCmfgm%;éhﬂ*'an716{—Aﬂh“'7wﬁ}~ (9)
k=1

),

Note finally that, for the sake of simplicity, we also define m,[q] := m,(
mlq] == m(;) and ¢[q] := ¢(5f).

g

3. Approaches Using the Concept of Signals with Finite Rate of In-
novation in the Fourier Domain and Limitations
3.1. Approaches Based on Finite Rate of Innovationdor Estimating DPs location

Our goal in this section is to recall how to retrievesthe DPs parameters
from equations of type (9) exploiting the factathe:studied signals are with finite

K . . T
rate of innovation (FRI) [17] [12]. Let us first rewrite (9) as > cke’m“% =

k=1
~ A K . . T
";’[’[T]L] - gﬂ n € {—My,- -+, Mo}, and then define g[n| := > cpe~ 24T and
Onln] = %T[er] In the absence’of noise, § can be exactly computed, and then

the so-called annihilating filter method used to recover the {l;}r=1,... x from g.
Indeed, ¢ is annihilated by a kernel h, such that (g * h)[n] = 0, Vn, where

K )
5+ W= SOMLi)gn — 3] = ST S e 5
k=1

Nz jez
K
_2wlyn Y (10)
= E cre L e E h[j]ez%r M
k=1 =
oml
H(e W)

and H(z) is the Z-transform of h. From Eq. (10), it is clear that if {e’i% Fr=1,..

are the roots of H, then h annihilates . Conversely, since, for any mg, the ma-
. lpn
trix defined by (6_1277%)n:m0}... mo+K—1,k=1,- K 18 a Vandermonde matrix (n

being the row index), it is invertible provided the ljs are distinct. In this sit-
.27l
uation, if h annihilates ¢, then H(e™* Mk) =0, for k=1,---,K, since ¢, is

non-zero. Finding the coefficients of h, assuming h[0] = 1 and the support of h
is {0,---, K}, amounts to solving the following Yule-Walker system




R =) Gl-K +1)\ /A1) al1]
a0 sl-rc+2l| (a2l | [ gl
K -1 gk -2 .. (0] HK] 3lK]

The filter coeflicients {h[p]},=1,.. x are thus determined by only 2K +1
values of §[n]. Note that since h is entirely defined by the roots_of its, Z-
transform, the above system necessarily has a unique solution.

This approach cannot however recover the location of the DPs when noise
is added to the filtered signal since, in that case, §[n] is only approximated by

On[n] (the quality of estimation degrades as n increases since g, [nJ="7[n]+ %)

In such instances, it was suggested in [12] to increasethe sampling rate and,
assuming the number K of pulses is known, that a totalleast-square approxi-
mation (TLSA) should replace the Yule-Walker gystem described above. First,
this approach consists of considering the following rectanigular matrix

W-T+K]  gyl-T+K—1N_... 3,[-T]
B 3 @n[7T+K+1} ﬂn[fT-FK] g}n[*T‘Fl}
G [T] WIS .. g7 K]

for some K <T < Mj. Then, one searches for the unitary vector h minimizing
|IBs,, vh||l2. This is done by computing the singular value decomposition (SVD)
of B, r,ie. B, r=UXW"* where U and W are unitary matrices and 3 the
diagonal matrix of SVs (ranked in decreasing order according to their moduli).
Indeed, the vector i eorresponds to the last column of W [12], and an estimate
{I}.} of the locations {lg}/are found from the roots of the Z-transform of h the
same way as with the annihilating filter technique.

Note that the definition of B, r requires the knowledge of the number K
of DPs’present in the stream, and this issue will be discussed later on. The
motivation for/using this matrix is based on the remark that, in the absence of
noise, the rank of Bg 7 is K. Thus, DPs location are directly determined from
the roots of the Z-transform of any vector in the kernel of Bo 7. To prove that
the rank of By 7 is actually K one remarks that

9-T + K] J-T+K-1] ... 91-T]
J-T+K+1 9-T+K| ... §-T+1]
Bor = : : : :
gIT] Jr-1 .. §T-K]

has rank at least K, since it contains a submatrix of rank K (considering the first
K columns and rows). Furthermore, it can be decomposed into By = VCH



with

1 1 . 1
2imly 2imlo 27l g
e M e M e e M
V= i . . ) ,C = diag(C1,Cy, ..., Ck),
2inly (2T —K) 2imly (2T —K) 2inl g (2T —K)
e M - M e M
2imly 2imwly K
1 e ™ A emm
2irly 2imlgK
1 e™™ ...oe M
and H =
2imly 2imlp K
1 ¢ e ™

2inly, (—T+K)
and Cy = cpe™ AT . Note that since the [s are distinct, the Tank of each

matrix is K, and B r is at most rank K, so that the‘tank of By r is actually
K.

In the presence of noise, B, r is full rank“and,denoting (Ag)r=1,. K+1
the SVs of B,, 7, the quality of TLSA is related to the value of Agy1, since

, ?1“1}51” ) By, rhll2 = Ax+1, and also to how different B, 1 is from B r,
L, s.t.||h|l2=

which can be measured by comparing the\firstuf{ SVs of these two matrices. In
the remainder of the paper, the technique that uses TLSA with B, 1 to localize
DPs is denoted by FRIp.

