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We study the nonlinear dynamics of (1+1)-dimensional quantum system in power-law dependent media based on the nonlinear
Schrödinger equation (NLSE) incorporating power-law dependent nonlinearity, linear attenuation, self-steepening terms, and
third-order dispersion term. The analytical bright soliton solution of this NLSE is derived via the 𝐹-expansion method. The key
feature of the bright soliton solution is pictorially demonstrated, which together with typical analytical formulation of the soliton
solution shows the applicability of our theoretical treatment.

1. Introduction

In the fascinating study of physical reality, nonlinear phe-
nomena have attracted significant attention. Besides exper-
imental observation of nonlinear behaviors, for the theoreti-
cal investigation of nonlinearity, the nonlinear Schrödinger
equation (NLSE) has proved to be a reliable model under
certain experimental settings because it is closely related
to many nonlinear problems and people have conducted
extensive research on finding solutions [1–15] of particular
nonlinear features. For a practical theoretical treatment, the
one-dimensional scenario of the NLSE model is typical not
only because of the integrability of the system under many
parametric settings, but also because that actual experimental
observation identifies stable soliton behavior under such
a scenario. Therefore, the (1+1)-dimensional case of the
NLSE is the focus of many theoretical works, including this
study.

For the analytical study of various categories of the (1+1)-
dimensional NLSE, many approaches have been proposed,
such as the Bäcklund transformation method [16], homotopy
analysis method [17], variational iteration method, and Exp-
function method [2]. For a typical analytical solution inves-
tigation of the NLSE in this study, we utilize the 𝐹-expansion

method, which features the Jacobian elliptic function expan-
sion to solve NLSE for typical traveling wave solutions. It is
a very effective method to solve partial differential equations
such as NLSE. Basically, it is implemented by expressing the
solutions of the equations in the form of power expansion
of Jacobian function [18, 19]. Moreover, for the nonlinear
study of the NLSE, the soliton-type solution is usually the
ultimate goal of the analytical solution search. This usually
comes from the desirable features of soliton. Because it is
wave solution of a nonlinear wave equation, it can propagate
for a long distance without deformation, and its amplitude,
shape, and speed remain unchanged when it meets other
similar solitary waves. In this paper, we study the soliton
behavior of the NLSE bymodeling the nonlinear dynamics in
power-law dependent media such as an optical fiber system,
where the group velocity dispersion term and nonlinear term
are present and adjustable. The linear attenuation term, self-
steepening term, and third-order dispersion term also exist
[20]. We identify that, under an appropriate experimental
setting, the bright soliton solutions can be derived via the 𝐹-
expansion method, and the typical bright soliton feature is
pictorially demonstrated.

This paper is organized as follows. The next section gives
theNLSEmodel formulation of this study, Section 3 describes
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the procedural detail of the 𝐹-expansion method, Section 4
gives the concrete calculation steps of solving the NLSE for
its solition solution, and the last section gives the conclusive
remarks.

2. Model and Method

2.1. NLSE Model in Power-Law Dependent Media. For study-
ing the soliton dynamics in a (1+1)-dimensional power-law
dependent media [2, 10, 15, 20], the NLSE in dimensionless
format is

𝑖𝜓𝑡 + 𝑎 (𝑡) 𝜓𝑥𝑥 + 𝑏 (𝑡) 󵄨󵄨󵄨󵄨𝜓󵄨󵄨󵄨󵄨2𝑚 𝜓
= 𝑖𝛼 (𝑡) ]𝜓 + 𝑖𝜆 (𝑡) (󵄨󵄨󵄨󵄨𝜓󵄨󵄨󵄨󵄨2𝑚 𝜓)

𝑥
− 𝑖𝛾 (𝑡) 𝜓𝑥𝑥𝑥 (1)

The independent variables in 𝜓 include the space 𝑥 and time𝑡 coordinates, 𝑖𝜓𝑡 describes the evolution of wave function,𝑎(𝑡)𝜓𝑥𝑥 is the term of group velocity dispersion, 𝑏(𝑡)|𝜓|2𝑚𝜓 is
the nonlinear term, 𝑎(𝑡) and 𝑏(𝑡) are the real valued functions
of time 𝑡, 𝛼(𝑡) is the time-dependent coefficient of linear
attenuation term, 𝜆(𝑡) is the time-dependent coefficient of
self-steepening term, and 𝛾(𝑡) is the time-dependent coeffi-
cient of the third-order dispersion term. Here, we consider
the case where the coefficient parametric functions of various
terms in (1) do not vary with time within a certain period but
can be freely adjusted according to the experimental setting.

