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Abstract7

Subsurface reservoirs are far more heterogeneous and complex than the simulation models8

in terms of scale, assumptions and description. In this work, we address the issue of prediction9

reliability while calibrating imperfect/low-fidelity reservoir models. The main goal is to avoid10

over-confident and inaccurate predictions by including a model for the bias terms (i.e. error-11

model of a predefined form) during the history matching process. Our aim is to obtain unbiased12

posterior distributions of the physical model parameters and thus improving the prediction13

capacity of the calibrated low-fidelity reservoir models. We formulate the parameter estimation14

problem as a joint estimation of the imperfect model parameters and the error-model parameters.15

The structure of the error-model and the prior distributions of the error-model parameters are16

evaluated before calibration through analysis of leading sources of the modeling errors. We17

adopt a Bayesian framework for solving the inverse problem, where we utilize the ensemble18

smoother with multiple data assimilation (ES-MDA) as a practical history matching algorithm.19

We provide two test cases, where the impact of typical model errors originating from grid20

coarsening/up-scaling and from utilizing an imperfect geological model description is investi-21

gated. For both cases results from the ES-MDA update with and without accounting for model22

error are compared in terms of estimated physical model parameters, quality of match to histori-23

cal data and forecasting ability compared to held out data. The test results show that calibration24
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of the imperfect physical model without accounting for model errors results in extreme values25

of the calibrated model parameters and a biased posterior distribution. With accounting for26

modeling errors the posterior distribution of the model parameters is less biased (i.e. nearly un-27

biased) and improved forecasting skills with higher prediction accuracy/reliability is observed.28

Moreover, the consistency between the different runs of the ES-MDA is improved by including29

the modeling error component. Although the examples in the paper consider the oil-water sys-30

tem with permeabilities being parameters of the physical model, the developed methodology is31

general and can be applied to typical ground water hydrology models.32

1 Introduction33

In subsurface reservoir modeling, various approximations are introduced at different stages of the34

modeling process which in turn render most of the models to be imperfect and low-fidelity in nature.35

However, these imperfect models are generally still useful for understanding the key physical inter-36

actions within the subsurface regions of interest. The sources of approximations (a.k.a. modeling37

errors) include: properties up-scaling (grid coarsening), discretization errors, imperfect reservoir38

fluid properties, relative permeability, reservoir geology description/parameterization and approx-39

imate representation of the complete complex subsurface fluid flow physics (e.g. black-oil model in40

place of a compositional model or constant rock compressibility assumption).41

In the context of error modeling, grid up-scaling has been widely studied within the reservoir42

simulation community. In the published literature, there exist a number of efficient up-scaling43

techniques (Durlofsky, 2003), aiming to obtain optimal upscaled properties. However, up-scaling44

errors are not completely eliminated by most of these methods. Discretization errors also cannot45

be eliminated (Ertekin et al., 2001), even after selecting an optimal grid size and utilizing adaptive46

time stepping techniques. Additionally, numerical simulation using an optimal fine-grid could be47

computationally prohibitive especially for tasks that typically requires many simulation runs, for48

example history matching or robust optimization problems. Various techniques have been proposed49

to address this computational bottleneck, for example reduced order modeling and proxy models50

among many other techniques [c.f., Silva et al., 2007; Rammay and Abdulraheem, 2014; Cardoso51
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et al., 2009]. An alternative approach is to utilize an upscaled model instead of the fine scale model52

for multi-query computationally demanding tasks (e.g. uncertainty quantification problems). In the53

context of history matching, if the up-scaling errors are not modeled during the parameter inference54

step, the posterior distributions of the model parameters is likely to be biased and this bias will55

subsequently affect the future predictions of the engineering quantities of interest (e.g. oil, gas and56

water rates/pressure). Omre et al. (2004) approximated the up-scaling and discretization errors57

by computing samples or realizations of the error data using pairs of fine- and coarse-scale models.58

The model errors due to up-scaling were then estimated using a multiple regression technique and59

added to the coarse scale model predictions during the history matching process. Lodoen et al.60

(2005) utilized a similar procedure on a different set of test cases while employing a more accurate61

up-scaling procedure.62

Accurate reservoir geology description is another challenging task due to various uncertainties63

including: channel geometry, faults shape, facies proportion, stratigraphic and/or structural frame-64

works. It is widely known that unrealistic geological models could be calibrated to match the histor-65

ical data [c.f., Carter et al., 2006; Refsgaard et al., 2012]. However, these fitted models fail to provide66

reliable predictions and could ultimately mislead the reservoir development plans [c.f., Carter et al.,67

2006; Refsgaard et al., 2012]. Although considerable effort is often put into constructing geological68

models that are as realistic as possible, it is very difficult to maintain this geological realism while69

updating them to match the observed data (Sun and Durlofsky, 2017).70

Accounting for model errors during the calibration process has attracted a large body of re-71

search [c.f., Oliver and Alfonzo, 2018; Dreano et al., 2017; Josset et al., 2015], where various ap-72

proaches have been developed to account for the model-error component during model calibra-73

tion [c.f., Hansen et al., 2014; Evin et al., 2014; Reichert and Schuwirth, 2012]. These approaches74

vary according to the different behavior and complexity of the modeled physical system. For ex-75

ample in hydro-geophysical systems, Köpke et al. (2017) accounted for the model-error component76

using orthonormal basis generated from an error dictionary which is continuously enriched during77

the calibration process. The models of the bias or error component could be generally classified78

as either input dependent (Giudice et al., 2013) or output dependent (Evin et al., 2014). Input79
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dependent model error formulation represents the error components as a function of the model80

parameters. For example, a reservoir model-error can vary with permeability realizations or other81

input model parameters. O’Sullivan and Christie (2005) utilized an input dependent formulation82

for the model-error where the authors computed model-error realizations using the difference be-83

tween a fine-grid and coarse-grid model outputs. During the calibration process, an interpolation84

of the error component was performed to estimate a correction term to the coarse-grid model pre-85

dictions. Lødøen and Tjelmeland (2010) used multiple linear regression algorithm to model errors,86

where the residual part for the multiple regression was assumed to depend on the model input87

parameters. The residual terms were modeled using a zero mean Gaussian Process. Giudice et al.88