3.2. Limitations

Now, we would like to, illustrate the necessity of denoising the matrix B, 7
before considering the’TLSAvapproach as is done in F'RIy. To do so, we consider
a signal of size M .=,2500, made of two DPs located at Iy = 100 and I, = 200,
with ¢; and co both equal to 1, the filter ¢, depicted in Fig. 1 (a), is a Gaussian

g
function, ¢lgly= e Ui, for 04 = 40. The time delay ly — [; is thus equal
to 2.5 o4, meaning the peaks associated with each DP are well separated in
m. For suchia o4, a reasonable value for the cutoff frequency index Mg is

92: the eriterion used to define M is to consider the first index n such that
ln]

9l0]
to obtain m,,, corresponding to a given input SNR, defined by:

<1073, Then, some Gaussian white noise is added to the filtered signal

SNR(m,my) = 20log,, <|m||2> . (11)

[l —m2

In Fig. 1 (b), we plot the estimated indices {},} associated with DPs location
estimation with FRIp, with T € {2,5,30,80} with respect to the input SNR.
Notice that, whatever the value of T', the detection of the second pulse fails at
low SNR. We also remark that considering a larger T' does not necessarily result
in a better estimation since more noise is then contained in B, 1 (see results



obtained for T'= 30 and T = 80 in Fig. 1 (b)). Increasing the sampling rate in
that case (i.e. considering more samples §,[n]) can improve the estimation of
DPs location only if the former is not taken to be too large. Furthermore, we
notice that even though the filter is symmetric the estimation of the location
of the first pulse seems always more accurate. We will show later that this
lack of symmetry is mainly due to the presence of additive (Gaussian) noiset
Finally, to clearly state that this behavior when T varies is related to the choice
of ¢, we perform the same computation as in Fig. 1 (b), but with the periodi¢
Dirichlet filter, i.e. ¢ is periodic with period M and such that é[n] =1 for
n € {—Moy,..., My} and zero elsewhere on {M/2 —1,..., M/2}, meaning the
noise is not amplified in §,[n] for large n. The results, depicted,in Fig=1+(c),
are as reported in the literature: to increase the sampling rate T' improves the
estimation of DPs location [19]. As just shown, this is not true for a more
general lowpass kernel. Furthermore, even when the perigdic Diriehlet kernel is
used with a large T, the estimation performance significantly degrades around
5 dB, which cannot be considered satisfactory (the results would be even worse
if the pulses were moved closer).

1000‘

=3 o
> o

amplitude
=
I~

o
~

-100 -50 0 50 100 10 20 0 4 50 60 0 10 il il L} 5 60
time index SNR (@B) SR (dB)

(a) (b) ()

Figure 1: (a): Gatssian filter”(¢[q]) for central indices; (b): Estimation of the indices asso-
ciated with pulses location using FRIp, with T =2, T =5, T = 30 and T = 80 (true DPs
location are (11,12) = (100, 200), meaning time delay Iz — 1 equals 2.5 04, and the results are
averaged over, 200 realizations); (c): same computation as in (b) except the periodic Dirichlet
filter is used instead of the Gaussian filter.

4. Denoising §J,, Using a Two-Threshold Procedure and Piecewise Cu-
bie’Hermite Interpolation

In this section, we propose a novel procedure to denoise §,[n] for n =
—Moy, -, M. Let us denote 1, ar, (resp. 1y a,) the truncation of 7, (resp.
M) to |n| < My, and then its corresponding representation my a, (resp. mag,)
in the time domain.

The procedure we propose to denoise §, is first based on the robust estima-
tion of the standard deviation of the remaining noise in m,, s, denoted by oy,

10



using the median absolute deviation criterion [32], i.e.

6 m, = median(|my, ar, — median(my, az,)|)/0.6745.

Introducing two sets of coefficients,

Agup = {q’ |m771M0[q” ZT16M0} and
Ainf = {Q7 |m77,M0 [QH S TQ&MO}: (12)

in which my ag,[q] := My, (%), allows us to identify the set of points B% =
(¢ mup a0 [a)) ge a0, U(4,0)ge 4y, Which are interpolated using piecewise _cubic
monotonic Hermite interpolation [33]. The signal obtained is denoted by, mq4 as,

and we hereafter explain under which conditions on T} and T5 it consists of a
denoised version of m,, ar, .

=

=

T T T T
+ points in B with abscissae in Ag,| |
o points in B with absissae in Ay, ¢
M
LT
[,

o

: - T T

« points in B with abscissae in A\j”l,

o points in B” with abscissae in 4, J:’
My,
My

- -,

e
oo J

B
I

o

,>
amplitude
ol
2
o

>
et

s
s

amplitude

G e io-mml g m- @

, . . , , . 04 . , . . . . .
0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400
time index time index

(a) (b)

Figure 2: (a): signal mag, 4, 11, and mg pr, obtained from the points in BY, input SNR
= —10 dB (the DPs are locatedrat (I1,l2) = (100, 160), the filter ¢ used is displayed in Fig.
1 (a), the time delay bétween twoyDPs is 1.75 04, T1 = 4 and T> = 0.2); (b): same as (a)
except that mg a7, islobtained from B.

