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Abstract

We consider basic and easily extendible transport formulations for liv. “um b tteries consisting of an anode (Li-foil),
a separator (polymer electrolyte), and a composite cathode (comp =ed . electrolyte and intercalation particles).
Our mathematical investigations show the following novel features: 1) complete and very basic description of
mized transport processes relying on a neutral, binary symmeti. elec’ colyte resulting in a non-standard Poisson
equation for the electric potential together with interstitial diffus. -n approximated by classical diffusion; (ii) upscaled
and basic composite cathode equations allowing to take ge~—-*=" _.d material features of electrodes into account;
(iii) the derived effective macroscopic model can be numer.. ~lly solved with well-known numerical strategies for
homogeneous domains and hence does not require to s ' 2 higu-dimensional numerical problem or to depend on
a computationally involved multiscale discretisation stra =g’2s where highly heterogeneous and realistic, nonlinear,
and reactive boundary conditions are still unexplorer  We 1 ~lieve that the here proposed basic and easily extendible
formulations will serve as a basic and simple setup tow. ra. = systematic theoretical and experimental understanding
of complex electrochemical systems and their op’‘izat. ‘u, e.g. Li-batteries.

Keywords: lithium batteries, multiscale modeling, b.''er-Volmer equations, homogenization, electrode design

1. Introduction

Energy storage systems play an in-re« ngly mmportant role for reliable, efficient, and preferably green energy and
delivery in developed countries anc also between them. Two major developments make affordable and endurable
energy storage a necessity: (i) thr glo. ! awareness of climate change and as such the need for renewable and low
CO4 energy-consumption/prodv “on; (ii) the realisation and affordability of electric mobility (cars and buses). In
order to make storage systems - iore .ffordable, it is important to have a proper physical, chemical, and mathematical
understanding of the processes . - olved in order to give systematic (i.e. based on variational principles) guidance
on design optimization. Si-.ce electi.c cars are expected to become a multi-billion dollar buisness until 2030 and
Li-ion batteries play a ms -or - ole i . this development, we aim here to provide a fundamental, basic, and effective
macroscopic description of an ~ct’ve electrode.

Due this expected dema~d, recently an increasing interest in mathematical modeling of lithium batteries
emerged. Well-known and co imonly used macroscale models were developed by Newman and collaborators al-
ready decades ago. eg. ! and [2], which serves as basis for the present investigations. In order to improve
the battery perfo mance it will be crucial to connect material properties and the geometry of microstructure to
current-voltage ck racteri tics. This has recently led to an increased interest in the systematic derivation of effective
macroscopic charge .. _,port equations [3, 4]. In fact, for the full nonlinear Poisson-Nernst-Planck equations first
rigorous error st .. 5 have been derived in [5]. Related research for porous and heterogeneous media are [6, 7, 8]
for instance.

We consider a Hasic and easily extendible non-re-chargeable Li-battery consisting of a polymer electrolyte/
separator Dj, a composite cathode D, a Li-foil I'; as anode, and a cathodic current collector I',, see Fig. 1 (Left).
The composite cathode D, can be identified as the periodic extension of a statistically defined, characteristic
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Figure 1: Left: Schematic of lithium battery with separator D,, (homogenized) compc ‘te ca’.10ode D, anode I';, and cathodic current
collector I'r. Right: Microscopic composite cathode Dc := Dy, U D5 as a periodi’ catension of a reference cell Y := Yy UY; of length £.

reference cell Y of length ¢, see Fig. 1 (Right). This leads to a « cali.l heterogeneity parameter € := % where

L is the length of the cathode. Hence, D, is highly heterogeneous anu composed of an electrolyte Dj, and a solid
intercalation phase D such that D, := Dj U D;. The interface .. *weer the polymer and solid phase is denoted by
If, == 0Dy N 0D5. We model Li-diffusion in neutral, binary sy.. metric electrolytes by the dilute solution theory [1]
and Li-transport in solid intercalation hosts is described by ~l~~~i~ diffusion. Based on this basic formulation, we
systematically derive effective macroscopic cathode equation. "1sing the method of asymptotic two-scale expansions
[9]. The central quantities of interest are the evolution ~f Ti-den.ity in dependence of an applied electrical current
I, and the resulting electric potential. As shown in Fig. *. v e apply the following notation for the Li-density ¢ and
the potential ¢ in various domains D € {D,, Dy, D5’ i.e.,

cp, iInD=D.. Yp, inD=D,,
c:=4qc¢,, inD=D,, Yi=9¢,, inD=DD;, (1)
¢, ImnD="DDg. ¢, inD="Dsg.