(2013) used an input dependent model-error representation to improve uncertainty estimation in89

urban hydrological models. In that application, the model error variance was set to be depending90

on the input of the rainfall term. Output dependent model error formulation represents the error91

components as a function of the output of the physical model. For example, Evin et al. (2014)92

utilized an output dependent formulation for the model-error heteroscedasticity as a function of93

the simulated streamflow. In a realistic setting, where large models are utilized (i.e. millions of94

input parameters), it is hard to relate the model errors to the high dimensional input parameter95

space and output dependent or input/output (I/O) independent forms of the model-error were96

proposed as an alternative approach that might have some advantages over the input-dependent97

error-models (Giudice et al., 2013).98

Model-error representation can also be classified as either an external bias description (EBD)99

or an internal noise description (IND) (Giudice et al., 2015). EBD was developed using the back-100

ground of statistical inference in a regression type framework (Giudice et al., 2015). In EBD, the101

model-error term is added externally into the forward model (approximate or inadequate model)102

output. In IND, the model-error is formulated as an additional term of the state space (Giudice103

et al., 2015). This approach is also known as state space modelling or stochastic gray-box mod-104

elling [c.f., Moradkhani et al., 2012; Kristensen et al., 2004]. Giudice et al. (2015) concluded that105

EBD has some advantages over IND in terms of long-term predictions.106

In this paper, we utilize an EBD and I/O independent error-model formulation as it is more107
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suitable for large scale models (e.g. subsurface oil and gas reservoir models) relying on black-box108

simulators. Several typical sources of model errors are present in the test cases investigated in this109

paper, including a coarse grid, less detailed geological representation (i.e. upscaling of different types110

of geological features including variogram based and channelized geology), discretization errors and111

slight change in well locations due to grid coarsening. The error-model formulation presented here,112

assumes that the total modeling errors consists of two components: structural component and noise-113

like component. We note that the structural component is often neglected in the bias correction114

approaches developed in hydrological literature [c.f., Maier et al., 2014; Vrugt, 2016; White et al.,115

2014]. In this study prior to model calibration, the structure of the model error is estimated116

and represented using several basis functions, and the magnitude of the noise-like component is117

quantified. During history matching, the weights of the basis functions are jointly calibrated with118

the physical model parameters using data observed at well locations. The noise-like part of the119

model error is also accounted for during the history matching process to avoid over-fitting of the120

error model. We note that the presented formulation is general and can be applied to other sources121

of modeling errors when dealing with low-fidelity physical models. The low-fidelity models are122

generally used as efficient surrogate models for computationally demanding tasks [c.f., Asher et al.,123

2015; Laloy et al., 2013].124

For the Bayesian inversion, we use a particular type of iterative ensemble smoother ES-MDA (Em-125

erick and Reynolds, 2013). The formulation of ES-MDA has some similarities with Kalman filtering126

algorithms (Sun et al., 2016). However, ES-MDA assimilates data from different times simultane-127

ously and the same set of data is assimilated multiple times with an inflated data noise covariance128

matrix which is equivalent to annealing approaches (Stordal and Elsheikh, 2015). The rest of the129

paper is organized as follows: In Section 2, we present some background on Bayesian inverse mod-130

eling followed by the proposed error-model formulation. Following that, we present the case studies131

in Section 3. The results of the case studies are discussed in Section 4 followed by the conclusions132

of our work in Section 5.133
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2 Methodology134

Bayesian inverse modeling is a generic inference framework that is widely adopted for calibration135

of reservoir models while accounting for different types/sources of uncertainties. In the Bayesian136

framework, the conditional probabilities p(m|dobs) of the model parameters m given the observa-137

tional data dobs (a.k.a. posterior distribution of the model parameters) is estimated using Bayes138

rule (Oliver et al., 2008):139

p(m|dobs) ∝ p(dobs|m) p(m), (1)

where m is the model parameters vector of size Nm, dobs is the observations vector of size Nd, p(m)140

is the prior probability of the model parameters and p(dobs|m) is the likelihood function of the data141

given a specific realization of the model parameters m. It is common to assume a Gaussian prior:142

p(m) ∝ exp
(
− 1

2
(m−mpr)

ᵀC−1M (m−mpr)
)
, (2)

where mpr is an Nm dimensional vector of the mean prior model parameters and CM is the143

covariance matrix of the prior model parameters. It is also common to assume that data noise is144

Gaussian, so that the likelihood function takes the form:145

p(dobs|m) ∝ exp
(
− 1

2
(dobs − d)ᵀC−1D (dobs − d)

)
, (3)

where d is the simulated or predicted data vector using the model parameters m and CD is the146

error/noise covariance matrix which is defined in Sect. 2.1 and 2.2 depending on the utilized history147

matching procedure. Using these definitions, Bayes’ rule defined in Eq. 1 could be expanded as148

following:149

p(m|dobs) ∝ exp

(
− 1

2

(
(dobs − d)ᵀC−1D (dobs − d) + (m−mpr)

ᵀC−1M (m−mpr)
))
. (4)

Several algorithms could be used to generate samples from the posterior distribution of the150

model parameters (Oliver et al., 2008). Among those Markov Chain Monte Carlo (MCMC) is151
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an exact method for sampling. However, MCMC can be computationally expensive due to the152

large number of iterations needed to reach convergence and the sequential nature of the method.153