Indeed, our denoising strategy is based on the fact that m,, az,, close to its
local maxima is usually much larger than the noise level: most of these points
in the set Agup are captured by considering a large T; (see Fig. 2 (a), Ty = 4).
Theng to remove the noise-only part of the signal, we determine abscissae almost
surely associated with noise by considering the set A;ns with a small T (see Fig.
2 (a), T> = 0.2). Finally, to set the ordinates of the points with abscissae in
Ay, to 0 and to use the piecewise cubic monotonic Hermite interpolation ensure
the interpolated signal is null between two points with abscissae in Aju¢. This

type of interpolation also guarantees that no oscillations are created between

two points with abscissae in A9, and a smooth transition between points of 5°

with respective abscissa in Aj,r and A2 (see Fig. 2 (a)).

sup
We then remark that Agup is made of discrete intervals, between which there

should be some points in A;j,s when the DPs are sufficiently far appart. However,
between two close DPs, the magnitude of my, as, can be below 1716 y,, but still
above T56,. In such cases, the two DPs are associated with two discrete

11



intervals in Agup, with no points in A;j,¢ between them, and to interpolate the
points in BY in such instances does not lead to a good estimate of myy, (see
Figure 2 (a) between the two DPs). To cope with this situation, we slightly

change the definition of Agup into:

Asup = U {[kl, kz}, s.t.
|m77~,M0 [kl]‘ > Tla-l\loa |mn,1VI(, [kl - 1]| < Tla']wn

[, o [R2]| = T16 0, [, o (k2 + 1] < T16 0,
and Vkl <k< k‘g, |mn,MU [k’” > TQ@’M()} . (13)

Finally, when one uses a relatively small 77, and when the noise levelis high,
some discrete intervals in Ag,p may correspond to noise, and should)therefore
be removed. To take this issue into account, we also put a lowerybetind on the
length of the intervals kept in Ag,p as follows. Let Agupi#bethe ith interval
in Agup, and consider the set E; = {|my a1, [k]] > Ti6 a0k €Asup,i ;. We then
keep in Agyp only the intervals Agyp; such that #£5> Ly, where #X stands
for the cardinal of X, the choice for L, being diseussed.later in the paper. One
then defines B := (g, my,01,[q]) ge Aun, U(4; 0) gemyemand interpolating the points
in B using piecewise cubic Hermite interpolation, we obtain a signal which is
denoted also by mg,a, for the sake of simplicity.

To illustrate the impact of choosing, A, rather that Agup in the interpolation

procedure, we consider the same signal'made of two DPs studied in Fig. 2 (a)
except that mg as, is this time“constructed from B. The result displayed in
Fig. 2 (b) shows that the estimation of myy, is improved between the two
DPs. Lyin is set to 10 bat the result is not sensitive to that parameter for
that particular illustration. In Section 6.1, we will assess the sensitivity of this
denoising procedure to 11, Is/and T. From now on, g denotes the denoised

version of g, corresponding to gq[n| = ha,mg[n]

and the denoising technique is denoted by TTPC (for Two Threshold Piecewise
Cubic interpelation).

, with mg a7, computed from B

5. DPs Parameters Estimation

Having denoised ¢,, we define a new matrix to replace B, r in the TLSA
framework described in Section 3. The entries of the matrix are selected from
the denoised sequence gy defined Section 4. Once DPs location are estimated,
weights estimation is performed using least-square fitting LSF ; we recall here-
after the two procedures for DPs parameters estimation.

12



First, we define a new matrix

Ja[-T+ K] 9a[-T+K—1] ... ga[-T]
Ja[-T+K+1]  ga[-T+ K] ... ga[-T+1]
Byy— |0al-T+K+2] gu[-T+K+1] ... [T +2]
9a[T] JalT — 1] oo 0alT — K]

where K < T < My, which corresponds to matrix B,, 7 in which ¢, is replaced
by §q. Then, we replace B, v by By r in the TLSA framework to compute an
estimate of DPs location. This new method to estimate DPs locationiis'denoted
by FRIir in the sequel.

Once the locations 1 = {ly}r=1... x are estimated by 1= {[k}k:L...’K, the
simplest way to estimate the weights is by computing a least square fitting (LSF)
solution € solving the following problem

K

¢ = argmin ||m,, — Z kol = h|l5) (14)
cERK k=1

corresponding to the approximation erros:

K
By = |my — YU edl = I3 (15)
k=1

This technique to compute the locations and weights is referred to as FRIq 1 —
M LFE in the sequel.

6. Parameter Tuning

6.1. Sensitivity of LTPC to Ty, T and T

In this subsection, we first explain how to tune the parameters 77, T and T’
by studying the sensitivity of the denoising procedure, called TTPC and detailed
in Section 4,)to these parameters in different configurations, namely when the
input SNRs/and the number of DPs in the stream vary. The parameter L, is
set to 10, and its influence will be discussed later.

More precisely, for different signals we are going to study the sensitivity

to/T7 and T, of the average of Hy_yg”#, in which the subscript 2, [T, T]
means we consider the I norm and restrict ourselves to indices n in [T, T],
the normalization by /27T + 1 being added to obtain the average error on each
coefficient §j[n] (the I3 error increases necessarily with the number of taps taken

into account).

