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Gate-tunable quantum-mechanical tunnelling of 

particles between a quantum confined state and a nearby 

Fermi reservoir of delocalized states has underpinned 

many advances in spintronics and solid-state quantum 

optics. The prototypical example is a semiconductor 

quantum dot separated from a gated contact by a tunnel 

barrier. This enables Coulomb blockade, the 

phenomenon whereby electrons or holes can be loaded 

one-by-one into a quantum dot1,2. Depending on the 

tunnel-coupling strength3,4, this capability facilitates 

single spin quantum bits1,2,5 or coherent many-body 

interactions between the confined spin and the Fermi 

reservoir6,7. Van der Waals (vdW) heterostructures, in 

which a wide range of unique atomic layers can easily be 

combined, offer novel prospects to engineer coherent 

quantum confined spins8,9, tunnel barriers down to the 

atomic limit10 or a Fermi reservoir beyond the 

conventional flat density of states11. However, gate-

control of vdW nanostructures12–16 at the single particle 

level is needed to unlock their potential. Here we report 

Coulomb blockade in a vdW heterostructure consisting 

of a transition metal dichalcogenide quantum dot 

coupled to a graphene contact through an atomically thin 

hexagonal boron nitride (hBN) tunnel barrier. Thanks to 

a tunable Fermi reservoir, we can deterministically load 

either a single electron or a single hole into the quantum 

dot. We observe hybrid excitons, composed of localized 

quantum dot states and delocalized continuum states, 

arising from ultra-strong spin-conserving tunnel 

coupling through the atomically thin tunnel barrier. 

Probing the charged excitons in applied magnetic fields, 

we observe large gyromagnetic ratios (∼8). Our results 

establish a foundation for engineering next-generation 

devices to investigate either novel regimes of Kondo 

physics or isolated quantum bits in a vdW 

heterostructure platform. 

 

Our device, shown schematically in Fig. 1a, consists of a 

quantum dot in monolayer WSe2 separated from a Fermi 

reservoir in few-layer graphene by a monolayer hBN tunnel 

barrier. The WSe2 is fully encapsulated on the bottom side 

by hBN (see Supplementary Fig. 1). This heterostructure was 

mechanically stacked in an inert environment on an 

insulating SiO2 layer on a n-doped Si substrate (back gate). 

Gate-tuning is achieved by applying a bias Vg between the 

graphene electrode and the grounded back gate. Confocal 

photoluminescence imaging of the sample at a temperature 

of 3.8 K and Vg = 0 V reveals a few localized spots with 

higher photoluminescence intensity than the homogeneous 

background photoluminescence (Fig. 1b). The localized 

bright spots show discrete spectrally narrow peaks arising 

from WSe2 quantum emitters14-16 that are spectrally and 

spatially isolated due to local strain17–20. Here, local strain is 

provided from a wrinkle in the bottom hBN layer 

(Supplementary Fig. 1). Figure 1c shows Vg-dependent 

photoluminescence spectra measured at the brightest spot in 

Fig. 1b. Near Vg = 0 V, we observe three spectrally narrow 

lines corresponding to the neutral excitons (X0) of three 

different optically active quantum dots (labelled A to C). 

Notably, the neutral exciton energy of dots A, B and C is 

independent of the vertical electric field across the device, 

demonstrating minimal quantum confined Stark effect for 

these WSe2 quantum dots, in contrast to previous reports for 

WSe2 quantum dots21 but similar to two-dimensional 

excitons in TMDs22. At Vg ≈ −7 V (dot A) and Vg ≈ −13 V 

(dots B and C), the emission energy changes abruptly as a 

second electron overcomes the electron–electron Coulomb 

energy (Uee) and tunnels into the quantum dot (schematically 

represented in the top part of Fig. 1d), creating negatively 

charged excitons (X1−) with binding energies of ~25 meV 

(dot A) and ~23 meV (dots B and C). Additionally, for dot B 

we observe a spectral jump at Vg > 10 V as a second hole 

overcomes the hole–hole Coulomb energy (Uhh) and tunnels 

into the quantum dot (schematically represented in the 

bottom of Fig. 1d) to create the positively charged exciton 

(X1+) with 7 meV binding energy. These results demonstrate 

an unambiguous Coulomb blockade at the single particle 

level and the unique ability to tune the Fermi reservoir from 

n-type to p-type in a vdW heterostructure. 

 

To elucidate the nature of WSe2 quantum dots, their strong 

tunnel coupling to the tunable Fermi reservoir and the 

consequences on the excitonic states, we focus in detail on 

dot B, which exhibits both the X1− and X1+ at reasonably 



modest Vg. Figure 2a shows Vg-dependent high-resolution 

photoluminescence spectra. At Vg = 0 V, the X0 exhibits a 

doublet split by ∼830 μeV with orthogonally linear polarized 

emission (see Supplementary Fig. 4). Conversely, for X1− 

and X1+ (at Vg < −9 V and Vg > 16 V, respectively) we 

observe a single spectral line, in contrast to a previous 

report23. The inset in Fig. 2a shows a diagram representing 

the exciton states. For X0, the doublet is a fine-structure 

splitting (FSS) arising due to electron–hole exchange 

interaction energy (ΔFSS), commonly observed for neutral 

excitons in InAs/GaAs2,24 or WSe2 (refs. 14–17) quantum dots. 

On adding a second electron or hole to the neutral exciton, 

the minority particle interacts with a spin singlet and the 

exchange interaction vanishes. Notably, the exchange 

interaction only disappears in charged excitons for quantum 

dots in the strong confinement regime24, identifying the 

nature of the monolayer WSe2 quantum dots. 

 

Numerous signatures of the strong coupling regime 

between both electrons and holes in the quantum dot and the 

graphene Fermi reservoir can be found in the Vg-dependent 

photoluminescence spectra. First, the charging steps are 

abrupt in voltage, indicating that the tunnelling rate is much 

faster than exciton recombination rate (~1–10 ns for WSe2 

quantum dots14–17). Second, the energies of the X0 doublet 

peaks redshift near the edges of the plateau, indicating 

hybridization of energy levels in the quantum dot and Fermi 

reservoir. Third, the continuous smooth transition in energy 

from the X1− to the X0 states signifies the existence of a 

hybrid exciton (XH) arising due to strong mixing between the 

 

 
FIG. 1.  Coulomb blockade in a vdW heterostructure device. a, Sketch of the vdW charge-tunable quantum dot device. b, 

Colour-coded spatial map of the integrated photoluminescence signal of the WSe2 in the spectral range of 1.512–1.722 eV 

(left) and 1.512–1.631 eV (right), highlighting the full flake and the single quantum emitters, respectively. The localized bright 

spots in the right panel correspond to quantum dots. The white dashed line indicates the edges of the WSe2 monolayer region. 

kcps, kilo counts per second. Scale bar, 10 μm. c, Voltage-dependent low-resolution photoluminescence of three quantum dots 

at the brightest spot in b showing neutral (X0), negatively charged (X1−) and positively charged (X1+) exciton species and 

Coulomb blockade. The unlabelled spectral features with weak peak intensity in c originate from distinct quantum dots 

unrelated to dots A, B and C (see Supplementary Information). d, Schematic representation of the electron (filled circles) and 

hole (open circles) tunnelling through the hBN barrier from the Fermi reservoir in the graphene to the quantum dots in WSe2. 

