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Abstract 

      Floating wave energy converters (WECs) are in-

stalled at locations with high wave energy and in rela-

tively shallow water where wave nonlinearity is ampli-

fied. As a result, wave impact loads constitute a major 

design consideration for wave energy converters and 

the violent impact of an extreme wave onto a wave 

energy converter can be the criterion that determines a 

number of design parameters. Numerical simulation of 

the coupled dynamic response of WEC and mooring in 

storm conditions and under extreme wave loading re-

mains a complex and difficult problem. Nevertheless, 

quantitative understanding of the wave impact is very 

important to the efficient performance and long time 

survivability of a wave energy converter.   

     A new fully nonlinear CFD technique is developed 

to assess the wave impacts and dynamic response on 

wave energy converters.  Wave breaking and overtop-

ping occur under extreme wave loading on offshore 

WECs.  Both the water and air that may be entrained 

when a wave breaks or overtops a structure should be 

modelled, and the interface between them defined with 

a high resolution free surface capturing technique. In 

this work, a Navier-Stokes equation model is used to 

simulate the hydrodynamics. A level set method with 

the global mass correction is developed to study wave 

breaking and overtopping, and the immersed boundary 

method is employed to capture the extreme wave load-

ing on offshore WECs.   

     Calculations have been made for the entry and exit 

of a cylinder, in which the hydrodynamic force on the 

cylinder during the first stage of the impact is obtained. 

The slamming coefficients of the cylinder entry with 

different entry velocities are calculated and agree well 

with experimental results. This problem is of impor-

tance in the design of various floating structures that 

experience worst case loading.  
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Nomenclature 

  i          = 1, 2, two dimensional geometrical descriptions 

  uj             = velocity 

  P         = pressure 

  xj             = Cartesian spatial coordinates 

  fi              = external body force field 
 τij        = viscous term 
  ρ,µ         = density and viscosity appropriate for the phase  

occupying the particular spatial location at a given 

instance of time. 

              = the first level set variable 

             = the second redistancing variable 

 t             = pseudo time for the variable  

            = the third mass conservation variable 

 t             = pseudo-time for the variable  

 Mcor       = dimensionless mass correction factor 
 Mo           = the original mass 

 Mt            = the mass of the reference phase at time t 
( )H     = a smoothed Heaviside function 

 ε               = a factor of the grid spacing 
ψ             = immersed boundary 

uψ              = Dirichlet boundary condition of the immersed   
boundary 

 uf             = value of the forcing point 

 uv             = value of the virtual point 

t             = the time step 

RHSk
i    = convective, viscous and body force of the govern-

ing equations 

 f             = the force per unit area on a surface element with an 

outward normal n  

  nj           = the direction cosine of n  in  xj direction 

  r             = radius of the circle 

  t ,T       = time, the dimensionless time      

 γ,Fr       = the dimensionless quantity 

 C             = slamming coefficient 

 F             = the total vertical hydrodynamic force 

 V             = entry or exit velocity 
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1 Introduction 

    Floating wave energy converters (WECs) are in-

stalled at locations with high wave energy and in rela-

tively shallow water where wave nonlinearity is ampli-

fied. As a result, the continuous impact and slamming 

of waves constitute a major design consideration for 

wave energy converters and the violent impact and 

slamming of an extreme wave onto a wave energy con-

verter can be the criterion that determines a number of 

design parameters of efficiency and survivability. Thus, 

quantitative understanding of the wave impact and in-

teraction between the waves and WECs is very impor-

tant to the efficient performance and long time surviv-

ability of a wave energy converter.  Furthermore many 

parameters such as geometry, equipment and location 

must be optimized at the design stage. The need for a 

numerical simulation tool appears not only during the 

pre-conception stage, by avoiding expensive model 

tests, but also in the production run of the power sta-

tion.  Here a level set immersed boundary model is 

developed to optimize design parameters of WECs and 

provide helpful performance predictions. 

     Many applications of interactions between a wave 

and structure use potential flow theory, which assumes 

the fluid is incompressible and inviscid. However, in 

some situations, such as extreme wave conditions, vis-

cous effects including flow separation and turbulence 

must be considered which means solving the full Na-

vier-Stokes equations. Also a high resolution surface 

capturing scheme needs to be included in order to 

simulate complex free surface changes such as wave 

breaking and overturning and a fluid-structure interac-

tion method needs to be incorporated to investigate the 

impacts of extreme waves on the structure.  

       Basically there are two strategies to handle a mov-

ing or deforming boundary problem with topological 

change.  They are body conforming moving grids [1, 2] 

and embedded fixed grids [3-5]. For the body conform-

ing moving grids, the grid can be efficiently deformed 

in an arbitrary Lagrangean-Eulerian (ALE) frame of 

reference to minimize distortion if a geometric varia-

tion is quite modest. Boundary conditions can be ap-

plied at the exact location of the rigid boundary. How-

ever, if the change of topology is very complex, it will 

be very difficult and time consuming to regenerate the 

mesh. Also difficulties arise in the form of grid skew-

ness and additional numerical dissipation may be a 

consequence of the redistribution of the variables in the 

vicinity of the boundary.  