2.2. �e 𝐹-Expansion Method. The 𝐹-expansion method is
used to solve general partial differential equations of the
following form:

𝐺(𝑢, 𝑢𝑡, 𝑢𝑥, 𝑢𝑥𝑥, . . .) = 0 (2)

where 𝑢(𝑥, 𝑡) is the unknown function to be solved and 𝐺 is
the polynomial of 𝑢(𝑥, 𝑡) and its partial derivatives of various
orders.The F-expansion method is implemented through the
use of the polynomial of base function 𝐹(𝜉) to express 𝑢(𝑥, 𝑡),
where 𝐹(𝜉) is defined as

(𝑑𝐹 (𝜉)𝑑𝜉 )2 = 𝐹 (𝜉)4 + 𝑏3𝐹 (𝜉)3 + 𝑏2𝐹 (𝜉)2 + 𝑏1𝐹 (𝜉)
+ 𝑏0

(3)

where

𝜉 = 𝑝𝑥 + 𝑞𝑡 (4)

Here 𝑝, 𝑞, 𝑏0, 𝑏1, 𝑏2, 𝑏3 are parametric constants to be
determined in the problem-solving steps. 𝑢(𝑥, 𝑡) is expressed
through 𝐹(𝜉) and it takes the following form:

𝑢 (𝑥, 𝑡) = 𝑚∑
𝑖=0

ℎ𝑖 (𝑡) 𝐹𝑖 (𝜉) (5)

where the highest order number 𝑚 is determined by balanc-
ing the highest order of nonlinearity and highest order of
derivatives. By inserting (5) into (2) and using the definition
of 𝐹(𝜉), we obtain a polynomial of 𝐹(𝜉). After setting the

coefficients of various terms of the polynomial, we obtain a set
of ordinary differential equations (ODEs) of time 𝑡. Solving
the ODEs consistently, we obtain the analytical expressions
of the parametric constants in (3) and ℎ𝑖(𝑡) in (5), and (2) is
solved accordingly.

3. Procedural Details and Results for Reaching
Solition Solution of NLSE in Power-Law
Dependent Media

To solve (1), we can assume that 𝜓(𝑥, 𝑡) takes the following
traveling wave format:

𝜓 (𝑥, 𝑡) = 𝜑 (𝜉) 𝑒𝑖(𝐴𝑥+𝐵𝑡) (6)

Substituting (6) into (1), we get

𝑖𝜓𝑡 = (𝑖𝑞𝜑󸀠 − 𝐴𝜑) 𝑒𝑖(𝐴𝑡+𝐵𝑥) (7a)

𝜓𝑥 = (𝜑󸀠𝑝 + 𝑖𝐵𝜑) 𝑒𝑖(𝐴𝑡+𝐵𝑥) (7b)

𝜓𝑥𝑥 = (𝜑󸀠󸀠𝑝2 + 2𝑖𝐵𝜑󸀠𝑝 − 𝐵2𝜑) 𝑒𝑖(𝐴𝑡+𝐵𝑥) (7c)

𝜓𝑥𝑥𝑥 = (𝜑󸀠󸀠󸀠𝑝3 + 3𝑖𝐵𝜑󸀠󸀠𝑝2 − 3𝐵2𝜑󸀠𝑝 − 𝑖𝐵3𝜑) 𝑒𝑖(𝐴𝑡+𝐵𝑥) (7d)

Plugging (7a), (7b), (7c), and (7d) into (1), we get

(𝑖𝑞𝜑󸀠 − 𝐴𝜑) + 𝑎 (𝑡) (𝜑󸀠󸀠𝑝2 + 2𝑖𝐵𝜑󸀠𝑝 − 𝐵2𝜑)
+ 𝑏 (𝑡) 𝜑2𝑚+1

= 𝑖𝛼 (𝑡) 𝜑 + 𝑖𝜆 (𝑡) (2𝑚 + 1) 𝜑2𝑚𝜑󸀠𝑝
− 𝜆 (𝑡) (2𝑚 + 1) 𝐵𝜑2𝑚+1 + 𝑖𝛾 (𝑡) 𝜑󸀠󸀠󸀠𝑝3
− 3𝐵𝛾 (𝑡) 𝜑󸀠󸀠𝑝2 − 3𝑖𝐵2𝛾 (𝑡) 𝜑󸀠𝑝 + 𝐵3𝛾 (𝑡) 𝜑