Ensemble-based methods have been widely used for calibrating subsurface flow models due to154

the computational feasibility and parallel nature of ensemble methods. In this study, we utilize155

the ensemble smoother with multiple data assimilation (ES-MDA) algorithm for the calibration156

step (Emerick and Reynolds, 2013). ES-MDA belongs to a class of iterative ensemble smoothing157

techniques that could be used to solve non-linear inverse problem iteratively with an inflated noise158

covariance matrix. The ES-MDA algorithm steps are summarized as follows:159

– Select the number of iterations (number of data assimilation) Na and the inflation factor α. A160

common choice of the inflation factor is to set it as a constant value for all iterations α = Na161

– Initialize an ensemble of model parameters and perturb the observation data for each ensemble162

member using:163

duc,j = dobs +
√
α C

1/2
D zd, (5)

where the subscript j is the ensemble member index j = 1 . . . Ne and Ne is the ensemble size,164

duc,j is Nd dimensional vector of perturbed observation, zd is the Nd dimensional vector with165

standard Gaussian random variables as its components (i.e. zd ∼ N (0, INd,Nd
)).166

– Update each ensemble member using,167

m
(i+1)
j = m

(i)
j + CMD (CDD + α CD)−1(duc,j − dj), (6)

where the superscript i is the iteration index, CDD is the model output covariance matrix168

and CMD is the cross covariance matrix of model parameters and model predictions.169

– Repeat the above steps for all iterations, from i = 1 to Na170

2.1 Procedures for history matching of reservoir models171

In this study, two types of history matching procedures are investigated: history matching while172

neglecting model-discrepancy (i.e. standard history matching procedure) and joint history matching173
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of the model parameters and the parameters of an error/bias model. In this paper, we use the term174

model-discrepancy and model-error interchangeably. The standard history matching procedure175

relies on an implicit assumption that the model-errors are generally small and could be neglected176

(i.e. the simulation model is perfect). Mathematically, if an accurate/high-fidelity model is utilized,177

the observed data is formulated as (Giudice et al., 2013):178

dobs = g(mtrue) + εd, (7)

where g(.) is a nonlinear function representing the accurate/high-fidelity forward simulation model,179

mtrue is the true model parameters, εd is the measurement errors which is usually assumed to follow180

a normal distribution N (0,Cd) and Cd is the measurement errors covariance matrix. In this study,181

uncorrelated measurement errors are considered, therefore the matrix Cd is a diagonal matrix. In182

standard history matching (i.e. neglecting modeling errors), CD in Eqs. 3, 4, 5 and 6 is set to the183

covariance of measurement errors. Therefore,184

CD = Cd. (8)

However, as noted in the introduction section, several approximations are commonly introduced185

in the computational model to simplify the simulation process (e.g. black-oil model versus compo-186

sitional flow), or to speed-up the simulations (coarsening of the simulation grid). During history187

matching if the model-error caused by these approximations is not accounted for, the obtained188

posterior distribution could be biased. In the case of utilizing an approximate/low-fidelity model,189

the observation data is related to the true model parameters mtrue as (Giudice et al., 2013):190

dobs = g̃(mtrue) + εd + εm, (9)

where εm is the model-error and g̃(.) is a nonlinear function representing the imperfect (approxi-191

mate/low-fidelity) simulation model. By subtracting Eq. 7 from 9, we obtain:192

εm = g(mtrue)− g̃(mtrue). (10)
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In the following sub-section, we present a simple yet general parameterization of the model-error193

term εm.194

2.2 Error-model formulation195

In this study, EBD and I/O independent error-model approach is considered. As the model errors196

in our test cases were dominated by structured components, these errors are parameterized using197

smooth basis functions obtained by principle component analysis (PCA) method, which is an198

effective data-driven dimension reduction technique (Shlens, 2014; Kerschen et al., 2005). We rely199

on simulation output from pairs of models, accurate/high-fidelity versus approximate/low-fidelity,200

to obtain the basis functions and the prior statistics of the coefficients of the PCA basis functions.201

We acknowledge that this limits the applicability of the developed approach to the cases for which an202

accurate/high-fidelity model is available. However, we note that the accurate/high-fidelity model is203

only used to estimate the prior model-error statistics, and is not used during the calibration process.204

This is a notable difference between the presented framework and related studies by Josset et al.205

(2015) and Köpke et al. (2017).206

In the current setting, the prior model-error realizations are estimated using:207

εmr = g(mr)− g̃(mr), (11)

where r is the index of the prior realizations, i.e. r = 1 to Nr, Nr is the total number of realizations208

used to estimate the model-error statistics, εmr is an Nd dimensional vector of model-error for209

realization r. All prior model-error realizations are assembled into the matrix ε ∈ RNd×Nr . The210

mean of the model-error prior is,211

ε̄m =
1

Nr

Nr∑
r=1

(εmr). (12)

The covariance of the model-error prior is (Oliver et al., 2008),212

Ce =
1

Nr − 1
(ε− ε̄mINr)(ε− ε̄mINr)ᵀ, (13)
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where INr is an Nr dimensional row vector with all ones as its components. In this study, PCA is213

used to parametrize the prior model-error realizations and the weights of the obtained PCA basis214

vectors are jointly inferred with the model parameters during the history matching process. The215

basis functions are obtained by singular value decomposition (SVD) of the error covariance matrix216

Ce (Oliver et al., 2008):217

Ce = UΣVᵀ, (14)

where U and V are the orthonormal singular vectors (basis functions) and Σ is a diagonal matrix of218

the singular values. The error-model is formulated using the leading L singular vectors as following:219

ε̂mr = Φβr + ε̄m, (15)

where Φ ∈ RNd×L are the first L orthonormal singular vectors (basis functions) from U and220

βr ∈ RL×1 are the coefficients of error-model for realization r.221

The objective of the calibration process is then to find the posterior distribution of reservoir222

model parameters and the coefficients β of the PCA-based error-model. Since Bayesian inverse223

modelling require prior statistics of model parameters, therefore the prior statistics of the coefficients224