We carry out this simulation on three types of signal, a two DP signal with
DPs located at (I1,l2) = (100,200), another with DPs located at (I1,l2) =

13
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o
=
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9= 0all2,[— 7.1
V2T H1
with (I1,l2) = (100,200) (i.e., the time delay between DPs is 2.504, (a): SNR = -10 dB

(d): SNR = 0 dB; (b) and (e): same as\a) and (d) when (I1,l2) = (100,120), time delay
between DPs is 0.504; (c), (d)=same as/(a) and (f) except that the DPs are located at
(100, 150, 300, 400).

Figure 3: (a) and (d) : Computation of when the signal is made of two DPs

(100, 120), and a ldastierie with DPs located at (11, l2,13,14) = (100, 150, 300, 400)
(in each case thé weightsassociated with each DP are equal). The filter we use
is still the Gaussian filter of Fig. 1 (a). Numerical results reported in Fig. 3

suggest that, whatever the SNR and in the two DPs case, ”yiyﬁ;”#
stable swhatever T7 and T5 in the tested ranges and the time delay between the
two pulses (the results are reported in Fig. 3 (a) and (b) (SNR = -10 dB) , and
(d) and (e)/(SNR = 0 dB)). When the stream contains more DPs, by taking
a large 771 and only when the noise level is high, there is a chance that some

pulses.are not detected, resulting in a larger error (see Fig. 3 (c)).

is very

Furthermore, by computing the error for various 7" we notice that while with
7" = 20 or 30 the denoising performance are relatively similar, these degrade
when considering a larger T' (the discrepancy between the case T = 20 and
T = 30 is always much smaller than that between 7' = 30 and T' = 40). This
suggests to use the smallest value for T' compatible with the number of DPs to
be detected, but we are going to see a bit later that the location of the DPs
also matters for the selection of an appropriate T'. So, for the algorithm to work

14



T =20 | T=30 | T=40 [ T =50
(11,13) = (100,200), SNR = —10dB 0.67 0.80 1.09 1.77
(I1,ly) = (100,200), SNR = 0dB 0.21 0.25 0.34 0.56
(11,12) = (100, 120), SNR = —10dB 0.85 1.04 1.40 2.23
(I1,1l3) = (100,120), SNR = 0dB 0.27 0.32 0.44 0.69
(U1,12,13,14) = (100, 150, 300, 400), SNR = —10dB 0.96 1.15 1.59 2.48
(I1, 19,13, l4) = (100, 150, 300, 400), SNR = 0dB 0.31 0.37 0.48 0.81

lo—=9nll2,—7,1)
V2T+1

and values of T as in that figure

Table 1: computation of , for the studied signal of Figure 3, for the same SNR

well in all situations, a value of T7 around 3.5 appears to be a good trade-off.
Note finally that, in all these simulations, the results appear to be only slightly
sensitive to T5.

To check that the algorithm actually performs some kind of denoising, we
9=gnll2, (7.7
V2T+1
3. The results reported in Tab. 1 and compared with these displayed in Fig. 3,

confirm that TTPC actually denoises .

also compute L for the same values of T and'SNRsyas those of Fig.

6.2. On the Number of DPs

Having studied the influence of parameters T4, 7 and T on TTPC, we
propose a novel technique to determine the number of DPs in a stream. First,
based on the previous study, reasonable values for 7 and 75 are 3.5 and 0.2
respectively. With these values we now explain why the denoising sequence g4
can be profitably used to determine the number of DPs present in a stream.
Consider that there are at most K,, » K DPs in the signal of interest, and then
define:

g)n[«T + K] gjn[—T +K,—-1 ... yn[—T}
@n[—T—i-Km—i—l] gjn[—T—i-Km] gjn[—T—i-l]
BEy B K 2] G[=T+ K +1] o §y[-T+72)
m
9 (7] T -1 [T~ Ky

Bgr}” being defined similarly replacing g, by §q4. As remarked in [17], the rank
of the matrix BET is K in the noise-free case, and K, + 1 when the signal is
noisy. One expects the first K SVs to be related to the signal while the last
K, — K+1 to the noise. So, what matters is to analyze how the SNR affects the
first K SVs and also how low the (K + 1)th SV remains as the SNR decreases.
In this regard, we notice numerically that the first K SVs are stable, regardless
of the noise level, for matrix Bd 7, but not for matrix BT7 7, in which the Kth
SV is considerably increased. Furthermore, the (K + l)th SV remains small
in Bg:% but not in BﬁT' The denoising procedure we propose thus enables to

keep a clear separation of the signal and noise parts in matrix Bfl(%.
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Figure 4: (a) and (d): Amplitude of the first five SVs of B717030 and”B1% ‘respettively, with
respect to input SNR, signal consists of four DPs located at (11, l2, [33da)™=1(100, 150, 300, 400)
with the same amplitude (the smallest time delay between pulsésiis 1.25 04, results averaged

over 50 realizations); (b) and (e): Amplitude of the first four SVs of B%??)o and Bullo30 re-
spectively, with respect to input SNR, signal consists of four DPs located at (I1,l2,13,l4) =
(100, 120, 300) with the same amplitude (the smallest time delay=between pulses is 0.5 o,

results averaged over 50 realizations); (c) and (f): samesas.(b)and (e) but SVs correspond to