Under an applied discharging current densit v i, := . ,/|T'$€|, charge transport in the homogeneous and heterogeneous
electrolyte phases D = D), and D = Dy, respu *ive'y, is governed by

%f:/’.c inD,
Ve-. --g on dD,

- Yy (eVy) = —RAc in D, (2)
Y =hp onI'},

) Vion=hy on % = oD\ T%, ,

where n is an outward poinf ng nor.. 2l vector, £, and €5 are the electrical permittivities of D}, and D, respectively,

R is mﬁ% with D;, ;, “nd z; being diffusion, mobility, and charge number of species i € {4, —}. The
symmetry assumption on the 'ec rolyte implies z; = —z_. The Li density ¢, and electric potential ¢, in D = D,

satisfy the same syster « (2) 2 ¢;, and ¢y in D = Dy for boundary conditions defined as follows

R} 1
fiRpy onl,. £VyS-n on IS, U (T UID,),
’ A vy PN oD
) -n only’
g:=1{Ve,-n I NID, hp = {wa—na onTy, hy:= P ! po (3)
s 0 on 'y UTY,
BIR™, on IS, 0 on Iy UTy UTES
0 on Iy UTEUTye, b ¢ r
where
P g i (0% (o e S s
By = tpsftpy = lps \ € — (" = cf)e ) (4)
describes Butler-Volmer (BV) reactions across the interface I7, and
iy = uRlpy = iy (e — = FF ) (5)



electrochmical reactions at the anode-electrolyte interface I';. The exchange current den ities in the BV equations
(4)-(5) are ips = Fhyps (! — c;)ac oo and i = Fkgokge (c — C;)a“ (cp)% where k" and kg are anodic and
cathodic reaction rates, respectively. The parameters o, and «. are anodic and cathoa. transfer coefficients,
respectively, and ¢’ and ¢ are the maximum lithium densities in D}, and Dg, respec’.v.'y. Moreover, 1, := ), —

is the local value of the surface overpotential and 1), denotes the potential at the ano’ e (here simply Li-foil) and

similarly, for the the equilibrium potential U the overpotential across I, is n° := v, -¢; — U. Furthermore, the

parameters 3, := Zc‘”bfigf and §; == & Lgf make the Butler-Volmer equatlons dime.. *onless for a reference length
re; P

Lo, a reference concentration c,cr, and Li-diffusion constant D), in the elect’ blyt
It remains to describe electron and Li transport in D¢, i

ar2 o = Ac§ in "¢,

Ve n = —eﬂsR%sV on 'S,

Vei-n=0 o I (6)
—div (osVYs) =0 ir D¢,

o VYE -n = By, R, on °,

osVYs -n = agl, o. I'e.

2 2
The Li-diffusion times 74 := % and 7, 1= %Zf in the solid ph. e and the polymer/electrolyte phase, respectively,

define the dimensionless parameter aq := 7,/7, for Li-di™ ..lc.. coustants Dy and D, in DS and D € {D ’D;},

respectively. Ué is the electrical conductivity of DS. The p. -ameters (s := Z’”figj and By = lp;L‘:f ;T with
Lyet

E RT make the (4) after upscaling dimensic ~less nally, oyef is a reference conductivity.

Of central interest in battery modelling and optimizat. m is the effective macroscopic description of electrodes.
To this end, we provide a systematic upscaling frame 0. fo. active electrodes such as D. = D UDg by passing to
the limit € — 0 and by relying on crucial microscopic in, reaients via (2)—(6) such as geometry and specific material
characteristics. The homogenization is explained .. Secuw.on 3 and the results are stated in the next section.

as =

2. Main results
Our main results depend on the following, vell- .ccepted concept of local equilibrium [10, 11].

Definition 2.1. The chemical potenti J p. Cp. ¥,) = log C, — RY¥,, is said to be in local thermodynamic equilib-
rium, if and only if it holds that

, 0 nY,,
Optp “ps V) _ P

8xk Opp(Cp,Vp)
Oz

(7)
in D,

for every k € N, 1 <k <d. and the ‘pscaled quantities {Cp, ¥, }, which are independent of the microscale y € Y.

Remark 2.1. Local thern. < ymar.ic equilibrium is used in many different applications [12, 13, 14]. Definition 2.1
accounts for the fact tr .. the 1. .croscopic variables are so slow compared to the fast processes on the microscale
(fast scale y := x/e € 7,) tha. their variations disappear thereon but not so on the (slow) macroscale x € D,.

Note that after upe~alin, '.¢ phases D, and D are super-imposed on the whole composite cathode D. while
preserving the cor respon.’ing volume fractions. The specific boundaries are defined in Fig. 1.

Main results. (Up-caled cathode equations) Under local thermodynamic equilibrium (Definition 2.1), the

microscopic fc ~lations (2) and (6) turn after upscaling into the following effective composite cathode formulations
paac;p = div ([)pvcp) + BPR%SV in De,
ﬁpVCp ‘n=Ve¢,n on I'f,
DpVCpA- n=20 ) on T\ I'f, ()
—div (ch%v\pp) = Rdiv (Dpvcp) in D,
[)%Wp ‘n=Viy,-n on I,
CpDy, V¥, -n=0 onT'°\ I'f,



and

g% = div (stcs) +B,RE, D,
D,VC,-n=0 onTe,
~div (SV,) = B, R, in D, 9)
SV, -n = a,l, on ¢,
SVU, -n=0 on T 1
— — — Y
where p = ‘Kf“, g=a1(1—p), Bp = |ABp, Bs = |A|Bs, By = |A|By, and |*! = 'TY\l The effective material tensors
D, = {dfk}?,k:p {d i k 17 D = {dzk}z k=1, and X = {gik}ik: are giv-n by

k ) 1 v [ ol
diy, = |Y\ Z dik — 0ij 8 dy, Sk = V< gy ° Oik — 0ij Dy, dy, (10)
j=1"Y

for w € {p,vp,s}, Yy, =Y, and Yy, = Y,. The corrector- & (y), n € {p,vp,s, s}, 1 <k <d, solve the
following reference cell problems