β should be estimated. Least square form of Eq. 15 is used to compute prior realizations of the225

coefficient vector β as following:226

βr = (ΦᵀΦ)−1Φᵀ(εmr − ε̄m). (16)

Since Φ is an orthonormal matrix i.e. Φᵀ ≈ Φ−1, therefore Eq. 16 can also be written as:227

βr ≈ Φᵀ(εmr − ε̄m). (17)

The prior statistic, such as the mean and covariance of β realizations are computed using:228

µβ =
1

Nr

Nr∑
r=1

(βr), (18)
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229

Cβ =
1

Nr − 1

Nr∑
r=1

(βr − µβ)(βr − µβ)ᵀ, (19)

where µβ ∈ RL×1 is the mean of β realizations and Cβ ∈ RL×L is the covariance of β realizations.230

In this study, we only consider the diagonal terms of the matrix Cβ to generate prior samples of231

error-model coefficients for the history matching purpose.232

In order to avoid over-fitting the error-model, the number of coefficients of the PCA-based233

error-model L should be limited to a small number. Therefore, the residual of error-model cannot234

be neglected and need to be included in the inversion process. The residual of the least square fit235

is defined as,236

ζmr = εmr − ε̂mr. (20)

All residual realizations are assembled into matrix ζ ∈ RNd×Nr . The covariance of the residual237

from all error-model realizations is then estimated using:238

CT =
1

Nr − 1
ζζᵀ, (21)

where CT is denoted the error-model noise covariance. For history matching of imperfect-models,239

the total error covariance matrix CD in Eqs. 3, 4, 5 and 6 contains both the measurement and240

error-model noise components as following:241

CD = Cd + CT . (22)

For simplicity, only the diagonal terms of the matrix CT is considered in this study. Conceptu-242

ally, CD is the total uncalibrated uncertainty, which includes both the measurement noise and the243

model-error noise that is not captured by the truncated PCA-based error-model. In (Hansen et al.,244

2014), modeling errors were considered as uncalibrated uncertainties using Gaussian distribution245

(i.e. accounting for mean and covariance of errors). In their approach, the model error is accounted246

for by replacing dobs with dobs + ε̄m and replacing Cd with Cd + Ce. However, this approach247

would be inconsistent/inefficient for physical systems which exhibit highly complex statistics and248
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correlations of model errors that change significantly not only over the data space, but also as a249

function of the input model parameters. (Köpke et al., 2017).250

3 Case Studies251

In this section, we present the details of the case studies. The dimension of the subsurface reservoir252

is 7500 ft × 7500 ft × 20 ft in the x, y and z directions, respectively. Incompressible two-phase253

porous media flow of oil and water is considered. The initial reservoir pressure is 5000 psi and254

the reservoir has uniform porosity of 20%. The reservoir contains one injector well (I1) and three255

production wells (P1, P2, P3) and is simulated using a 2D grid. We utilize the Matlab Reservoir256

Simulation Tool-box (MRST) (Lie, 2016) for the forward model simulations. Corey’s power law257

model is used to represent relative permeabilities. Parameter values for the Corey’s model and fluid258

properties are listed in Appendix A. The gravitational and capillary pressure effects are neglected.259

The production wells are operated under constant bottom hole pressure constraint of 4500 psi and260

the injector well is operated under constant injection rate constraint with varying control values as261

shown in Fig. 1(a). The wells open/shut schedule is shown in Fig. 1(b). Figure 1 also shows end262

of historical period (i.e. 2 years). In the historical period, the flow rates at the production wells263

and the bottom hole pressure of the injector well are used as the historical data for the calibration264

process. We also note that one of the production wells (P3) is only used in prediction phase in265

order to assess predictions from calibrated models on wells drilled in future development plans.266
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Figure 1: Injection well control rates and wells open/shut schedule. Dashed black lines show end of historical
period. Part (a) shows the water injection rate of injector well. Part (b) shows wells open/shut schedule. In
part (b) solid back lines indicate the time periods when a well is open to flow.

3.1 Case 1: Coarse scale model267

In the first case study, fine-grid/high-fidelity model uses a 2D grid with 75×75 cells. The distributed268

log-permeability fields are modeled as multivariate Gaussian with exponential covariance function:269

c = σ2 exp(−3(
s

ra
)γ), (23)

where s is the lag distance and ra, σ
2, γ are the correlation range, variance and exponent respectively270

(which are 35 cells, 1 and 1 respectively in this test case). The log-permeability field ln(K) is271

parameterized using PCA and only two leading basis functions are retained:272

ln(K) = ln(K) +

Nw∑
b=1

wbψb, (24)

where ln(K) is the mean log-permeability (equal to 4 in this test case), b is index of the basis weight273

w and basis function ψ and Nw = 2. Figure 2(b) shows the leading two principal basis functions274

obtained by singular value decomposition of covariance of log-permeability fields (Eq. 23). Figure275

2(a) shows the prior distribution of weights obtained by projecting the log-permeability fields into276

the PCA-basis functions.277

Figure 3(a) shows the reference fine scale log-permeability field. The fine scale reference log-278
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permeability field is generated by the leading two-PCA basis functions and reference basis weights279

are shown as the red vertical lines in Fig. 2. The coarse-grid/low-fidelity reservoir models contain280

only 5 × 5 grid blocks. The coarsened version of the reference fine model is shown in Fig. 3(b),281

in which harmonic averaging is used to up-scale the log-permeability field. The observed data are282

generated by the fine scale model using reference log-permeability field (Fig. 3(a)) with the addition283

of measurement noise of 2% of the reference solution. We note that except permeabilities, the rest284

of the static and dynamic properties (i.e. porosity, relative permeability, viscosity, and density, well285

controls and schedule) of the coarse scale model are the same as the fine scale model.286

Two different procedures of history matching the coarse scale model were considered. In the287

case of neglecting model-discrepancy, PCA basis weights w of the log-permeabilities are calibrated288