CB, VB and Eg represent the conduction band, valence band and the energy bandgap of the WSe2 quantum dots, respectively. 

Uee (Uhh) represents the electron–electron (hole–hole) Coulomb interaction energy. QD, quantum dot. 



wavefunctions of the discrete quantum dot-states and the 

continuum of states of the Fermi reservoir7,25,26. Fourth, at 

the crossover point from X0 to X1+ the X1+ energetically 

bends and joins another transition line labelled Xf+ that arises 

due to hybridization of the hole with a continuum of states in 

the Fermi reservoir27. Finally, Lorentzian line shapes are 

observed for the X0 states far from the hybridization regime, 

whereas the hybrid and charged excitons exhibit broad and 

highly asymmetric photoluminescence line shapes with 

prominent low-energy tails (see Supplementary Fig. 5). 

These low-energy tails are a consequence of the Anderson 

orthogonality catastrophe: an energy shakeup process 

experienced by the electrons in the conduction band (holes 

in the valence band) when the hybrid excitons recombine and 

change the electron (hole) level in the quantum dot due to the 

sudden removal of the intra-quantum-dot Coulomb attraction 

with the localized hole (electron)7,28,29. We apply the 

Anderson impurity model to extract the tunnel-coupling 

strength in the device and explain the evolution of each 

exciton state as a function of Vg. We achieve quantitative 

agreement with this evolution under the assumption of that 

the Fermi reservoir is reduced to zero bandwidth at EF (see 

Supplementary Equations (1)–(15)). To properly account for 

the asymmetric photoluminescence line shapes and the 

continuous transition from Xf+ to X1+, a more sophisticated 

calculation involving the density of states in the Fermi 

reservoir is required7,27,29. This calculation and the impact of 

the Fermi reservoir density of states on the many-body 

interactions are left for future investigation.  

Figure 2d diagrams the initial and final states for the 

hybridization of the X0 and X1− states. Filled (open) circles 

represent electrons (holes), whereas the superscript single 

(double) arrows account for the possible orientations of the 

electron (hole) spin. The initial state, composed of two 

electrons and one hole, is a superposition of different 

excitonic states: (1) two states that correspond to the 

quantum dot containing X0 and an additional electron in the 

Fermi reservoir, in which the exchange interaction 

 

 
FIG. 2. Strong tunnel coupling between a quantum dot and a tunable Fermi reservoir in a vdW heterostructure. a, 

Voltage-dependent high-resolution photoluminescence of dot B. The inset shows a diagram that represents the energy levels 

of the electrons and the occupation of holes for the pure X1−, X0 and X1+ exciton states of the quantum dot. ΔFSS represents the 

energy splitting of the fine-structure split X0 state. b, Voltage-dependent evolution of the emission energy for the quantum dot 

shown in a. The solid lines represent fits of the experimental data using the zero-bandwidth model. Details of the theoretical 

model can be found in Supplementary Equations (1)–(15). The inset displays a zoom of the transition from the X0 to the X1+ 

exciton state. c, Upper panel: experimental (filled circles) and calculated (green line) evolution of the energy splitting (Δ) of 

the X0 doublet as a function of Vg. Lower panel: experimental (filled circles) and calculated (green line) voltage-dependent 

evolution of the photoluminescence linewidth for the low-energy peak of X0. d, Schematic representation of the initial and 

final states of the X1− to X0 hybrid exciton. The single (double) arrows represent the spin orientation of a single electron (hole). 



energetically splits the X0 into two states by ∆𝐹𝑆𝑆 

((|𝑄𝐷⇑↓, 𝐹𝑅↑⟩ ± |𝑄𝐷⇓↑, 𝐹𝑅↓⟩)/√2);  and (2) two states that 

correspond to the excitonic configurations in which the 

quantum dot has two electrons with opposite spin 

orientations and a hole (|𝑄𝐷⇑↓↑⟩ and |𝑄𝐷⇓↑↓⟩), giving rise to 

X1− (with no exchange interaction). After photon emission 

from the initial state, the final state contains only one 

electron which is in a superposition of two states: (1) a state 

corresponding to a linear combination of the spin orientation 

states of the remaining electron in the Fermi reservoir (|𝐹𝑅↑⟩ 

and |𝐹𝑅↓⟩),  and (2) a state that is a superposition of the spin 

orientations for the remaining electron in the quantum dot 

(|𝑄𝐷↑⟩ and |𝑄𝐷↓⟩). The individual states in both the initial 

and final state are coupled by a spin-conserving tunnel 

interaction (see Supplementary Equations (1–15)). 

 

The solid lines in Fig. 2b represent fits of the 

experimental data to our model, capturing the 

photoluminescence evolution for both hybrid and bare 

quantum dot excitons states over the full range of Vg values 

with high accuracy. The fits reveal an identical lever arm 

(ratio of device thickness to tunnel barrier thickness) of λ = 

145 ± 10 for electrons and holes in our device, from which 

an hBN tunnel barrier thickness of 0.5 ± 0.2 nm 

(corresponding to one or two monolayers) is obtained. The 

tunnel coupling energies for both electrons (V𝑡𝑢𝑛
𝑒 ) and holes 

(V𝑡𝑢𝑛
ℎ ) can be directly extracted from the fits; we find V𝑡𝑢𝑛

𝑒 = 

1.2 ± 0.2 and V𝑡𝑢𝑛
ℎ = 3.5 ± 0.3 meV. These values are one 

order of magnitude larger than has been possible in 

traditional III–V semiconductor devices7,27. We attribute the 

ultra-strong tunnel coupling to the reduction of the tunnel 

barrier thickness to the atomic layer limit. The ratio 

V𝑡𝑢𝑛
ℎ /V𝑡𝑢𝑛

𝑒 = 2.9 ± 0.5 is a consequence of the band alignment 

resulting from the monolayer WSe2/hBN/graphene 

heterostructure, which leads to notably lower tunnel barrier 

heights for holes than for electrons30. Using the Wentzel–

Kramer–Brillouin approximation for a rectangular 

tunnelling barrier (see Supplementary Equation (20)), 

V𝑡𝑢𝑛
ℎ /V𝑡𝑢𝑛

𝑒  ~ 3.1 ± 0.4 can be estimated, in agreement with 

the experimental result. This approximation can also be 

employed to explain the tunnel-induced broadening of the 

photoluminescence linewidth as a function of Vg (see 

Supplementary Equation (21)), as shown in the bottom panel 

of Fig. 2c for dot B.  