(8)

The real part of (8) is

[𝑏 (𝑡) + 𝜆 (𝑡) (2𝑚 + 1) 𝐵] 𝜑2𝑚+1
− [𝐴 + 𝑎 (𝑡) 𝐵2 + 𝛾 (𝑡) 𝐵3] 𝜑
+ [𝑎 (𝑡) 𝑝2 + 3𝛾 (𝑡) 𝐵𝑝2] 𝜑󸀠󸀠 = 0

(9)

The imaginary part of (8) is

𝜆 (𝑡) (2𝑚 + 1) 𝑝𝜑2𝑚𝜑󸀠 + 𝛼 (𝑡) 𝜑
− [𝑞 + 2𝑎 (𝑡) 𝐵𝑝 + 3𝛾 (𝑡) 𝐵2𝑝] 𝜑󸀠 + 𝛾 (𝑡) 𝑝3𝜑󸀠󸀠󸀠

= 0
(10)

We define

𝑇 (𝜑) = [𝑑𝜑 (𝜉)𝑑𝜉 ]2 = (𝜑󸀠)2 (11)

So 𝑑𝑇𝑑𝜉 = 𝑑𝑇𝑑𝜑 𝑑𝜑𝑑𝜉 = 𝜑󸀠 𝑑𝑇𝑑𝜑 (12)
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and

𝜑󸀠󸀠 = 𝑑𝜑󸀠𝑑𝜉 = 𝜑󸀠 𝑑𝜑󸀠𝑑𝜑 = 12 𝑑𝜑󸀠2𝑑𝜑 = 12 𝑑𝑇𝑑𝜑 = 12𝑇󸀠 (13)

Substituting (13) into (9), we obtain

𝜆1𝜑2𝑚+1 − 𝜆2𝜑 + 12𝜆3𝑇󸀠 = 0 (14)

where

𝜆1 = 𝑏 (𝑡) + 𝜆 (𝑡) (2𝑚 + 1) 𝐵 (15a)

𝜆2 = 𝐴 + 𝑎 (𝑡) 𝐵2 + 𝛾 (𝑡) 𝐵3 (15b)

𝜆3 = 𝑎 (𝑡) 𝑝2 + 3𝛾 (𝑡) 𝐵𝑝2 (15c)

For the implementation of the 𝐹-expansion method, we set𝜑(𝜉) = 𝐹(𝜉), and the 𝐹 base function is chosen as follows:

𝑇 = 𝑎𝑚𝜑2𝑚+2 + 𝑎2𝜑2 (16)

Plugging (16) into (14), and performing integration, we get
the coefficients as follows:

𝜑2𝑚+1: 𝜆1 + (𝑚 + 1) 𝜆3𝑎𝑚 = 0 (17a)

𝜑: −𝜆2 + 𝜆3𝑎2 = 0 (17b)

From (17a) and (17b), we get

𝑎2 = 𝜆2𝜆3 (18a)

𝑎𝑚 = − 𝜆1(𝑚 + 1) 𝜆3 (18b)

Plugging (15a), (15b), and (15c) into (18a) and (18b), we get

𝑎2 = 𝐴 + 𝑎 (𝑡) 𝐵2 + 𝛾 (𝑡) 𝐵3𝑎 (𝑡) 𝑝2 + 3𝛾 (𝑡) 𝐵𝑝2 (19a)

𝑎𝑚 = − 𝑏 (𝑡) + 𝜆 (𝑡) (2𝑚 + 1) 𝐵(𝑚 + 1) [𝑎 (𝑡) 𝑝2 + 3𝛾 (𝑡) 𝐵𝑝2 (19b)

We get 𝜑󸀠󸀠 from (9):

𝜑󸀠󸀠 = −𝜆1𝜆3𝜑2𝑚+1 + 𝜆2𝜆3𝜑 (20)

We differentiate both sides of (20):

𝜑󸀠󸀠󸀠 = 𝑑𝜑󸀠󸀠𝑑𝜉 = −𝜆1𝜆3 (2𝑚 + 1) 𝜑2𝑚𝜑󸀠 + 𝜆2𝜆3𝜑󸀠 (21)