(i.e. mj = w in Eq. 6). In the case of joint inversion with error-model, the estimated parameters is289

the combined vector of the log-permeability PCA weights and the error-model coefficients (i.e. mj =290

[w;β] in Eq. 6).291

Prior statistics of the model-discrepancy were estimated using Eq. 11. One hundred fine scale292

permeability realizations were generated through Eq. 24 by sampling the prior distribution of293

the PCA-basis weights and a corresponding number of coarse scale permeability realizations were294

obtained using harmonic up-scaling. Forward runs were then performed for both the coarse and295

fine scale models to obtain the error realizations using Eq. 11. A smaller number of realizations296

could be used to evaluate the model-discrepancy statistics. In that case, special care should be297

taken to select a representative set of prior realizations to cover the respective statistic. Figure 4298

shows the prior statistics of the model-discrepancy in the simulated well production data (bottom299

hole pressure of the injector well and flow rates of the producers).300

14



  

-100 -50 0 50 100 150

w
1

0

0.005

0.01

0.015

0.02

0.025
P

ro
ba

bi
lit

y 
de

ns
ity

1

-0.03

-0.02

-0.01

0

0.01

-100 -50 0 50 100

w
2

0

0.005

0.01

0.015

0.02

0.025

0.03

P
ro

ba
bi

lit
y 

de
ns

ity

(a) Prior distribution of basis weights

2

-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005

(b) Two principal basis functions

Figure 2: Prior distribution of basis weights from five ensembles and two principle basis functions for log-
permeability. Red dashed lines show reference solution and five prior ensembles distribution are shown by
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Figure 3: The fine scale (75 × 75) reference log-permeability (a) and the corresponding up-scaled log-
permeability (5× 5) using harmonic average (b).
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Figure 4: Prior model-error statistics of all wells for Case 1. Black lines show mean model errors, dashed
blue lines show the 95% confidence interval (mean plus and minus two standard deviations) of model errors.

3.2 Case 2: Up-scaled imperfect geology model301

Geologists commonly try to build geologically realistic prior models. However, maintaining the302

geological realism during the history-matching process is quite challenging (Sun and Durlofsky,303

2017). For example, multipoint statistics (MPS) is widely used to represent channelized geological304

patterns. Geologically consistent history matching using MPS prior is still a subject of active305

research (Chen et al., 2016). Sometimes the predictability of the history matched MPS models306

may not be satisfactory, often due to limitation of the available history matching methods in307

handling this type of non-Gaussian models (Chen et al., 2016). In this study we do not aim for308

obtaining calibrated models that are consistent with the channelized geological feature, instead we309

focus on improving predictability of the calibrated coarse models by including the error-model.310

For this case, the permeability fields are based on a similar test case presented in (Chen et al.,311

2016). Figure 5(a) shows the reference fine scale log-permeability with channelized features and312

Fig. 5(b) shows the corresponding up-scaled log-permeability field in which the channelized features313

have been lost due to harmonic averaging. The reference and prior fine scale channelized log-314
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permeability fields are generated using a two-facies training image with the direct sampling version315

of MPS (Mariethoz and Caers, 2014). The observed data are generated by the fine scale model316

using reference log-permeability field (Fig. 5(a)) with the addition of measurement noise of 2%.317

Similar to the first test case, one hundred realizations of the model-discrepancy were obtained318

using Eq. 11 by running the fine scale simulation using the MPS permeability images of size 75×75319

grid blocks and the corresponding up-scaled permeability field with 5 × 5 grid blocks. Figure 6320

shows the prior statistics of the model-discrepancy in the simulated well production data.321
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Figure 5: The fine scale (75 × 75) reference log-permeability with channelized features (a) and the corre-
sponding up-scaled log-permeability (5× 5) using harmonic average (b).
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Figure 6: Prior model-error statistics of all wells for Case 2. Black lines show mean model errors, dashed
blue lines show the 95% confidence interval (mean plus and minus two standard deviations) of model errors.

4 Results and Discussion322

In this section, we present history matching results for test Case 1 and 2 with and without ac-323

counting for the model-discrepancy. All the ensemble-based history matching results are presented324

for multiple runs (five independent ensembles) in order to investigate the consistency and relia-325

bility of the parameter estimation process. Each ensemble run consists of 100 ensemble members326

and the measurement errors are assumed to be 2% of the observation data. We utilized the ES-327

MDA algorithm with eight iterations (α = 8) for calibration. In the case of joint inversion with328

error-model, two PCA components were retained per each output time series to parametrize the329

model-discrepancy. Since we have seven output time series, the total number of error-model pa-330

rameters is 14.331

The calibrated models are evaluated using three different forecasting metrics to assess the quality332

of the estimated parameters and the capacity of the calibrated models in making future predictions.333

The utilized forecasting metrics are: coverage probability (CP), mean continuous ranked probability334

score (CRPS) and mean square error (MSE). CP indicates the fraction of the actual data that lie335
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within the 95% confidence interval of the estimation. A value of 0.95 for CP indicates a consistent336

estimation of uncertainty and values below 0.95 indicate underestimation of uncertainty. Mean337

CRPS quantifies both accuracy and precision (Hersbach, 2000) and higher values of CRPS indicate338

a less accurate results. MSE is widely used as a metric for parameter estimation problems. However,339

MSE measures the quality of data-fitting and is not enough to provide a probabilistic assessment340

of the estimation and prediction from an ensemble of models. In this study, we observed that a341

combination of MSE, CP and CRPS provides a good assessment of the quality for the probabilistic342

forecast (Skauvold and Eidsvik, 2018). The mathematical formulations of the three forecasting343

metrics are listed in Appendix B.344

4.1 Case 1 Results345

In this test case, the log-permeability is calibrated in terms of the PCA-basis weights, i.e. w1,w2346

as detailed in the problem description. Figure 7 shows the posterior distributions of the basis347

weights for the five runs, for both cases of neglecting and accounting for model error. The results348

presented in Fig. 7(a) show that the posterior distribution from the inversion (neglecting model-349

error) procedure are biased and the estimated basis weights do not capture the reference weights.350