The calculated results in Fig. 2b accurately capture the 

strong tunnel-induced redshift of the X0 states at each edge 

of the X0 plateau. Different energy shifts are observed for 

each peak of the doublet, such that the energy splitting of the 

fine-structure split X0 excitonic states (Δ) changes as a 

function of Vg. The top panel of Fig. 2d shows the 

experimental and calculated evolution of Δ along the X0 

plateau extracted from the data shown in Fig. 2b. In the Vg 

range corresponding to the pure X0 quantum dot state Δ = 

ΔFSS. However, a fast decrease of Δ is observed near the 

tunnelling transitions (left and right edges of the X0 plateau), 

a consequence of the energy difference that exists between 

the initial and final hybridized states associated to each of 

the fine-structure split X0 states. This is a striking 

consequence of a large ΔFSS and a strong tunnel coupling: the 

different eigenstates of X0 couple differently to the Fermi 

sea. The zero-bandwidth model also predicts the existence of 

the Xf+ feature in the set of solutions (see Supplementary 

Equation (14)), although it introduces an artificial splitting 

between this solution and the experimental result (see 

Supplementary Fig. 6). Introducing a finite bandwidth for the 

Fermi reservoir can more accurately model the Xf+ feature27 

(see Supplementary Fig. 8). 

To further investigate the hybridization between the X0 

and X1− and between the X0 and X1+ exciton states, we apply 

 

 
Fig. 3. Strong tunnel coupling between a quantum dot and a tunable Fermi reservoir at high magnetic field. a, Voltage-

dependent high-resolution photoluminescence of dot B for Bz = 5.3 T. The inset shows a schematic of the Faraday geometry. 

b, Voltage-dependent evolution of the high-energy (open circles) and low-energy (filled circles) emission peaks extracted from 

fits of the experimental data shown in a. The solid lines represent fits of the experimental data to the zero-bandwidth model 

described in the Supplementary Equations (16–19). 



a magnetic field Bz along the direction perpendicular to 

heterostructure interfaces (Faraday geometry). Figure 3a 

shows the result for Bz =5.3 T; the X1−, X0 and X1+ quantum 

dot states Zeeman split due to the application of Bz. We adapt 

our model to explore theoretically the hybridization between 

exciton states under Bz (see Supplementary Equations (16–

19)). Figure 3b shows the Vg-dependent evolution of the 

energies for the high- (open circles) and low-energy (filled 

circles) emission peaks of dot B. The zero-bandwidth model 

quantitatively reproduces the measured evolution of the 

photoluminescence energy for ranges of Vg values 

corresponding to both hybrid and pure quantum dot states. In 

contrast to the results for Bz = 0 T, the tunnel-induced 

bending observed at the edges of the X0 plateau is very 

similar for both of the fine-structure split X0 states (Fig. 3a,b) 

and Δ remains constant. This change in behaviour is a 

consequence of the reduction in the energy difference 

between the initial and final hybridized states due to the 

considerable Zeeman splitting. Notably, these results can 

only be modelled with spin-conserving tunnelling. 

The ability to deterministically load either an electron or 

hole into the quantum dot allows us to magneto-optically 

probe the X1− and X1+, respectively, in a WSe2 quantum dot. 

Figure 4a shows photoluminescence spectra of the X1− (left 

panels), X0 (central panels) and X1+ (right panels) exciton 

states of dot B for varying Bz values, revealing a clear 

Zeeman splitting for each state. Figure 4b,c shows the 

magnetic-field dependence of the energy splitting measured 

for X0, X1− and X1+ of dot B and for X0 and X1− of dot A, 

respectively. The results reveal that the charged excitons 

 

 
Fig. 4. Magneto-optics of neutral and charged excitons in WSe2 quantum dots. a, Photoluminescence spectra of the X1− 

(left panels), X0 (central panels) and X1+ (right panels) exciton states of dot B under different applied magnetic fields in Faraday 

geometry. b,c, Magnetic-field dependence of the energy splitting measured for X0, X1− and X1+ of dot B (b) and for X0 and X1− 

of dot A (c), as obtained from fits of the experimental data shown in a. Dashed lines represent fits of the experimental data to 

Supplementary Equations (22) (X0) and (23) (X1− and X1+). The fits reveal g values of 8.73 ± 0.10, 9.3 ± 0.2 and 8.78 ± 0.10 

for the X0, X1− and X1+ exciton states of dot B, respectively, and g values of 6.7 ± 0.2 and 7.7 ± 0.3 for the X0 and X1− of dot 

A, respectively. 



exhibit g factors of ~8.7 (dot B) and ~7.7 (dot A), mimicking 

the behaviour of the corresponding neutral excitons. 

Via a Coulomb blockade, we have demonstrated the 

ability to deterministically load a single electron or single 

hole in a vdW heterostructure quantum device. This is 

achieved with gate-tunable tunnel coupling between an 

optically active WSe2 quantum dot and a tunable Fermi 

reservoir in few-layer graphene. Due to an atomically thin 

tunnel barrier, we obtain ultra-strong and spin-conserving 

tunnel coupling (roughly one order of magnitude stronger 

than in conventional III–V quantum devices) between the 

quantum dot and Fermi reservoir, leading to the observation 

of hybrid excitons that can be controlled by the gate voltage. 

Magneto-optical characterization of the charged excitons 

reveals large gyromagnetic ratios, indicating that both spin 

and valley degrees of freedom play an important role for 

single spins in WSe2 quantum dots. These results confirm the 

potential of vdW heterostructures as a new platform for 

engineering quantum devices. On the one hand, with vdW 

heterostructures in the strong tunnel-coupling regime, the 

quantum confined states can be coupled to a tailored or 

tunable Fermi reservoir. This can enable high-fidelity 

electrical injection of polarized spins from a nearby 

ferromagnet or investigation of Kondo-phenomena beyond 

metallic-like Kondo screening. On the other hand, these 

results position vdW heterostructures as an intriguing 

platform to engineer a coherent spin-photon interface. In 

charge-tunable devices with larger tunnel barriers, a 

quantum dot can be isolated from its mesoscopic 

environment. Resonant excitation techniques1,2,5,31 can then 

be used to probe and manipulate the valley and spin degrees 

of freedom and investigate their suitability as coherent 

quantum bits of information. 
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Materials and Methods 

Device fabrication 

 
Mechanical exfoliation from bulk crystals was used for each 2D material. The number of layers of WSe2 (from 

HQ Graphene) and hBN flakes was initially determined by the optical contrast. The all-dry transfer technique1 was 

utilized to construct the vdW heterostructure presented in the main text (Fig. 1a). Supplementary Figure 1a shows 

an optical image of the full device. The heterostructure assembly took place on a n-type Si wafer with a thermal 

oxide layer (from Graphene Supermarket). The thicknesses of the oxide layer and of the bottom hBN flake were 

measured using nulling ellipsometry (Accurion EP4) to be 98 nm and 7.3 nm, respectively. The ML thickness of 

the WSe2 flake (Suppl. Fig. 1b) was confirmed by its PL emission energy. A thickness of 0.5 ± 0.2 nm was obtained 

for the hBN tunnel barrier from the combination of ellipsometry measurements and the lever arm of the device, 

which was obtained from the fit of the experimental dependence of our QD PL energy as function of the gate voltage 

to the zero-bandwidth model (see Fig. 2b). Supplementary Figure 1c shows a color-coded spatial maps of the 

integrated PL signal of the corresponding WSe2 flake in the spectral range of 1.515 -1.722 eV (top panel) and 1.512 

– 1.631 eV (bottom panel) highlighting the full flake and the single quantum emitters, respectively. 