Equation (8) then takes the following form:

𝜆4𝜑2𝑚𝜑󸀠 + 𝛼 (𝑡) 𝜑 − 𝜆5𝜑󸀠 + 𝜆6𝜑󸀠󸀠󸀠 = 0 (22)

Here

𝜆4 = 𝜆 (𝑡) (2𝑚 + 1) 𝑝 (23a)

𝜆5 = 𝑞 + 2𝑎 (𝑡) 𝐵𝑝 + 3𝛾 (𝑡) 𝐵2𝑝 (23b)

𝜆6 = 𝛾 (𝑡) 𝑝3 (23c)

Plugging (21) into (22), we get

[𝜆4 − 𝜆6𝜆1𝜆3 (2𝑚 + 1)] 𝜑2𝑚𝜑󸀠 + 𝛼 (𝑡) 𝜑
+ [𝜆6𝜆2𝜆3 − 𝜆5] 𝜑󸀠 = 0 (24)

Dividing both sides of (24) by 𝜑, and then taking both
derivatives with respect to 𝜉, we get

[𝜆4 − 𝜆6𝜆1𝜆3 (2𝑚 + 1)] (2𝑚 − 1) 𝜑2𝑚−2𝜑󸀠2
+ [𝜆4 − 𝜆6𝜆1𝜆3 (2𝑚 + 1)] 𝜑2𝑚−1𝜑󸀠󸀠
+ [𝜆6𝜆2𝜆3 − 𝜆5] 𝜑󸀠󸀠 − 𝜑󸀠2𝜑2 = 0

(25)

Substituting (11) and (13) into (25), we get

[𝜆4 − 𝜆6𝜆1𝜆3 (2𝑚 + 1)] (2𝑚 − 1) 𝜑2𝑚−2𝑇
+ [𝜆4 − 𝜆6𝜆1𝜆3 (2𝑚 + 1)]𝜑2𝑚−1 12𝑇󸀠
+ [𝜆6𝜆2𝜆3 − 𝜆5] (1/2) 𝑇󸀠 − 𝑇𝜑2 = 0

(26)

Plugging (16) into (26), performing the integration, we get the
coefficient of each term as

𝜑4𝑚 : (3𝑚) 𝑎𝑚 [𝜆4 − (2𝑚 + 1) 𝜆6𝜆1𝜆3 ] (27a)

𝜑2𝑚 : (2𝑚) 𝑎2 [𝜆4 − (2𝑚 + 1) 𝜆6𝜆1𝜆3 ]
− 𝑎𝑚 [𝜆6𝜆2𝜆3 − 𝜆5]

(27b)

𝜑2𝑚−1 : (𝑚 + 1) 𝑎𝑚 [𝜆6𝜆2𝜆3 − 𝜆5] (27c)

𝜑0 : −𝑎2 [𝜆6𝜆2𝜆3 − 𝜆5] (27d)

𝜑−1 : 𝑎2 [𝜆6𝜆2𝜆3 − 𝜆5] (27e)

From Eqs. (27a), (27b), (27c), (27d), and (27e), we get

𝐵 = 𝑎 (𝑡) 𝜆 (𝑡) − 𝑏 (𝑡) 𝛾 (𝑡)(2𝑚 − 2) 𝜆 (𝑡) 𝛾 (𝑡) (28a)

𝐴 = − [𝑎 (𝑡) 𝐵2 + 𝛾 (𝑡) 𝐵3] (28b)

𝑞𝑝 = − [2𝑎 (𝑡) 𝐵 + 3𝛾 (𝑡) 𝐵2] (28c)
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Figure 1: Bright soliton waveform of |𝜓| for various power indexes𝑚.

Next we define 𝜙 as

𝜙 (𝜉) = 𝜑−1 (29)

So (16) takes the following form:

𝑑𝜙
𝜙1−𝑚√𝑎𝑚 + 𝑎2𝜙2𝑚 = −𝑑𝜉 (30)

This equation can be solved with the following analytic
solutions:

𝜑 = 𝜙−1 = 𝑚√√󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 𝑎2𝑎𝑚
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 sech (𝑚√𝑎2𝜉) (31)

TheModulus of wave function is

󵄨󵄨󵄨󵄨𝜓 (𝑥, 𝑡)󵄨󵄨󵄨󵄨 = 𝑚√√󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 𝑎2𝑎𝑚
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 sech (𝑚√𝑎2 (𝑝𝑥 + 𝑞𝑡)) (32)