10 10
By 7o and By 7.

o
SNR (dB) SNR (dB)

To illustrate this, we consider twodifferent situations: the first one is a signal
containing four DPs with the same amplitudes and located at (I1,ls,15,14) =
(100, 150, 300, 400) (the time delay between the two closest DPs is 1.25 o4, the
filter ¢ being still the Gaussian filterused in previous simulations). The second
signal contains three DPs/ocated at’(ly,12,13) = (100,120, 300), with the same
amplitudes as for the first,signal (the time delay between the two closest DPs
is 0.5 04). We assume, K,,3=" 10 and then note that K,, < T < M,. T is
also constrained by the’minimal time delay between two DPs: in the first case,
the SRF, defined in Section 2 and equal to % has to be above 50 meaning
T > 24.5, and in the second case T has to be larger than 62. So a relevant value
for T' in the first case is 30, and the SVs of B};?so and B(li?30 are reported in Fig.
4 (a) and (d){and behave as explained in the previous paragraph. Now, if we
switch to)the second case, to consider a larger T' than the one given by SRF,
leads to'some noise remaining in §4. To illustrate this, we plot in Fig. 4 (b)
and (e) (résp. Fig. 4 (c) and (f)) the first four SVs of B;%, and B}%, (resp.
B’ and B}%): with T = 30 the denoising is more efficient than with 7" = 70
but the amplitude of the third SV is much lower, making the choice for T' more
complicated than with the first signal. Finally note that L, is set to 10, and
a discussion on this parameter follows in the next subsection.

We now exploit the stability of SVs associated with matrix Bf’T” to build
a procedure that automatically computes the number of DPs. Remérking that
SVD can be interpreted in terms of energy contained in subspaces spanned
by the singular vectors, for each SNR, we determine the number of DPs by
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Figure 5: (a): Estimation of the proportion of correct number of DPs for the 4 DP/signal via
formula (18); (b): same as (a) but for the 3 DP signal. The results are/averaged,over 200
Monte Carlo realizations.

considering first the amount of the energy contained in thesfirstik SVs through:

k
> Isvi
i=1

Sy = = (16)
> |svdf
i=1
where sv; is the ith SV, and then estimate the'mumber of DPs through:
R:%Hﬂ@>RL (17)

where T3 is some threshold. Finally, we measure the quality of the estimate
K by computing the propertion of correct DPs number determination for M C'
realizations of the noise; #e. by |defining:

1 Nyve o
PDirac(TS) = NMC Z (K[Z] — K), (18)
=1

where K15 the estimation of the number of DPs for the ith realization of the

noise. In Fig«/5, we display (18) for the two signals studied in Fig. 4 and when
the inputhSNR»varies. This shows that provided T3 is appropriately chosen
(close t0'1), the proposed procedure enables the determination of the number of
DPs when'these are not too close (the four DPs example). When some DPs are
very close (the three DPs example), if T is chosen large then some SVs related
to noise may not be negligeable and to choose a threshold T3 close to 1 may
result in the computation of a wrong number of DPs. So for our technique to
work well in the case of close DPs one had rather take 7" much lower than the
one given by SRF, and then take T3 sufficiently large.

6.3. Sensitivity to Luyin

Once the thresholds T7, T> and T are correctly set and the number of DPs
determined as explained in the previous two subsections, we investigate the
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sensitivity of F'RI;r to parameter Lyi,. For that purpose, we consider a two
DP signal where these are moved farther apart corresponding to a time delay
between the two pulses either equal to 0.5 o4 or 1 oy.

03 0, 1,)=(100,120), SNR = -10 dB
028 - (1,,)=(100,140), SNR = -10 dB
0 4,,)=(100,120), SNR = 0 dB
) 1,.J,)=(100,140), SNR = 0 dB

015 (11)=( )

percentage of non detection

Figure 6: Percentage of non detection with respect to Lpin for three different signals containing
2 DPs. The results are averaged over 200 Monte Carlo realizations:

We compute the number of non-detections withwrespeet'to L,i, when T7 and
T, are set to 3.5 and 0.2, and T set to 30. Terdorso we say that the algorithm
achieves DPs detection when |l — | < 10 for'all k& (this also means the time
delay between pulses has to be larger than 20)s,Using this definition, we compute
the proportion of non detection when L varies for the two studied signals.
The results displayed in Fig. 6 show that a large L, should clearly be favored
to limit non detection when theADPs are close and the noise level is high but its
value matters much less in any other studied situations. Furthermore, when the
time delay between the pulses,equals 0.5 o4 and when the SNR equals -10 dB,
the non detection rises aip to 40 % and, in any other cases, the percentage of
non detection remains‘low. It also transpires that to choose Ly, equal to 10 is
appropriate in all cases/(this/a posteriori justifies the choice made up to now).

7. Numerical Results

7.1. BEvaluation of TTPC

Qur goal/in this section is to compare the novel strategy for the denoising of
O, called TTPC and detailed in Section 4, to the most commonly used technique
m the TLSA framework and known as Cadzow denoising [12] [34], the principle
of which we recall hereafter.