 
Supplementary Figure 1. Charge-tunable vdW heterostructure. a, Optical micrograph of completed device 

featuring a color-coded indication of the different layers employed in the heterostructure assembly. Note the 

wrinkles visible in the ML WSe2 region (green outline). b, Micrograph of the ML WSe2 flake before the transfer. 

c, Color-coded spatial maps of the integrated PL signal of the final device in the region of the WSe2 flake (spectral 

range of 1.512 – 1.722 and 1.512 – 1.631 eV). These energy ranges highlight the full flake (top panel) and the 

quantum dots (bottom panel). The red circle represents a region of the sample where no emission from localized 

excitons was observed. 
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Supplementary Text 

 

Charge tuning of the 2D exciton in ML WSe2 

 
To initially characterize the charge-tuning behaviour of the device, differential reflectivity measurements as a 

function of the applied bias were carried out in a region of the sample where no emission from localized excitons 

was observed (see red circle in Suppl. Fig. 1c). This experimental technique has been demonstrated to be a very 

useful technique to test both the sample quality and the charge-tuning characteristics of the 2D exciton in vdW 

heterostructures2. Our results (Suppl. Fig. 2) show that by changing the applied bias we are able to change from a 

neutral charge regime, in which the Fermi level lays between the valence and conduction bands of WSe2, to a n-

type regime in which the Fermi level lays above the conduction band of WSe2. In the neutral regime we only observe 

the 2D neutral exciton transition 2D-X0. However, in the n-doped regime we observe both the 2D-X0 and the two 

transitions associated to the negatively charged exciton 2D-X1-, which show a fine-structure splitting of ~7 meV 

and binding energies of ~33 and ~40 meV, in agreement with previous observations2. Supplementary Figure 2b 

shows reflected intensity spectra of ML WSe2 for applied voltage gates of 0 (black solid line) and 18 V (red line), 

in which the resonances corresponding to the X1- and X0 exciton states can be observed.   

 

 

Supplementary Figure 2. Charge tuning of the 2D exciton in ML WSe2. a, Contour plot of the first derivative 

with respect to energy of the differential reflectivity of the ML WSe2 sample used in this work as a function of the 

applied bias. The measurements were carried out at the region of the sample identified in Fig. S1c (where no 

emission from localized excitons was observed). The X1- and X0 charged states of the 2D exciton of WSe2 are 

clearly observed. b, Reflected intensity spectra of ML WSe2 for applied voltage gates of 0 (black solid line) and 18 

V (red line), in which the resonances corresponding to the X1- and X0 exciton states can be observed. 
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Additional features in Figure 1c in the main manuscript 

 
In addition to the X1- and X0 states of Dots A, B and C, the voltage-dependent PL shown in Fig. 1c in the main 

manuscript also reveals the presence of the X1- and X0 states corresponding to two additional quantum dots (dots D 

and E) which also exhibit Coulomb blockade (Suppl. Fig. 3a). Dot D shows a PL energy and a voltage-dependent 

PL evolution very similar to Dot C, although it is possible to distinguish the emission of both quantum dots in higher 

spectral resolution measurements. Supplementary Figure 3b shows the voltage-dependent evolution of the PL of 

Dots C and D for applied voltages between 0.5 and 9.5 V measured with higher spectral resolution. As it can be 

seen in this figure, three emission lines can be clearly distinguished. Two of these lines (see labels in Suppl. Fig. 

3b) correspond to the fine-structure-split emission doublet of the X0 state of Dot C, which is the brightest emitter in 

the measurement. These two emission lines show the same exact energy evolution as a function of the applied 

voltage, since the fine-structure splitting remains constant for applied voltages far from the voltages at which 

hybridisation with the Fermi reservoir occurs. The third line corresponds to the low energy state of the fine-structure 

split X0 doublet of Dot D. The very low emission intensity of dot D prevents the observation of the high energy 

state, which has an emission intensity below the noise level. To further prove that the three emission lines observed 

in Suppl. Fig. 3b correspond to the X0 states of two different dots, Suppl. Fig. 3c shows the temporal evolution over 

ten minutes of the PL energy of Dots C and D measured at an applied voltage at which the emission peaks of dots 

C and D can be clearly resolved (Vg = 9.5 V). As it can be observed in this figure, the fine-structure-split peaks of 

the X0 state of Dot C show identical spectral shifts over time due to spectral fluctuations, which further proves that 

the two emission lines belong to the same quantum dot. On the contrary, the temporal evolution of the PL energy 

of Dot D is uncorrelated to the emission peaks of Dot C, as expected for quantum dots which are at spatially different 

locations (and thus sensitive to different local charge environments). 

 

 

Supplementary Figure 3. Additional features in Figure 1c in the main manuscript. a, Voltage-dependent low-

resolution PL of QDs A, B, C, D and E showing neutral (X0) and negatively charged (X1-) exciton species and 

Coulomb blockade.  b, Voltage-dependent high-resolution PL of dots C and D for applied voltages between 0.5 and 

9.5 V. c, Temporal evolution over ten minutes of the PL energy of dots C and D measured at an applied voltage of 

Vg = 9.5 V. 

 

 

 

 

 

 



Polarization direction of the neutral exciton 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Figure 4. Polarization emission of the neutral exciton. a, Color-coded PL intensity as a 

function of polarization for the neutral exciton of QD B measured at Vg = 0. The two dashed horizontal lines 

indicate the polarization direction of the low-energy (LE) and high-energy (HE) emission lines. b, c, Integrated 

intensities of the high-energy (b) and low-energy (c) emission lines, respectively, as a function of polarization 

rotation angle as extracted from a. The red solid lines represent fits of the experimental data to a cosine squared 

function. 
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Lineshape evolution of the exciton states as a function of the gate voltage 

 

 

Supplementary Figure 5. Lineshape evolution of the excitons states as a function of the gate voltage. 