Now all of the 𝑎2, 𝑎𝑚,𝐴, 𝐵 can be expressed by 𝑎(𝑡), 𝑏(𝑡), 𝛼(𝑡),𝜆(𝑡), 𝛾(𝑡) (are constants within the timing range under study),𝑝 and 𝑞, and 𝑞/𝑝 can be expressed by 𝑎(𝑡), 𝑏(𝑡),𝛼(𝑡),𝜆(𝑡), 𝛾(𝑡).
We can see that the solution (32) obtained by our method

is of bright soliton type. The pictorial demonstration of
the soliton forms for different power index values 𝑚 is
shown in Figure 1. We see that the NLSE modeling (1+1)-
dimensional system in power-law dependent media supports
bright soliton solution.

4. Conclusion

This study investigatied the nonlinear dynamics for the (1+1)-
dimensional quantum system in the power-law dependent

media with the corresponding NLSE model. Using the 𝐹-
expansionmethod,we derived typical bright soliton solutions
under appropriate parameter settings, with key features
pictorially demonstrated. Our theoretical treatment showed
that a (1+1)-dimensional quantum system with power-law
dependent nonlinearity supports bright soliton behavior.The
analytical results obtained can be used to guide relevant
experimental observation of the soliton dynamics in the
(1+1)-dimensional systemwith power-law dependent nonlin-
earity.

Data Availability

Our study is theoretical work consisting of analytical deriva-
tion of theoretical model.We do not use previously published
data for our work.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was supported by the National Natural Science
Foundation (NSF) of China under Grant nos. 11874185 and
11547024.

References

[1] N. Asif, S. Shwetanshumala, and S. Konar, “Photovoltaic spatial
soliton pairs in two-photon photorefractive materials,” Physics
Letters A, vol. 372, no. 5, pp. 735–740, 2008.

[2] D. D. Ganji, A. Asgari, and Z. Z. Ganji, “Exp-function based
solution of nonlinearRadhakrishnan,Kundu andLaskshmanan
(RKL) equation,” Acta Applicandae Mathematicae, vol. 104, no.
2, pp. 201–209, 2008.

[3] S. Jana and S. Konar, “A new family of Thirring type optical
spatial solitons via electromagnetically induced transparency,”
Physics Letters A, vol. 362, no. (5-6), pp. 435–438, 2007.

[4] R. Kohl, A. Biswas, D. Milovic, and E. Zerrad, “Optical soliton
perturbation in a non-Kerr law media,”Optics & Laser Technol-
ogy, vol. 40, no. 4, pp. 647–662, 2008.

[5] S. Konar, M. Mishra, and S. Jana, “Nonlinear evolution of cosh-
Gaussian laser beams and generation of flat top spatial solitons
in cubic quintic nonlinearmedia,” Physics Letters A, vol. 5-6, pp.
505–510, 2007.

[6] S. Konar, S. Jana, and W.-P. Hong, “Two-component spatial
holographic solitons supported by cross-phase modulation,”
Physica Scripta, vol. 76, no. 5, p. 470, 2007.

[7] W.-P. Hong, “Optical solitary wave solutions for the higher
order nonlinear Schrödinger equation with cubic-quintic non-
Kerr terms,” Optics Communications, vol. 194, no. 1-3, pp. 217–
223, 2001.

[8] W.-P. Hong, S. Shwetanshumala, and S. Konar, “Modulational
instability of optical beams in photovoltaic and photorefractive
media due to two-photon photorefractive effect under open
circuit condition,” Optics Communications, vol. 281, no. 23, pp.
5864–5869, 2008.



Advances in Mathematical Physics 5

[9] B. Mandal and A. R. Chowdhury, “Spatial soliton scattering in a
quasi phase matched quadratic media in presence of cubic non-
linearity,” Journal of Electromagnetic Waves and Applications,
vol. 21, no. 1, pp. 123–135, 2007.

[10] A. K. Sarma, “Dark soliton switching in an NLDC in the
presence of higher-order perturbative effects,” Optics & Laser
Technology, vol. 41, no. 3, pp. 247–250, 2009.

[11] S. Shwetanshumala, “Temporal solitons of modified com-
plex Ginzburg Landau equation,” Progress in Electromagnetics
Research Letters, vol. 3, pp. 17–24, 2008.