In contrast, the posterior distributions obtained by the joint inversion procedure are less biased351

(i.e. nearly unbiased) and successfully cover the true model parameters as shown in Fig. 7(b).352

Figure 8 shows the mean and standard deviation of the posterior ln(K) for test case 1. In353

Fig. 8(a) the mean of posterior log-permeability field obtained from five different runs are shown354

for the inversion procedure. This posterior mean is clearly different from the coarse scale reference355

log-permeability field shown in Fig. 3(b) due to the bias in the inferred posterior distributions.356

Figure 8(b) shows the mean posterior log-permeability fields obtained by the joint inversion pro-357

cedure. These fields are quite similar to the coarse scale reference log-permeability field. We also358

observe that the posterior standard deviations are quite low for the inversion (neglecting model-359

error) procedure, which could be a sign of over-fitting the data. In contrast for the joint inversion360

procedure, the standard deviations of the posterior fields are much larger due to accounting for the361

model error and including the error-model noise covariance matrix CT in Eq. 22.362
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Figures 9 and 10 show the oil and water production rates of the different production wells363

and the bottom hole pressure of the injector well. The 50th percentile p50 and 95% confidence364

interval (the shaded region) are obtained by combining results from all five runs. In part (a) of365

these figures, the results for the inversion (neglecting model-discrepancy) are presented and the366

results of the joint-inversion with error-model are shown in part (b). For the inversion (neglecting367

model-error) procedure, the results are mixed where the data are matched for some cases and not368

matched for others. For example in Fig. 9(a), the data match is quite good for the wells P1 and369

P2. However in Fig. 10(a) the data match for well I1 is not as good. Moreover, the predictions370

for all wells are inaccurate for the inversion (neglecting model-error) procedure. Furthermore,371

the prediction envelop is really narrow, resulting in invisible confidence interval in the plots, which372

shows over-confidence in the inaccurate predictions. In comparison, better matches and predictions373

are obtained by the joint inversion procedure as shown in Figs. 9(b) and 10(b).374

Figure 11 shows the forecasting metrics (CP for the estimated log-permeabilities and mean375

CRPS, MSE, CP for the well data in history matching and prediction periods) for individual376

ensemble (E1 to E5) and for results from all five ensembles assembled together (denoted as “All” in377

the figure). These metrics provide a good assessment on the consistency, reliability and accuracy of378

forecasting capacity of the calibrated models. Figures 11(a) and 11(b) show the coverage probability379

of reservoir model parameters (ln(K)), well data for both the history matching period and the380

forecasting period. Both the inversion (neglecting model-error) and the joint inversion results are381

shown. In Fig. 11(a) CP of ln(K) is zero for each individual ensemble (E1 to E5) as well as for382

all five ensembles combined meaning that none of the ensemble captures the true log-permeability383

using the inversion (neglecting model-error) procedure. In Fig. 11(b) CP of ln(K) is one for E1384

to E4 as well as for the combined ensemble that means that four out of five runs managed to385

enclose the reference log-permeabilities completely when using the joint inversion procedure. For386

the inversion (neglecting model-error) procedure, the CP lies between 0.06–0.11 for the historical387

data and lies between 0.01–0.013 for the validation data (prediction), as shown in Fig. 11(a). For388

the joint inversion procedure, these values of CP of are increased to be between 0.29–0.31 and 0.77–389

0.82, respectively as shown in Fig. 11(b). Although the value of CP equal to one (higher than the390
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correct value of 0.95) for the estimated permeability field when the joint inversion procedure is used391

clearly indicates that the uncertainty of the permeability field is overestimated, the overall results392

still show reasonable improvement from the joint inversion procedure compared to the standard393

inversion (neglecting model-error) procedure.394

Figures 11(c) and 11(d) show the mean CRPS of history matching and prediction periods of the395

well data for the inversion (neglecting model-error) and the joint inversion procedures, respectively.396

Figure 11(c) shows that the mean CRPS lies between 117–118 and 466–469 for history matching and397

prediction periods, respectively. The results for the inversion (neglecting model-error) is unreliable398

and inaccurate due to the biased posterior distributions for all the different runs. Figure 11(d) shows399

that using joint inversion with error-model, the mean CRPS lies between 72–73 and 170–187 for400

history matching and prediction periods of the well data, respectively. A significant improvement401

in terms of reliability and accuracy is observed, by incorporating the error-model in the inversion402

process. Figures 11(e) and 11(f) show the MSE of the individual runs and the combined ensemble403

of all runs. With the joint inversion procedure, lower MSE values are obtained for both the history404

matching and the prediction periods (indicated by subscript “h” and “p” respectively in the plot).405
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Figure 7: Posterior distribution of two PCA basis weights (of ln(K)) obtained after history matching for
coarse scale model case. Dashed red lines show the reference solution and the posterior distribution of the
five ensembles are shown by five different colors.
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Figure 8: Mean and standard deviation of ln(K) posterior ensembles obtained after history matching of two
PCA basis weights for coarse scale model case.
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(b) joint inversion with error-model

Figure 9: Prior and posterior of oil production data obtained from all ensembles for coarse scale model case.
Red lines show observation data and bar on red lines shows measurement error. Dashed black lines show
end of historical period. Solid green lines show 50th percentile p50 of prior distribution, dashed green lines
show 95% confidence interval of prior distribution. Solid black lines show p50 of posterior distribution, gray
shaded area shows 95% confidence interval of posterior distribution.
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(b) joint inversion with error-model

Figure 10: Prior and posterior of water production and injection pressure data for coarse model case. The
explanation of colors and lines are the same as in Fig. 9.
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(f) joint inversion with error-model