Photoluminescence spectra of quantum dots A and B for different applied gate voltage values measured at T = 3.8 

K. The green and red labels indicate the charged exciton states for quantum dots A and B, respectively. Labels X1-

, X0, X1+ and XH represent the negatively charged, neutral, positively charged and hybrid excitons, respectively. For 

comparison purposes, some spectra have been multiplied by the corresponding factors indicated at the left part of 

the figure. 

 

  



Zero-bandwidth model with fine-structure splitting 

 

Zero magnetic field (�⃗⃗� 𝒛 = 𝟎) 
The zero-bandwidth model is a simplified model in which the Fermi sea is replaced by a single “delocalized” 

quantum level of energy EF
3-5. Although this model does not provide optical line shapes, it is a very useful model 

to explain the presence of different hybridized exciton states and their physical properties. Figure 2d (main text) 

shows diagrams of the initial |𝑖⟩ and final |𝑓⟩ states considered in our model for the hybridization of the X0 and X1− 

exciton states. Since our aim is to explore the hybridization of the X0  and X1−  exciton states, the initial state 

contains two electrons and one hole (one electron and two holes for the hybridization of the X0and X1+ excitons). 

After photon emission from the state |𝑖⟩, the state |𝑓⟩ contains only one electron and it can be expressed as a 

superposition of two states4 

 

     |𝑓⟩ = 𝐴1|𝑓1⟩ + 𝐴2|𝑓2⟩,                                                              (S1) 

with 

         |𝑓1⟩ =
1

√2
(|𝐹𝑅↑⟩ − |𝐹𝑅↓⟩),                                                      (S2) 

 

and 

   |𝑓2⟩ =
1

√2
(|𝑄𝐷↑⟩ − |𝑄𝐷↓⟩),                                                    (S3)  

  

where the superscript single arrows account for the possible orientations of the electron spin. The state |𝑓1⟩ is a 

linear combination of the spin orientation states of the remaining electron in the Fermi reservoir (|𝐹𝑅⟩), whereas 

the state |𝑓2⟩ is a superposition of the spin orientations for the remaining electron in the quantum dot. |𝑄𝐷↑⟩ and 

|𝑄𝐷↓⟩ are degenerate in energy. In the final hybridized state expressed in Eq. S1, the states |𝑓1⟩ and |𝑓2⟩ are coupled 

by a spin-conserving tunnel coupling with strength Vtun and the relative contributions of A1 and A2 depend on Vg 

(Ref .4). The Hamiltonian corresponding to this final state configuration can thus be written in the basis {|𝑓1⟩, |𝑓2⟩}  
as: 

 

𝐻𝑓 = (
𝐸𝐹𝑅 𝑉𝑡𝑢𝑛
𝑉𝑡𝑢𝑛 𝐸𝑠

),                                                             (S4) 

 

where 𝐸𝐹𝑅 = 𝐸𝐹 is the energy of the electron (hole) in the Fermi reservoir and 𝐸𝑆 is the energy of the s-shell in the 

QD, which can be related to the Fermi energy through the applied voltage ∆𝑉𝑔 and the ratio of the device thickness 

to tunnel barrier thickness (referred to as the lever arm 𝜆 of the device)4: 
 

𝐸𝑆 = −𝑒
∆𝑉𝑔

𝜆
+ 𝐸𝐹,                                                             (S5) 

 

where 𝑒 is the magnitude of the electron charge. In our calculation, we may choose the zero of energy at our 

convenience, which we do by setting 𝐸𝐹 = 0. By doing this, the QD energy is directly given by the applied voltage 

and the lever arm. Moreover, in order to take into account the voltage 𝑉𝑐 at which the first electron tunnels into the 

empty QD from the graphene contact, we re-express ∆𝑉𝑔 as ∆𝑉𝑔 = 𝑉𝑔 − 𝑉𝑐. By diagonalizing the Hamiltonian in 

Eq. S4, we find the hybridized final state energy: 

𝐸𝑓,± =
𝐸𝐹𝑅+𝐸𝑆±√(𝐸𝐹𝑅−𝐸𝑆)

2+4𝑉𝑡𝑢𝑛
2

2
.                                                  (S6) 

 

 

The initial excitonic state is also a superposition of different excitonic states (see Fig. 2d in the main text): 

 



|𝑖⟩ =
𝐵1

√2
(|𝑖1⟩ − |𝑖2⟩) +

𝐵2

√2
(|𝑖3⟩ − |𝑖4⟩),                                              (S7) 

 

with  

|𝑖1⟩ =
1

√2
(|𝑄𝐷⇑↓, 𝐹𝑅↑⟩ + |𝑄𝐷⇓↑, 𝐹𝑅↓⟩),                                             (S8) 

|𝑖2⟩ =
1

√2
(|𝑄𝐷⇑↓, 𝐹𝑅↑⟩ − |𝑄𝐷⇓↑, 𝐹𝑅↓⟩),                                             (S9) 

|𝑖3⟩ = |𝑄𝐷
⇑↓↑⟩, and                                                       (S10) 

|𝑖4⟩ = |𝑄𝐷
⇓↑↓⟩.                                                              (S11) 

 

The states |𝑖1⟩ and |𝑖2⟩ correspond to the states in which the QD contains one electron-hole pair (giving rise to 

the neutral exciton X0) and an additional electron is in the Fermi reservoir. The superscript single (double) arrows 

account for the possible orientations of the electron (hole) spin. B1 and B2 are amplitudes which can be continuously 

tuned by Vg. Since in |𝑖1⟩ and |𝑖2⟩  the QD only contains an electron-hole pair, the exchange interaction splits the 

X0 into two states with energies 𝐸𝑋0 + ∆𝐹𝑆𝑆/2 (|𝑖1⟩) and 𝐸𝑋0 − ∆𝐹𝑆𝑆/2 (|𝑖2⟩), where 𝐸𝑋0 is the central energy of 

the emission doublet and ∆𝐹𝑆𝑆 is the so called fine-structure splitting energy. The states |𝑖3⟩ and |𝑖4⟩ correspond to 

the excitonic configurations in which the QD has two electrons with opposite spin orientations and a hole, giving 

rise to X1− with an energy 𝐸𝑋−. This excitonic state can be considered as a hole interacting with a spin singlet 

electron pair and therefore, the electron-hole exchange energy splitting vanishes6. The individual states in |𝑖⟩ are 

coupled by a spin-conserving tunnel interaction with strength Vtun between the electrons in the QD and the Fermi 

reservoir: |𝑄𝐷⇑↓, 𝐹𝑅↑⟩ couples to |𝑄𝐷⇑↓↑⟩, and |𝑄𝐷⇓↑, 𝐹𝑅↓⟩ couples to |𝑄𝐷⇓↑↓⟩. The Hamiltonian corresponding to 

this initial state configuration can be expressed in the basis {|𝑄𝐷⇑↓, 𝐹𝑅↑⟩, |𝑄𝐷⇓↑, 𝐹𝑅↓⟩, |𝑄𝐷⇑↓↑⟩, |𝑄𝐷⇓↑↓⟩} as follows: 