A strategy to denoise §,, and known as Cadzow denoising [12] [34], is to
consider the following square matrix:

gnl0]  gul=1] o Gy [-T]
N ml glol o [T +1]
Byr= : : : : '
9T OyT—1] ... 9,[0]



for some K < T < Mj,. First one remarks that in the absence of noise the
rank of B,,,,T is K and T'+ 1 in the noisy case. Then one computes the SVD of
B,, T = I~J2~1V~V*, and set to 0 the smallest T'— K + 1 SVs in 2 to obtain f)/
which in turn enables the definition of a new matrix B;I = =0y W* of rank K
but no longer Toeplitz. To retrieve the Toeplitz structure of the 1n1t1a1 matrix
B,, T, one replaces the coefficients on each diagonal of B77 7 by the average_of
the coefficients on this diagonal, to obtain matrix B; One then iterates‘this
procedure until the (K 4 1)th SV is smaller that the K'th by some preréquisite
factor. Note that a rectangular matrix could be used instead of B,y but'the
denoising results are reported to be better on a square matrix [12)¢

—TTPC, {1, = (100,120),7=30
_ Cadzow, ( ) (100,120), T=30
TTPC, (.l,.l.1,)=(100,150,300,400), T=30

17234
<-Cadzow, (I 100,150,300,400), T=30|

lalgl)=(

0
SNR (dB)

Figure 7: Comparison between Cadzow denoising and TTPC for a two DPs signal located at
(100, 120) and a four DPs located at (100, 150,300, 400). For Cadzow denoising the number
of iteration is set to 50. The results are,average over 200 Monte Carlo realizations.

To illustrate the improvement brought by TTPC over Cadzow denoising,
we consider two different signals: the first one is made of two DPs located at
(100, 120) and the second onejof DPs located at (100, 150, 300, 400) (the weights

being all equal)./In Fig. 7, we plot HUWZH# when ¢4 either corresponds

to Cadzow or/ TTPC denoising. In each case, T is set to 30, because it is
compatibleswith SRF” for the second signal and a good tradeoff for the first
signal. In‘each studied case, the benefit of using TTPC rather than Cadzow
denoising,is undeniable.

7.2. Comparison of FRIgr with Other DPs Location Estimators

In.this section, we introduce commonly used techniques to estimate the
locations of DPs in a stream, for the sake of comparison with the approach
called FRI;r. Classical alternative approaches involves matriz pencil algo-
rithm, which we implement following [22], MUSIC algorithm [23], or matching
pursuit techniques [21].

The basic idea of matching pursuit (MP) [21] is to approximate the signal
m, by a linear combination of functions selected in the set

S={¢[.—nl,ne {0, , M—1}}, (19)
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where ¢ is the filter introduced in the previous section. If D denotes the M x M
matrix whose columns are the translated versions of the function ¢, for n €
{0,---, M — 1}, MP aims at solving the following problem

min ||m, — Dx||2, subject to ||x|o < K, (20)
xr

where m, = {m,[q]},, and ||x||o is the number of non zero coefficients in x. The
algorithm is based on an iterative procedure to construct an approximation of
m and it consists of choosing, at each iteration, the function in the so-called
dictionary D whose inner product with the remainder (i.e. the difference be:
tween m,, and its approximation at the previous iteration) is maximal/dn-terms
of its modulus [21]. In that context, the indices of the non-zer6 components in
x correspond to DPs location while the values of the corresponding components
correspond to their weights. To accelerate the convergenge to a selution, a pos-
sibility is to move orthogonally to the remainder at eachsstep; which corresponds
to orthogonal matching pursuit (OMP) [35]. When the weights’associated with
DPs are positive, it is possible to account for such censtraints in the matching
pursuit framework using non negative matching pursuits@NNMP) [36].
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Figure 8: the circlés represent/the true DPs location, the stars (resp. squares) correspond to
the location given by:MP (resp. NNMP)

We are first going to show that MP, OMP, and NNMP techniques are irrele-
vant t@ the problem of the determination of close DPs. Indeed, consider a signal
f made.of two DPs with varying time delay between them, and then solve the
noiseless problem:

min | m — Dx||2, subject to ||x]o < 2. (21)
x

The location of the DPs computed by means of (21) and displayed in Fig.
8, show that even in the absence of noise DPs cannot be located that way
when the pulses are relatively close (the results being identical with OMP, they
are not displayed). When one uses NNMP, the obtained locations are neither
satisfactory. So, we drop the comparison with these types of methods in the
remainder of this paper.
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We are now going to see that the other tested methods based on spectral
estimation like F'RI; 7, matrix pencil or MUSIC methods work much better
than matching pursuit. As in Section 6.3, we consider a two DP signal in
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Figure 9: (a): filtered signal,.when DPs are located in (I1,l2) = (100,120), (b): top: esti-
mated positions of DPs using FRI;r (plain), matrix pencil (diamond), MUSIC (triangle),
bottom: proportion of géod detection using FRI; 7 (plain), matrix pencil (diamond), MUSIC
(triangle), both for the signal displayed in (a); (c): (22) computed for the two DPs of signal
displayed in (a) (methods are associated with the same markers as in (b)). (e) and (f): same
as (b) and (c) buit for the signal displayed in (d). The results are averaged over 200 Monte
Carlo realizations.