Figure 11: Forecasting metrics of coarse scale model case. In part (a) and (b) blue bars show the CP of true
log-permeabilities, green bars show the CP of the historical data and yellow bars show the CP of prediction.
In part (c) and (d) blue bars show the mean CRPS of the historical data and yellow bars show the mean
CRPS of prediction. In part (e) and (f) box plots of MSE of the simulated well data from each ensemble are
shown, subscript h and p are used for history and prediction respectively. On each box, the central red line
indicates the median, and the bottom and top blue edges of the box indicate the 25th and 75th percentiles,
respectively. The whiskers represent extreme data points without outliers, and ‘+’ symbol represents outliers
(more than 1.5 times of interquartile range).
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4.2 Case 2 Results406

In this test case, log-permeability of every grid cell is calibrated using both inversion (neglecting407

model-error) and joint inversion procedures. Figure 12 shows prior and posterior distributions408

obtained by combining realizations from all five runs for both history matching procedures. Figure409

12(a) shows that the posterior distribution of ln(K) is biased where the estimated log-permeabilities410

show extreme values and do not capture the reference log-permeabilities. Figure 12(b) shows that411

by accounting for model error, relatively small changes have been made to the physical parameters412

(log-permeability in this case), and the mean of the posterior distribution of ln(K) remains smooth413

after data assimilation.414

Figure 13 shows the mean and standard deviation of ln(K) posterior ensembles as maps. In415

Fig. 13(a) the posterior mean log-permeability field obtained from five different runs are shown416

for the inversion (neglecting model-error) procedure. This posterior mean is clearly different from417

the reference coarse log-permeability field as shown in Fig. 5(b). Moreover, in Fig. 13(a) the mean418

log-permeability field of every ensemble is different from each other, which is an indication of419

convergence of every ensemble to different non-unique local peak (mode) of the biased posterior.420

The mean of log-permeability ensemble from the joint inversion procedure is shown in Fig. 13(b)421

where no extreme features are observed. Similar to the observation from Case 1, the standard422

deviation is higher for the joint inversion compared to the inversion (neglecting model-error).423

Figures 14 and 15 show the oil and water production rates of the different production wells424

and the bottom hole pressure of the injector well. The 50th percentile p50 and 95% confidence425

interval (the shaded region) are obtained by combining results from all five ensembles. In part (a)426

of these figures, the results for the inversion (neglecting model-discrepancy) are presented and the427

results of the joint-inversion with error-model are shown in part (b). For the inversion (neglecting428

model-error) procedure, only historical data at some wells are matched. For example Figs. 14(a)429

and 15(a) show that the data match is good for wells I1 and P1, however the data match of well430

P2 is not good. Moreover the future prediction from the estimated model parameters using the431

inversion (neglecting model-error) procedure is quite poor. A good example is the prediction of432

water production rate of well P1: the models predicted early water breakthrough between year 2 to433
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3, while the actual water breakthrough is after year 5 because P1 is separated from the injector by a434

low permeability region (see Fig. 5(a)). In comparison, better matches and predictions are obtained435

by the joint inversion procedure as shown in Figs. 14(b) and 15(b) for individual ensembles as well436

as all ensembles combined together. The prediction from the combined multiple ensembles may437

seem good for some well data for the case with the inversion (neglecting model-error) procedure,438

for example BHP pressure of well I1 in Fig. 15(a), even though the prediction from each individual439

ensemble is not good. This is often due to the fact that different ensemble converges to different440

local peaks (modes) of the biased posterior and the combined prediction from these multiple biased441

final ensembles happen to enclose the validation data.442

Figure 16 shows the forecasting metrics (CP for the estimated log-permeabilities and mean443

CRPS, MSE, CP for the well data in history matching and prediction periods) for the individual444

ensembles and for results from all five ensembles assembled together. Figures 16(a) and 16(b)445

show the coverage probability of reservoir model parameters (ln(K)), well data for both the history446

matching period and the forecast period. In Fig. 16(a) CP of ln(K) is between 0–0.12 for ensembles447

(E1 to E5), however CP of ln(K) is 0.6 for the combined ensembles. This relatively high coverage448

from the combined ensemble is due to the overshooting of ln(K) values and the different final es-449

timation from each individual ensemble as shown in Fig. 12(a) and Fig. 13(a) respectively. With450

the joint inversion procedure, the coverage probability is improved for all three quantities investi-451

gated (log-permeabilities, historical data, future prediction). Similarly, the mean CRPS and MSE452

measures also show significant improvement by accounting for model error using the joint inversion453

procedure (2nd and 3rd row of Fig. 16). In addition, based on all three forecasting measures, the454

results from multiple ensemble runs using the joint inversion procedure are very consistent, which455

indicates the statistical consistency of the proposed procedure.456
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Figure 12: Prior and posterior distribution of ln(K) obtained after history matching for up-scaled imperfect
geology model case using five ensembles. In both part (a) and (b), green and blue lines show the prior and
posterior distribution respectively. Solid green and blue line show the p50 prior and posterior respectively.
Dashed green and blue lines show the 95% confidence interval of prior and posterior respectively. Black
asterisks show the reference solution.
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Figure 13: Mean and standard deviation of ln(K) posterior ensembles obtained after history matching of all
grids log-permeabilities for up-scaled imperfect geology model case.
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(a) inversion (neglecting model-error)
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(b) joint inversion with error-model

Figure 14: Prior and posterior of oil production data for up-scaled imperfect geological model case. Red
lines show observation data and bar on red lines shows measurement error. Dashed black lines show end of
historical period. Solid brown lines show 50th percentile p50 of the prior distribution, dashed brown lines
show 95% confidence interval of prior distribution. Solid black lines show p50 posterior distribution obtained
from all ensembles. Shaded gray area show 95% confidence interval of posterior distribution obtained from
all ensembles. Dashed blue, green, yellow, magenta and cyan lines show 95% confidence interval of posterior
distribution of individual ensembles.
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(a) inversion (neglecting model-error)
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(b) joint inversion with error-model