 

𝐻𝑖 =

(

 
 

𝐸𝑋0          ∆𝐹𝑆𝑆/2

∆𝐹𝑆𝑆/2          𝐸𝑋0
√2𝑉𝑡𝑢𝑛 0

0 √2𝑉𝑡𝑢𝑛

√2𝑉𝑡𝑢𝑛   0

0         √2𝑉𝑡𝑢𝑛

𝐸𝑋−       0
 0         𝐸𝑋− )

 
 

.                               (S12) 

 

The energies of the hybridized initial state can be obtained by diagonalizing the Hamiltonian in Eq. S12. At low 

temperatures, we take only the initial states with the lowest energies: 

 

𝐸𝑖
± =

𝐸
𝑋0
±∆𝐹𝑆𝑆/2+𝐸𝑋−−√(𝐸𝑋0±∆𝐹𝑆𝑆/2−𝐸𝑋−)

2
+8𝑉𝑡𝑢𝑛

2

2
,                                 (S13) 

 

where 𝐸𝑋0 = ℏ𝜔𝑋0 and 𝐸𝑋1− = ℏ𝜔𝑋1− − 𝑒 ∆𝑉𝑔 𝜆⁄ , with ℏ𝜔𝑋0 and ℏ𝜔𝑋1−  being the energies observed for the 

neutral and negatively charged excitons, respectively. 

 

The energies 𝐸𝑋𝐻  of the resultant hybrid excitons can then be calculated as  

 

𝐸𝑋𝐻,𝑢𝑝𝑝𝑒𝑟(𝑙𝑜𝑤𝑒𝑟)
± (∆𝑉𝑔) = 𝐸𝑖

± − 𝐸𝑓,∓.                                              (S14) 

 

As it can be seen in the previous equation, the emission spectrum in the zero-bandwidth model has several emission 

lines3,4. However, the most intense lines at low temperature are  

 

𝐸𝑋𝐻,𝑢𝑝𝑝𝑒𝑟
± (∆𝑉𝑔) = 𝐸𝑖

± − 𝐸𝑓,−.                                              (S15) 

 

Similar to the hybridization of the X0 and X1− exciton states, the zero-bandwidth model can be used to explore 

the hybridization of the X0 and X1+exciton states as well. In this case, the initial state contains one electron and two 



holes, and after photon emission from the initial state the final state |𝑓⟩ only contains one hole. It is straightforward 

then to realize that the hybridization between the X0 and X1− and between the X0 and X1+ exciton states can be 

modelled by using exactly the same set of equations due the analogy of the initial and final states for both cases. 

  

Supplementary Figure 6a shows the calculated evolution of the energies of the two lowest hybrid initial states 

(upper panel) and the energies of the two hybrid final states (lower panel) as a function of Vg for the X0 - X1+ 

transition. For the calculation, we have employed the same set of parameters described in the main text to fit the 

experimental results for the X0 - X1+ transition. Supplementary Figure 6b shows the calculated evolution with 𝑉𝑔 of 

the hybrid excitons resulting from the initial and final states shown in Suppl. Fig. 6a. The color and line style of the 

solutions shown in this figure are consistent with the ones employed in Suppl. Fig. 6a. In this way, red and blue 

solid lines in Suppl. Fig. 6b represent 𝐸𝑋𝐻,𝑢𝑝𝑝𝑒𝑟
+  and 𝐸𝑋𝐻,𝑢𝑝𝑝𝑒𝑟

− , respectively, which originate from transitions 

between the initial states 𝐸𝑖
+ and 𝐸𝑖

−, and the final state 𝐸𝑓,−. As mentioned before, these lines are the most intense 

ones at low temperature.  

 

The hybrid excitons originating from transitions involving the initial states 𝐸𝑖
+ and 𝐸𝑖

− and the final state 𝐸𝑓,+ 

are represented in Suppl. Fig. 6b by red and blue dashed lines, respectively. This set of solutions, labelled as Xf+, 

corresponds to the situation in which the remaining particle in the final state is tunneling out of the QD, as discussed 

in Refs.4,7. As can be observed, the set of solutions  Xf+ are split from the upper set of solutions. Such splitting has 

its origin in the anti-crossing of the final states (see lower panel of Suppl. Fig. 6a), a consequence of the zero-

bandwidth character of the model4. On the contrary, if the Fermi reservoir is modeled as a continuum of states rather 

than a single delocalized model, a continuous transition from the  Xf+ to the X1+ is obtained (see Suppl. Fig. 8). 

 

 
Supplementary Figure 6. Zero-bandwidth model with fine-structure splitting. a, Calculated evolution of the 

energies of the two lowest hybrid initial states (upper panel) and the energies of the two hybrid final states (lower 

panel) as a function of the applied gate voltage for the X0 - X1+ transition. For the calculation, we have employed 

the same set of parameters described in the main text to fit the experimental results for the X0 - X1+ transition. b, 

Calculated evolution of the hybrid excitons resulting from the initial and final states shown in panel a as a function 

of the applied gate voltage. The color and line style of the solutions shown in this figure are consistent with the ones 

employed in part a. 



Non-zero magnetic field in Faraday geometry (�⃗⃗� 𝒛 ≠ 𝟎) 

 

We also explore theoretically the hybridization between the X0 and X1− and between the X0 and X1+ exciton 

states when a magnetic field �⃗� 𝑧 is applied along the direction perpendicular to heterostructure interfaces (Faraday 

geometry). The zero-bandwidth model previously described can be adapted by including the effects that the applied 

magnetic field has on both the hybridized initial and final states. It is worth noticing that due to the applied magnetic 

field, the states |𝑄𝐷↑⟩ and |𝑄𝐷↓⟩  referring to an electron (or hole) remaining in the QD after photon emission are 

no longer degenerate in energy. For this reason, the Hamiltonian corresponding to the hybridized final state under 

a non-zero magnetic field in Faraday geometry can be written as a 4x4 matrix: 

 

𝐻𝑓, 𝐵𝑧(𝐵𝑧) =

(

 

   𝐸𝐹𝑅     𝑉𝑡𝑢𝑛
    𝑉𝑡𝑢𝑛   𝐸𝑠 + ∆𝐵,𝑒(ℎ)

0               0
0               0

0               0
0               0

    𝐸𝐹𝑅    𝑉𝑡𝑢𝑛
    𝑉𝑡𝑢𝑛    𝐸𝑠 − ∆𝐵,𝑒(ℎ))

 ,                                 (S16) 