which the time delay between the two pulses is either 0.5 oy or 1 04: these two
situations are displayed in Figure 9 (a), (d). We then estimate DPs location
with-either /'RI; r, matrix pencil or MUSIC algorithms. The value for T is set
to 30 for the first method and so, for the sake of a fair comparison, the entries
toythe other two algorithms are also gq[n], —T < n < T (if we considered g, the
results would be much worse). Before estimating the quality of the estimation of
DPs location, we say that a given method achieves DPs detection if |I;,—1j,| < 10
for all k (here {I},} are estimated by any of the three methods). We then assess
the quality of the estimates {I;,}, when the corresponding method achieves DPs
detection. For the filtered signal of Fig. 9 (a), the average detected locations
in case the methods achieve DPs detection are displayed in Fig. 9 (b) (top)
and the proportion of time the methods achieve DPs detection in Fig. 9 (b)
(bottom). We then approximate for each DP the expectation of |l — I;| using
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Monte Carlo realizations, by

Nyce

- 1 i
Brr(li o) = 57— 3 1 — ), (22)
i=1

where i,[;] is the kth DP location estimated with the ith realization of the noise
and Njy;¢ is the number of Monte Carlo realizations for which DPs detection
has been achieved. For the signal of Fig. 9 (a), (22) computed for each(DP"i§
displayed in Fig. 9 (c). The same analysis is performed on the second row of
Figure 9, but for the signal of Fig. 9 (d).

We first notice that when the three methods achieves DPs“detection, the
average estimation of DPs location is similar with the three tested, methods
(see the top of Figures 9 (b) and (e)), and (22) computednfor each/DP is the
same for F'RI;r and MUSIC but slightly higher for matrixspencil technique.
Similarly the proportion of time F'RI; r and MUSIC achieve DPs detection are
very similar, but smaller with the matrix pencil techhique.“So, this simple study
suggests that regarding the determination of DPS locations the most important
step is the denoising step of §,, namely TTPC, and then FRI;r or MUSIC
behave the same way in terms of the estimation of DPs location.

7.8. Bvaluation of the Weights Estimation\Procedure in FRI;r — MLE

To investigate the quality of the weights estimator associated associated with
method F'RI; 7 — MLE defined in Section 5, we introduce the oracle mazimum
likelihood estimator (oracle MLE) of ¢, computed assuming DPs location are
known, i.e.,

K

CoiL )= arginin lm, — Y " cxg[. — Ii]3. (23)
cER® k=1

We denote by E,prpr the minimal energy obtained when solving Eq. (23). We
also define’the restricted mazimum likelihood estimator (restricted MLE) of ¢
as

K

CreMLE = argmin |m, — ch¢[. — Qk]H%a (24)
cERK ,q€& o k=1

where & o = {q = (qk)k=1,- K, Gk € {l~;C — A+ A}} The correspond-
ing energy is denoted by F,.yppr. To measure the quality of the weights estima-
tion associated with the above mentioned technique, we consider the following
normalized error (written for ¢x):

Erry, ¢k, ck) = Err(Cr, ck)/ k- (25)

To illustrate the limitations of MLE estimation for the weights, we again con-
sider two signals, one with (I3, l2) = (100, 120) and the other (I1,l2) = (100, 140)
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Figure 10: (a): normalized estimation error on c¢; when c is estimated either by conrp,
CreMLE, O € with (I1,l2) = (100,120) (A = 10); (b): same as (a) except that the signal
correspond to DPs located in (I1,12) = (100, 140). Results are averaged over:200°'Monte Carlo
realizations.

and, in both signals, the DPs are associated with identical weights. Then, we
compute CoprE, € and Crepr g, the latter two onlywwhen F'RI; 1 achieves DPs
detection. We take A = 10 in the definition of & A*so that we are sure that
Eremie < Eopmig, because 1 is contained in & ' (by definition of DPs detec-
tion, defined in subsection 7.2). Looking at*Eig. 10 (a), we notice that the
minimum of F,.yrpp is not attained for '= 1 which induces a larger error on
the weights estimation than with oM\LE. (we only focus on the behavior of co-
efficient ¢1, that of co being very Similar). We then notice that when the time
delays between DPs increases, the estimation of the weights given by any of the
three methods is similar as'teported in Fig. 10 (b)(note that in that case, DPs
detection is almost always achieved).

In a MLE framewozk, the” DPs location estimation thus needs to be in-
creasingly more accurdte as the time delay between DPs shortens to allow for
an accurate computation” of the weights. This however is not guaranteed by
restricted MLE. Toyimprove the weights estimation we thus believe that it is
better toase a technique that ensures a very good estimation of DPs location
before computing the weights.

7:4. Illustration of FRIg- — MLE on a Three Dirac Pulse Signal

Our' goal here is to illustrate the behavior of FRIgr — MLE on a three
Dirac pulse signal. The measure of the quality of DP parameters estimation
we use is the function Err introduced in (22), and we compute Err(ly,lx)
and Err,(Cg,ck), for k = 1,--- | K to assess the quality of estimation of DPs
locations and weights. As already noticed, MUSIC applied to the sequence g4
behaved similarly to FRIg 7 for the estimation of DPs location for a two DP
signal, and since this remains true for a three DP signal, we do not display the
results obtained with MUSIC.