Figure 15: Prior and posterior of water production and injection pressure data for up-scaled imperfect
geological model case. The explanation of colors and lines are the same as in Fig. 14.
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(f) joint inversion with error-model

Figure 16: Forecasting metrics of up-scaled imperfect geology model case. In part (a) and (b) blue bars
show the CP of true log-permeabilities, green bars show the CP of the historical data and yellow bars show
the CP of prediction. In part (c) and (d) blue bars show the mean CRPS of the historical data and yellow
bars show the mean CRPS of prediction. In part (e) and (f) box plots of MSE of the simulated well data
from each ensemble are shown, subscript h and p are used for history and prediction respectively. On each
box, the central red line indicates the median, and the bottom and top blue edges of the box indicate the
25th and 75th percentiles, respectively. The whiskers represent extreme data points without outliers, and
’+’ symbol represents outliers (more than 1.5 times of interquartile range).
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5 Conclusions457

In this paper, a generic procedure for history matching of imperfect/low-fidelity reservoir models458

has been developed where, we formulate the history matching problem as a joint inversion of459

reservoir model parameters and an error model parameters. We used principal component analysis460

to parameterize the error model, where the PCA basis function and prior statistics of the PCA basis461

weights were obtained using pairs of accurate and inaccurate models. We note that the accurate462

model is only used for defining the prior model-error statistics and during history matching only463

the imperfect/low-fidelity model is used.464

We evaluated the proposed history matching procedure on low-fidelity models with modeling465

errors due to aggressive grid coarsening/up-scaling of the permeability field obtained from two-point466

statistics and low-fidelity models where the main source of error is the grid coarsening/up-scaling467

of a channelized geology. Detailed comparison were performed against standard history matching468

(inversion while neglecting model error). The obtained results show that the estimated model469

parameters are biased using standard history matching procedure in the presence of large modeling470

errors. Consequently the calibrated low-fidelity model predictions are unreliable and generally471

inaccurate. Utilizing the developed joint inversion procedure results in significant improvements472

in terms of the quality of the estimated parameters, the matching capacity to historical data473

and prediction accuracy/reliability of the calibrated low-fidelity models. This is attributed to a474

reduction (and in some cases elimination) of the bias in the estimated posterior distribution of475

the model parameters when we included a flexible error-model terms in the inversion process.476

The numerical test cases were assessed using three forecasting metrics and it was observed that477

the consistency of ensemble-based history matching technique was also improved by including the478

error-model terms in the inversion procedure. We argue that this observed consistency might be479

due to the elimination of multiple biased peaks (modes) in the posterior distribution of the model480

parameters once the error modeling terms are included in the formulations.481

The proposed framework is generally flexible and could be applied to large scale models as482

the error-model formulation is I/O independent and the prior error-model parameters could be483

estimated before the history matching step. However, for general error-modeling an accurate model484
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may be missing or the sources of the modeling errors could be unknown. It is also possible that the485

fine/high-fidelity model (which is assumed to be perfect) is also biased. In these cases, the proposed486

methodology can only improve the parameter estimation and the prediction up to the fine/high-487

fidelity model accuracy. Addressing the effects of unknown modeling errors without relying on an488

accurate (high-fidelity)/approximate (low-fidelity) model pairs is the subject of our future work.489
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Appendix A: Reservoir properties493

Corey model in form of power law is used to generate relative permeability data for the reservoir494

model. Mathematically Corey model in form of power law is written as follows.495

krw = (Ŝw)nwk0w. (A.1)

kro = (1− Ŝw)nok0o . (A.2)

Ŝw =
Sw − Swc

1− Sor − Swc
. (A.3)

The notations of above equations are described in MRST manual Lie (2016). The fluid data496

and corey relative permeability model parameters used in the reservoir model are shown in the497

Table A.1.498
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Table A.1: Reservoir fluid data and Corey relative permeability model parameters

Fluid properties Corey relative permeability model parameters

water viscosity 0.5 cp Sor 0.2 k0o 1

oil viscosity 1 cp Swc 0.2 k0w 1

water density 1000 kg/m3 nw 2

oil density 700 kg/m3 no 2

Appendix B: Forecasting metrics499

B.1: Mean Square Error (MSE)500

The Mean Square Error (MSE) is obtained using,501

MSE =
1

Nd

Nd∑
n=1

(dn − dobs,n)2, (B.1)

where n is index of observation or model prediction at corresponding time.502

B.2: Coverage Probability (CP)503

CP =
NCI

Nt
. (B.2)

NCI = Number of samples, parameters or observations in Confidence Interval504

Nt = Total number of samples, parameters or observations505

B.3: Continuous Ranked Probability Score (CRPS)506

The details of CRPS for ensemble prediction system were described by Hans Herbach (2000) Hers-507

bach (2000). In this section summary of CRPS is explained.508

Mathematically CRPS can be defined as,509

CRPS =

∫ ∞
−∞

[p(x)−H(x− xobs)]2dx, (B.3)

where p(x) =
∫ x
−∞ ρ(y)dy Cumulative distribution of quantity of interest, H(x− xobs) = Heaviside510
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function (Step function) i.e.511

H(x) =


0 if x < 0

1 if x ≥ 0

For an ensemble system with Ne realizations, the CRPS can be written as follows,512

CRPS =

Ne∑
i=0

ci. (B.4)

ci = αip
2
i + βi(1− pi)2. (B.5)

where pi = P (x) = i/Ne, for xi < x < xi+1 (Cumulative distribution is a piece wise constant513

function).514

αi =



0 if xobs < xi

xobs − xi if xi < xobs < xi+1

xi+1 − xi if xobs > xi+1

xobs − xNe if xobs > xNe

0 if xobs < x1

βi =



xi+1 − xi if xobs < xi

xi+1 − xobs if xi < xobs < xi+1

0 if xobs > xi+1

0 if xobs > xNe

x1 − xobs if xobs < x1
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