 

where ∆𝐵,𝑒(ℎ)= 𝜇𝐵𝑔𝑒(ℎ)𝐵𝑧/2, with 𝜇𝐵 being the Bohr magneton and 𝑔𝑒(ℎ) being the gyromagnetic ratio for the 

remaining electron (hole). It is important to notice that the expression for 𝐻𝑓,𝐵𝑧(𝐵𝑧) is written under the assumption 

that the single “delocalized” quantum level that replaces the Fermi reservoir |𝐹𝑅⟩ remains degenerate in energy for 

both opposite directions of the electron (hole) spin. The energies of the hybridized final state can be obtained by 

diagonalizing the Hamiltonian in Eq. (S16). Again, at low temperatures we take only the final states with the lowest 

energies: 

 

𝐸𝑓, 𝐵𝑧
± =

𝐸𝐹𝑅+𝐸𝑆±∆𝐵,𝑒(ℎ)−√(𝐸𝐹𝑅−(𝐸𝑆±∆𝐵,𝑒(ℎ)))
2
+4𝑉𝑡𝑢𝑛

2

2
.                                          (S17) 

 

As commented before, it is also necessary to include the effects that the applied magnetic field has on the 

hybridized initial states. On the one hand, under �⃗� 𝑧 the energy splitting of the X0 fine structure doublet increases 

by the Zeeman interaction of the electron and hole spins. On the other hand, �⃗� 𝑧 also causes an energy splitting of 

the X1± trions, thus breaking the energy degeneracy of the states |𝑄𝐷⇑↓↑⟩ and |𝑄𝐷⇓↑↓⟩. All these effects can be 

included in the Hamiltonian of the initial state corresponding to the zero-magnetic field case (Eq. S12). In this way, 

the Hamiltonian corresponding to the initial state configuration under a non-zero magnetic field can be expressed 

in the basis {|𝑄𝐷⇑↓, 𝐹𝑅↑⟩, |𝑄𝐷⇓↑, 𝐹𝑅↓⟩, |𝑄𝐷⇑↓↑⟩, |𝑄𝐷⇓↑↓⟩} as follows: 

 

𝐸𝑖, 𝐵𝑧
± =

(

 
 

𝐸0          ∆𝐵,𝑋0

∆𝐵,𝑋0          𝐸0

√2𝑉𝑡𝑢𝑛 0

0 √2𝑉𝑡𝑢𝑛

√2𝑉𝑡𝑢𝑛   0

0    √2𝑉𝑡𝑢𝑛

𝐸𝑋−       ∆𝐵,ℎ(𝑒)
 ∆𝐵,ℎ(𝑒)      𝐸𝑋− )

 
 

,                                        (S18) 

 

where ∆𝐵,𝑋0= √∆0
2 + (𝜇𝐵(𝑔𝑒 + 𝑔ℎ)𝐵𝑧)

2/2 and ∆𝐵,ℎ(𝑒)= (𝜇𝐵𝑔ℎ(𝑒)𝐵𝑧)/2, with 𝑔ℎ(𝑒) the gyromagnetic ratio for 

the hole (electron). The energies of the hybridized initial state can be obtained by diagonalizing the Hamiltonian in 

Eq. S18. Again, at low temperatures we take only the initial states with the lowest energies: 

 

                𝐸𝑖, 𝐵𝑧
± =

𝐸
𝑋0
±∆

𝐵,𝑋0
+𝐸𝑋−±∆𝐵,ℎ(𝑒)−√(𝐸𝑋0±∆𝐵,𝑋0−(𝐸𝑋−±∆𝐵,ℎ(𝑒)))

2

+8𝑉𝑡𝑢𝑛
2

2
 .                                         (S19) 

 



Supplementary Figure 7a shows the calculated evolution of the energies of the two lowest hybrid initial states 

(upper panel) and the energies of the four hybrid final states (lower panel) as a function of the applied gate voltage 

for the X0 - X1+ transition as predicted by the zero-bandwidth model for �⃗� 𝑧 = 5.3 T. For the calculation, we have 

employed the same set of parameters used to fit experimental results in Fig. 3b for the X0 - X1+ transition. 

Supplementary Figure 7b shows the calculated evolution with 𝑉𝑔 of the hybrid excitons resulting from the initial 

and final states shown in Suppl. Fig. 7a. The color and line style of the solutions shown in this figure are consistent 

with the ones employed in Suppl. Fig. 7a. As an example, the red line in Suppl. Fig. 7b represents the hybrid exciton 

resulting from the initial state 𝐸𝑖
+ and the final state represented by a red solid line. The blue dashed line in Suppl. 

Fig. 7b represents a hybrid exciton originating from the initial state 𝐸𝑖
− (black dashed line) and the final state 

represented by a blue solid line. 

 

 
Supplementary Figure 7. Zero-bandwidth model with fine-structure splitting under a non-zero magnetic 

field. a, Calculated evolution of the energies of the two lowest hybrid initial states (upper panel) and the energies 

of the four hybrid final states (lower panel) as a function of the applied gate voltage for the X0 - X1+ transition as 

predicted by the zero-bandwidth model for �⃗� 𝑧 = 5.3 T. For the calculation, we have employed the same set of 

parameters described in the main text to fit the experimental results for the X0 - X1+ transition shown in Fig. 3b in 

the main text. b, Calculated evolution of the hybrid excitons resulting from the initial and final states shown in a as 

a function of the gate voltage. The color and line style of the solutions shown in this figure are consistent with the 

ones employed in a. 

 

 

 

Xf - X
1+ transition 

 

The zero-bandwidth model predicts the existence of the Xf+ feature observed in the experimental results (see 

Suppl. Figs. 6b and 7b), although it introduces an artificial splitting between the Xf+ and X1+ plateau due to the 

simplicity of the model. On the contrary, if the Fermi reservoir is modelled as a continuum of states rather than a 

single delocalized level, a continuous transition from the  Xf+ to the X1+ is obtained7-9. The blue dots in Suppl. Fig. 

8 represent the measured PL energy as a function of the applied Vg for the X1+ exciton state of QD B under an 

applied magnetic field of 570 mT.  The colour code in this figure represents the calculated PL intensity of the X1+ 



state for a QD strongly coupled to a Fermi reservoir using the analytical model presented in Ref.7. This model 

assumes that the system involving a QD strongly coupled to a Fermi sea can be described by the Anderson 

Hamiltonian and that low energy excitations of the Fermi sea are unimportant, essentially treating the Fermi sea as 

a frozen spectator to the tunneling processes. In the calculation, we considered a T = 3.8 K and the lever arm and 

tunnel coupling energy obtained from the experimental results. The best agreement between the experimental and 

calculated evolution of the PL energy has been obtained with Uhh = 26 meV, a bandwidth of 30 meV for the occupied 

states at the hole reservoir (flat DOS), and a Stark shift of ~200 μeV/V. While this simplistic model describes the 

experimental data, a more complete model using Wilson’s numerical renormalization group method can be used to 

explain the many-body interactions7, 10,11. 

 

 

 
Supplementary Figure 8. 𝐗𝐟+ feature. Measured PL energy as a function of the applied Vg for the X1+ exciton 

state of QD B under an applied magnetic field of 570 mT (blue dots). The colour code in this figure represents the 

calculated PL intensity of the X1+ state for a QD strongly coupled to a Fermi reservoir. 