     An alternative to body conforming moving grids is 

embedded fixed grids where the boundaries do not con-

form to the grid and the governing equations are usu-

ally discretized on fixed Cartesian grids. There are two 

major classes based on the specific treatment of the 

boundary cells; (1) Cartesian cut cell methods [3] and 

(2) Immersed boundary methods [4-5]. Cartesian cut 

cell methods cuts solid bodies out of a background Car-

tesian mesh and their boundaries are represented by 

different types of cut cells. It has the potential to sig-

nificantly simplify and automate the difficulty of mesh 

generation. However, there are still a number of disad-

vantages inherent in the use of this method. Arbitrarily 

small cells arising near solid boundaries due to the Car-

tesian mesh intersecting a solid body can restrict the 

stability and reduce the efficiency of the Cartesian 

solvers [3]. 

      An immersed boundary with arbitrary shape can be 

modelled on a fixed grid by an external force field such 

that a desired velocity distribution can be assigned over 

a boundary. The main advantage of this method is that 

the external force filed can be prescribed on a fixed 

mesh so that the accuracy and efficiency of the solution 

procedure on simple grids are maintained. 

       In this work, the finite volume method is used to 

discretize Navier-Stokes equations with the two step 

projection method on a staggered grid. The free surface 

is solved on a fixed grid in which the free surface is 

captured by the zero level set. A global mass correction 

scheme in a novel combination with third order essen-

tially non-oscillatory schemes and a five stage Runge-

Kutta method is used to accomplish the advection of 

the level set function and re-distancing [6]. The im-

mersed boundary method is used to simulate water exit 

and entry of a cylinder. This problem is of importance 

in the design of floating structures that experience ex-

treme wave loading.  

 

2 Governing equations 

      Governing equations for an incompressible fluid 

flow are the mass conservation equation and the Na-

vier-Stokes momentum conservation equations written 

as 
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ij  is the viscous term given by 
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    The evolution of the level-set function is governed 

by 
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      A redistancing function is performed by solving for 

  given by Eq. (5):  
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    The initial condition is ( ,0) ( )x x 
 

 and  s   

is the smoothed sign function defined as 
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    The steady state solution to ''  is obtained using 

Eq. (7): 

corM
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                                                      (7)                                                                                                                       

    A dimensionless mass correction term is introduced 

to ensure the mass conservation, written as 
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     A smoothed Heaviside function is defined.  
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    Using the smoothed Heaviside function, these prop-

erties are calculated using  

1 2(1 )H H                                                 (10)                 

      A 2D immersed boundary ψ  coincides with a Car-

tesian grid node (i, j) on which a Dirichlet boundary 

condition uψ
 needs to be enforced at this point. If  iju  

is an approximation to the solution of the governing 

equations, the discrete form can be written as 
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      The external force function that will enforce the 

above boundary condition can be obtained from 

Eq.(12) by setting 1k
iju u  ψ  and solving for 
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    The force f per unit area on a surface element with 

an outward normal n can be written as 
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 can be computed using the stencil and interpo-

lation coefficients that were used to construct the veloc-

ity field near the interface. 

 

3 Numerical Method 

     The finite volume method is used to discretize the 

Navier-Stokes equations on a non-uniform staggered 

Cartesian grid. A two step projection method is em-

ployed for velocity-pressure coupling, in which a pres-

sure Poisson equation is solved to enforce the continu-

ity equation. The QUICK scheme with deferred correc-

tion is used for the convective terms and central differ-

encing is used for the viscous terms. Generalized 

minimum residual (GMRES) method with incomplete 

LU factorization for preconditioning [7] is applied to 

solve linear systems of the form: Ax=b. 

      Mass conservation is improved significantly by 

applying a global mass correction scheme, in a novel 

combination with third order essentially non-oscillatory 

schemes and a five stage Runge-Kutta method, to ac-

complish the advection and re-distancing of the level 

set function.  

      For the immersed boundary treatment, the grid-

interface relation with an immersed boundary is estab-

lished. Thus all Cartesian grids can be classified into 

three categories as shown in Fig. 1: (1) forcing points, 

which are grid points in the solid phase that have one or 

more neighbouring points in the fluid phase; (2) fluid 

points, which are all the points in the fluid phase; (3) 

solid points, which are all the remaining points in the 

solid phase. It is proposed to compute fu  by extrapo-

lating along the well-defined line normal to the bound-

ary as shown in Fig. 1. The value of the virtual point 

vu  can be interpolated from the surrounding grid 

points.  

 

4 Model and Results  

4.1Water exit of a cylinder 

      The problem of water exit of a cylinder is very sig-

nificant in variant practical applications. Understanding 

such complicated physical processes, including break-

ing up of the free surface, body-fluid interaction and 

free surface-vortex interaction is useful to understand 

the impacts of the wave energy converters under the 

extreme waves. The studies of water exit of a horizon-

tal circular cylinder can be traced back to Greenhow 

and Lin [8] who conducted experiments to show the 

free surface deformation in the entry and exit proc-

esses.  