[12] A.-M. Wazwaz, “Reliable analysis for nonlinear Schrödinger
equations with a cubic nonlinearity and a power law nonlin-
earity,” Mathematical and Computer Modelling, vol. 43, no. 1-2,
pp. 178–184, 2006.

[13] A.-M. Wazwaz, “Exact solutions for the fourth order nonlinear
Schrodinger equations with cubic and power law nonlineari-
ties,”Mathematical and Computer Modelling, vol. 43, no. 7-8, pp.
802–808, 2006.

[14] A. Wazwaz, “A study on linear and nonlinear Schrodinger
equations by the variational iteration method,” Chaos, Solitons
& Fractals, vol. 37, no. 4, pp. 1136–1142, 2008.

[15] J.-L. Zhang and M.-L. Wang, “Various exact solutions for two
special type RKLmodels,”Chaos, Solitons & Fractals, vol. 37, no.
1, pp. 215–226, 2008.

[16] C. Rogers and W. F. Shadwick, Backlund Transformations and
�eir Applications, Academic Press, New York, NY, USA, 1982.

[17] S. Li and S.-J. Liao, “An analytic approach to solve multiple
solutions of a strongly nonlinear problem,”AppliedMathematics
and Computation, vol. 169, no. 2, pp. 854–865, 2005.

[18] Y.Wang andY. Zhou, “Exact soliton solutions of the generalized
Gross-Pitaevskii equation based on expansion method,” AIP
Advances, vol. 4, Article ID 067131, 2014.

[19] S. Li, Y. Wang, Y. Zhou, J. Guo, G. Gao, and Y. Zhang, “Soliton
dynamics for one dimensional quantum system incorporating
higher-order dispersion effect and nonlinear interactions,”Chi-
nese Journal of Physics, vol. 55, no. 6, pp. 2436–2440, 2017.

[20] M. Saha, A. K. Sarma, and A. Biswas, “Dark optical solitons
in power law media with time-dependent coefficients,” Physics
Letters A, vol. 373, no. 48, pp. 4438–4441, 2009.



Hindawi
www.hindawi.com Volume 2018

Mathematics
Journal of

Hindawi
www.hindawi.com Volume 2018

Mathematical Problems 
in Engineering

Applied Mathematics
Journal of

Hindawi
www.hindawi.com Volume 2018

Probability and Statistics
Hindawi
www.hindawi.com Volume 2018

Journal of

Hindawi
www.hindawi.com Volume 2018

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi
www.hindawi.com Volume 2018

Optimization
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Engineering  
 Mathematics

International Journal of

Hindawi
www.hindawi.com Volume 2018

Operations Research
Advances in

Journal of

Hindawi
www.hindawi.com Volume 2018

Function Spaces
Abstract and 
Applied Analysis
Hindawi
www.hindawi.com Volume 2018

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi
www.hindawi.com Volume 2018

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific 
World Journal

Volume 2018

Hindawi
www.hindawi.com Volume 2018Volume 2018

Numerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical Analysis
Advances inAdvances in Discrete Dynamics in 

Nature and Society
Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com

Di�erential Equations
International Journal of

Volume 2018

Hindawi
www.hindawi.com Volume 2018

Decision Sciences
Advances in

Hindawi
www.hindawi.com Volume 2018

Analysis
International Journal of

Hindawi
www.hindawi.com Volume 2018

Stochastic Analysis
International Journal of

Submit your manuscripts at
www.hindawi.com

https://www.hindawi.com/journals/jmath/
https://www.hindawi.com/journals/mpe/
https://www.hindawi.com/journals/jam/
https://www.hindawi.com/journals/jps/
https://www.hindawi.com/journals/amp/
https://www.hindawi.com/journals/jca/
https://www.hindawi.com/journals/jopti/
https://www.hindawi.com/journals/ijem/
https://www.hindawi.com/journals/aor/
https://www.hindawi.com/journals/jfs/
https://www.hindawi.com/journals/aaa/
https://www.hindawi.com/journals/ijmms/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/ana/
https://www.hindawi.com/journals/ddns/
https://www.hindawi.com/journals/ijde/
https://www.hindawi.com/journals/ads/
https://www.hindawi.com/journals/ijanal/
https://www.hindawi.com/journals/ijsa/
https://www.hindawi.com/
https://www.hindawi.com/