 

 

 

Zero-bandwidth and Coulomb blockade model for Dots A, C and E 

 
Dots A - E all exhibit Coulomb blockade and can be explained with the zero-bandwidth Anderson impurity 

model. Supplementary Figure 9 below shows the fits to the experimental data for dots A, C and E, where the solid 

lines are solutions to the analytical model. Here we extract binding energies of ~ 24.4, ~ 22.4, and ~ 21.3 meV and 

tunnel coupling energies of ~0, 3.2 ± 0.1, and 2.6 ± 1.2 meV for Dots A, C, and E, respectively. We expect the 

tunnel coupling energy for Dot A to be finite, but its value is less than what we can resolve experimentally. 

Additionally, according to the Coulomb blockade model, for the X0  X1- transition the electron tunnels into 

the QD when it can overcome the electron-electron Coulomb interaction. This charging energy should depend on 

the QD size and thus on its emission energy. So, for a collection of QDs in the same device (and therefore same 

lever arm), one expects to see the onset of the tunnelling events (or charging thresholds) to be dependent on emission 

energy. In general, we observe such a trend in the charging thresholds, as can be seen in Suppl. Fig. 3a above as 

well as in Suppl. Fig. 9 below.  

 



 
 

Supplementary Figure 9. Zero-bandwidth model for dots A, C and E. Voltage-dependent evolution of the 

emission energy for the QDs A, C and E extracted from Suppl. Fig. 3a, showing Coulomb blockade. The solid lines 

represent fits of the experimental data using the zero-bandwidth Anderson impurity model. 

 

 

Electron-hole tunnel coupling ratio 

 

As discussed in the main text, a tunnel-coupling ratio V𝑡𝑢𝑛
ℎ /V𝑡𝑢𝑛

𝑒 = 2.9 ± 0.5 can be directly extracted from the 

fits shown in Fig. 2b. This ratio is a consequence of the band alignment resulting from the ML WSe2/hBN/graphene 

heterostructure, which leads to significantly lower tunnel barrier heights for holes than for electrons12. V𝑡𝑢𝑛
ℎ /V𝑡𝑢𝑛

𝑒  

can be estimated using the Wentzel-Kramer-Brillouin (WKB) approximation 

 

               
V𝑡𝑢𝑛
ℎ

V𝑡𝑢𝑛
𝑒 =

𝑚𝑒
∗

𝑚ℎ
∗ exp [2𝐿 (√

2𝑚𝑒
∗

ℏ2
Δ𝑉𝑒 − √

2𝑚ℎ
∗

ℏ2
Δ𝑉ℎ)],                                         (S20) 

 

where L is the thickness of a rectangular tunneling barrier, 𝑚𝑒(ℎ)
∗  are the effective masses for the electron (holes), 

and Δ𝑉𝑒(ℎ) are the respective band offsets. Using 𝑚𝑒
∗= 0.34𝑚0 (Ref. 12), 𝑚ℎ

∗  = 0.45𝑚0  (Ref. 13), L is the thickness 

of an hBN ML, and tunnel barrier heights of Δ𝑉𝑒 ~ 3.3 - 3.5 eV and Δ𝑉ℎ ~ 0.9 – 1.1 eV estimated from previous 

reports12, we estimate a ratio V𝑡𝑢𝑛
ℎ /V𝑡𝑢𝑛

𝑒  ~ 3.1 ± 0.4, in agreement with the experimental result.  

 

 

Tunnel-induced broadening of the emission linewidth 

 

The WKB approximation can also be employed to estimate the tunnel-induced broadening of the PL for Dot 

B of as a function of Vg, as shown in the bottom panel of Fig. 2c. The tunneling process for electrons and holes 

between the QD and the Fermi sea leads to a reduced lifetime of the exciton in the dot and thus leads to an increase 

of the emission linewidth Γ. We estimate the tunnel-induced broadening of the emission linewidth by employing a 

semiclassical model14. In this model, and within the WKB approximation, the decay probability (τ-1) can be 

calculated as the transmission coefficient through a rectangular potential with a lateral extension d and depth ΔV 

multiplied by the frequency of collisions with the wall. The frequency of wall collisions is connected with the 

velocity v of the particle, which is estimated via the uncertainty principle as v >> ħ/(2𝑚𝑒(ℎ)
∗ d). From the decay time 

τ it is possible to estimate the contribution of this tunneling process to the emission linewidth by means of the 

uncertainty relation Γ𝜏 > ℏ/2. This leads to the following expression: 

 

Γ ≥ Γ0 +
ℏ2

8𝑚𝑒(ℎ)
∗ 𝑑2

𝑇(Δ𝑉𝑔),                                                (S21) 

 



where 𝛤0 is the emission linewidth corresponding to the pure X0 QD-state, 𝑚𝑒(ℎ)
∗  are the effective masses for the 

electron or holes, and 𝑇(Δ𝑉𝑔) is the 𝑉𝑔-dependent transmission coefficient of a rectangular barrier for a non-resonant 

tunnelling15. Figure 2d (lower panel) in the main text shows a comparison between the experimental and calculated 

values for FWHM of the emission linewidth 𝛤. In the calculations, we have assumed a tunnel barrier thickness 

corresponding to a single h-BN layer, a lateral extension d corresponding to a ML WSe2 for the rectangular potential, 

and the carrier effective masses and band offsets described in the previous section. 

 

 

Magneto-optics 

 

Supplementary Figure 10 shows the voltage-dependent high-resolution PL of the X1- (left panels), X0 (central 

panels) and X1+ (right panels) exciton sates of QD B under different applied magnetic fields in Faraday geometry.  

 

 
Supplementary Figure 10. Voltage-dependent magneto-optics of different charged states in a quantum dot 

in ML WSe2. Voltage-dependent high-resolution PL of the X1- (left panels), X0 (central panels) and X1+ (right 

panels) exciton sates of QD B under different applied magnetic fields in Faraday geometry. 

 

 

 

Finally, Figs. 4b and 4c in the main text show the magnetic-field dependence of the energy splitting measured 

for the X0 doublet and the X1- and X1+ excitons of Dot B, and for the X0 doublet and the X1- exciton states of Dot A, 

respectively, as obtained from fits of the experimental data. Solid lines in Figs. 4b and 4c represent fits of the 

experimental data to equations 

 

       ∆𝑋0= √∆0
2 + (𝜇𝐵𝑔𝑋0𝐵𝑧)

2,                                                         (S22) 

and 

              ∆𝑋1±= (𝜇𝐵𝑔𝑋1±𝐵𝑧),                                                         (S23) 

 

with 𝜇𝐵 being the Bohr magneton and 𝑔𝑋0 and 𝑔𝑋1± being the gyromagnetic ratio for the neutral and charged 

excitons, respectively. 
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