The studied signal is displayed in Fig. 11 (a), the DPs are located at
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Figure 11: (a): Filtered signal with DPs located at (I1,l2,13) = (100, 140, 300) with"weights
respectively equal to 1, 1 and —0.5; (b): Error on DPs location (formula (22)), when estimates
of DPs location are computed with FRIg 1 (with T = 30, T1 = 3¢5, 7> =30.2"and Lmin =
10); (c): Error on weights measured with Erry,(Ck,ck), when estimatesiof DPs weights are
computed with FRIg—MLE. In (b) and (c), the results are averaged over 200 Monte Carlo
realizations.

(l1,12,13) = (100, 140,300) with weights respectively equal to 1, 1 and —0.5.
We display the results of DPs location estimation in Fig. 11 (b) using FRI4 7,
and then the estimation of the weights infFig. 11y(c). This example illustrates
that the denoising algorithm is still efficient/when some of the weights are neg-
ative, and that the quality of estimation does not depend on the sign of the
weights.

7.5. Generalization to Asymmetric Skewed Gaussian Filters

In the results presented. so far, we have only considered a symmetric filter
modeled by the Gatssian fumction. In this section, we broaden the scope of
our study by inyestigating/the behavior of FRI;r — MLE when the filter ¢
is an asymmetrie,Gaussian filter with skewness a. Skewed filtered are used in
many different: domains of applications, as for instance source separation [37] or
skewed Kalman filters for time series analysis [38]. For the sake of simplicity, we

o

focus lere on skewed Gaussian filters [39] which are defined for ¢(z) = \/%e 2
by
da(x) = 2¢(2)P(ax), (26)

where:

B(az) = /; o(t)dt = % {1 —i—erf(\%)} ,

with erf(z) = % fox e=t*dt. The parameter « controls the asymmetry of the

peak: the peak is right-skewed (resp. left-skewed) when o > 0 (resp, a < 0).
Note that ¢o(z) = ¢(z). For illustration purposes, Figure 12 shows different
skewed Gaussian windows.
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Figure 12: Illustration of Gaussian windows with different skewness

Here we study the impact of the skewness of the filter’on thesquality of the
estimation of DPs parameters, therefore for the sake of comparison we study a
signal composed of three Dirac pulses, filtered by differently. skewed Gaussian
windows, and estimate the weights (all equal) and locations of the DPs using
FRI;r— MLE (with T = 30). Before estimating\the quality of the estimation
of DPs location and weights, we investigate themperecentage of non detection with
respect L, when the skewness of the filter varies (T, 77 and T being fixed
as in the previous subsections), and for different SNRs. The criterion we use is
the same as previously, i.e. |l — lxl4< 10\for each k. The results reported in
Fig. 13 (b) and (c) show that for medium to/high SNRs, there are very few non
detection regardless of L, andewhateverthe skewness. We also note that the
behaviors are similar for skewness'symmetric with respect to zero. In the case
of a low SNR, the percentage,of non"detection is decreased when the modulus
of the skewness is largedy choosing a small Ly, (see Fig. 13 (a)). For more
symmetric filter the non detection appear to be quite insensitive to Ly, at high
noise level. The reason why,one had rather use a smaller L,;, when the modulus
of the skewness increases can be explained by the fact that the filters in Fig 12
all have the sametintegral, and to increase the skewness increases the amplitude
of the filter,while deereases its essential support, making it more "peaky”.

Thexesults on the estimation of the location of the DPs are displayed in Fig.
14 (a)*(c)nIn these computations we use the optimal L,,;, for each skewness as
suggested by the previous study. First, we remark that to change the skewness
of the filter generally does not significantly alter the quality of the estimation
of DPs location, and then, regarding the weight estimation, the results are also
of similar quality.

8. Conclusion

In this paper, we proposed a novel algorithm for the retrieval of the param-
eters of a stream of Dirac pulses from noisy lowpass filtered samples. Having
shown the limitations of the techniques based on the concept of signals with
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Figure 14: (a): Error on DP location for I; = 100 when the signal is the same as previously
(asthree Dirac pulse signal located at 1 = 100, lo = 140 and I3 = 300, the time delay between
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(b): Same as (a) but for the Dirac pulse located at lo = 140; (c): same as (a) but for the
Dirac pulse located at lo = 300; (c): Error on Dirac weight associated with pulse located in
11, when the filter is chosen among ¢_5, ¢_1, ¢o, ¢1, or ¢s; (e): Same as (d) but for the pulse
located in l2; (f): same as (d) but for the pulse located in 3.

26



finite rate of innovation in their original formulation, we developed a new al-
gorithm based on the denoising of the matrix used in the determination of the
Dirac pulses location, and then showed that this technique enabled the deter-
mination of the number of pulses present in the stream and finally the retrieval
of the parameters of close Dirac pulses, even in a very noisy context. A compar-
ison of the proposed denoising procedure with other commonly used proceduré
like Cadzow denoising showed the benefit of the proposed method, and its fun-
damental role in the designing of efficient techniques for the retrieval of DPs
parameters. In the future, this algorithm could be extended to handle‘mnon-
Gaussian noise models and more complex filters.
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