 

forcing point

virtual point

solid point

marker point

fluid point

1

4

2

3

perpendicular point

 

Figure 1:  Grid classification and interpolation for fu  

      A circle of radius r = 1 m is placed in calm water in 

a rectangular tank, width = 8 m, height = 10 m and the 

distance of its centre to the free surface is d = 1.25m. 

The water has dynamic viscosity 1 × 10
-3

 kg/m/s and 

fu

 

vu
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the air 1.8×10
-5

  kg/m/s, the density of water is 1000 

kg/m3 and air 1 kg/m3. The cylinder is given a con-

stant upward velocity, V = 0.39 m/s. Thus the dimen-

sionless parameters are γ = r/d = 0.8, 

/rF V gr =0.39 and T = Vt/d.  The comparison of 

free surface profiles between the present numerical 

method and those presented by Greenhow and Moyo 

[9] are shown in Fig. 2 at two non-dimensional time 

instants, T = 0.4 and 0.6. Good agreement can be seen.  

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Comparison of free surface profiles with boundary 

element simulation [7] and the shading represents vorticity 

strength (-10~10 with intervals 0.4) at two non-dimensional 

time instants (a) T = 0.4 ; (b) T = 0.6. 

 

         

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3: Water exit of a cylinder. The free surface position 

(solid black line) and shading represents vorticity strength (-

20~20 with intervals 0.2) at non-dimensional time (a) T = 0.8; 

(b) T = 1.6; (c) T = 2.4; (d) T = 3.2. 

     Snapshots of the interaction between the cylinder 

and interface are shown in Fig. 3 at exit velocity V =    

1m/s. As the cylinder moves upward, two vortices are 

formed along the left and right sides of the cylinder.  

As the cylinder rises further, the two vortices interact 

with the free surface. Waves are generated in the exit 

process and propagate towards both sides of the cylin-

der. Breaking can occur during exit due to strongly 

negative pressures arising on the cylinder surface.  

 

 4.2 Water entry of a cylinder 

     Water entry/impact problems have been studied by 

many researchers [8-13]. The same parameters to the 

water exit of a cylinder are used. The cylinder starts its 

downward motion from a height of d=1.25m to the 

calm water surface with a constant velocity V = -1m/s. 

A series of snapshots are shown in Fig. 4. As the cylin-

der impinges on the free surface, there are jets gener-

ated on both sides of the cylinder. When the cylinder 

moves downward, a large amount of water is pulled 

downward and surface depression persists. As the cyl-

inder is fully submerged in the water, there is a water 

jet in the centre of the water surface. The results are 

very close to those reported by Lin [10]. The air en-

trainment and water jet are captured very well due to 

the two phase model used here.      The slamming coef-

ficient is given by  

2

F
C

rV
                                                               (14)                                                                               

(a) (b) 

(d) 

(a) 

(b) 

(c) 
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      Based on the potential flow theory, the hydrody-

namic slamming force is given by 

 22 2
2

F V Vr V t

                                             (15)                                                    

 

     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Water entry of a cylinder. The free surface position 

(solid black line) and shading represents vorticity strength (-

5~5 with intervals 0.01) at non dimensional time (a) T = 0.9; 

(b) T = 1.8; (c) T = 2.7; (d) T = 3.6. 

 

     Fig. 5 shows the comparison of the slamming coef-

ficient at different entry velocity versus the penetration 

depth between theoretical results [11], experimental 

results of Campbell and Weynberg [12], numerical 

results obtained using ComFlow [13] and present 

model results.  

     The comparison between theory, the experiments of 

Campbell and Weynberg, ComFlow numerical simula-

tion and the present simulations is reasonably good. At 

the beginning, the initial impact reaches 4.0 and later it 

is around 1.6 for entry velocity V = 1 m/s and 2 m/s. 

The results agree with ComFlow model very well. The 

slamming coefficient predicted by the presented model 

does not reach the initial peak value measured in the 

experiment, but the variation in slamming coefficient 

with penetration depth agrees better in the later stage of 

the impact with the experiment. The slamming coeffi-

cients oscillate along the penetration depth at the initial 

impacting stages, which is due to the lack of stability of 

the pressure distribution near body boundary in this 

method.  

 

Figure 5. Comparison of slamming coefficient between the-

ory [11], experiment [12], numerical simulation by Comflow 

[13] and present model. 

(a) 

(b) 

(c) 

(d) 
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5 Conclusions  

      A level set immersed boundary method is shown to 

be a valuable tool for investigating complex cases of 

fluid-structure interaction and wave impacts. Surface 

elevation changes with structure are predicted well. The 

slamming coefficient predicted by the present model 

agrees well with the experiment and previous numeri-

cal simulations. We are currently extending the method 

to simulate the coupled dynamic response of the wave 

energy converter and mooring system under extreme 

wave loading. The dynamic response of the mooring 

lines is strongly coupled with the hydrodynamic motion 

of the wave energy converter and may affect its per-

formance.  
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