LA o’ ‘
— ‘21 e (&ja—y'] —e;c) =0 mnY,,
k i,j=
: 11
m (VEk, —e ) = 9on I (11)

and &%, is Yo -pe. dic with [, €5, dy = 0.
A more detailed discussion and extensions will appe. v in [15].

3. Derivation of effective macroscopic eauations

The diffusion and elliptic equations, e = (2)1— 2)2 and (6) are standard in homogenization theory (see [9, 16,
17, 18] for instance). However, equatior (2); “hc ws an unexpected form due electro-neutrality and therefore we
state the relevant steps of the derivatic 1. Vith the asymptotic two-scale expansions [17, 18]

u(t,x) =u(t,x,y) =U(t,x,y) +eu . ~,y)+ 62u2(t7x,y) +..., forue{cp,¥p,¥s} (12)

and the following operators

Ag = —RLyy(1", By = —Lyy(Cy),
A =-R [LT (1) + 7 ”6(1)] ) By =— [Lzy(cp) + Lyﬂ:(Cp) + Lyy(czl;)] s (13)
Ay = —RL (1, By = — [Lga(Cp) + Lay(cy) + Lya(cp) 4 Lyy(c3)]
where Ly, (u) = Z?,j: / 8‘;1_ ("éijaiyj)v we obtain after collecting terms of equal power in € the following problems
0(672) : BO\I/p = —A()Cp in Yp, (14)
Vy¥, -n=0o0n I;/S and ¥, is Y, — periodic,
B BV, =—Apc, — A C in Y,
o) ot t B o6~ A1 N o (15)
Vy, n= —V U, -mon I Y and ¥, is Y}, — periodic,
B()'LZJE; + A[)C% = —BQ\IJP — Bl’ll)}) — Alc;) — AQC in Yp,
O(e%) : { Vythp -n—Vytyy -n= £ (Vythy + Vi) -non I (16)

and 1/)% is Y, — periodic.



System (14) immediately implies independence of ¥, on the microscale y € Y,,. This moti- ates to make the following
ansatz

d ov
_ _2 : k
k=1 gwp (y> axl;? (17)

which after inserting into (15) together with Definition 2.1 leads to the following cc.” nroblem for 1 < k < d, i.e.,

k 65121, V
gﬂ’p: Z E ZJ Oy; — €k =0 1w o4, (18)

,j=1

with boundary conditions as stated in (11). Finally, we derive the effe ‘tive me :roscopic equation for ¥, via the
Fredholm alternative [19, 20]. That means, problem (16) has a unique so.. *ior .f it holds that

/ [—=Bitpy, — BoW,, — Ajcp, — .| d 7 =0, (19)
YP

where we already neglect possible boundary contributions whic. will dis: ppear after rewriting Using (18), the well-
known standard definition for ﬁp, and after defining the tensor 1.;# = idm i k=1 by dvk = Z fY < ik — 0ij ;;p ) dy,

allows us to rewrite (19) as the following homogenized equ..“‘on for the associated electrlcal potential ¥, i.e.,

d d
0 oC,
_Zax<l)w“;}x\ RZ&E< 895)' (20)
i,k=1 ¢ k i,k=1 v k

4. Conclusions

We have established a basic charge transmort formulation capturing the essential electrochemical features of
lithium batteries (i.e., non-rechargeable) - 1th ti  goal of having a convenient and easily extendible prototype
framework for the investigation of the inu. - mce o active electrode materials (here the composite cathode). We
believe that the presented results (upsr iled fo.. alation) allow to study the influence of material and geometric
properties on the current-voltage behs viov of ".i-batteries and provide also the fundamental basis for subsequent
extensions towards modelling of ageing " =., F attery degradation) and cycling dynamics. In fact, the formulation
introduced will be of interest to 1’ earchers doing battery modelling as we provide a complete set of boundary
conditions for a general prototype mou.' allowing for various extensions such as an active anode, different reaction
models as well as extensions for __<ing and cycling dynamics. Finally, this novel model framework relies on basic
physcial and electrochemical p mci’ les and hence serves as a promising theoretical and efficient computational tool
to investigate Li-batteries. Fromn. - computational point of view, it allows us to apply powerful numerical strategies
well-known and developed .or homogeneous domains in contrast to a possible multiscale discretization strategy
requiring demanding imp' ‘me cati- as for boundary conditions on interfaces due to highly heterogeneous domains
which itself imply costly cons. ai’ ¢s such as small enough mesh sizes.
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