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Abstract

We study initial boundary value problems for linear evolution partial differential equations

(PDEs) posed on a time-dependent interval l1(t) < x < l2(t), 0 < t < T , where l1(t) and l2(t) are

given, real, differentiable functions, and T is an arbitrary constant. For such problems, we show

how to characterise the unknown boundary values in terms of the given initial and boundary

conditions. As illustrative examples we consider the heat equation and the linear Schrödinger

equation. In the first case, the unknown Neumann boundary values are expressed in terms of the

Dirichlet boundary values and of the initial value through the unique solution of a system of two

linear integral equations with explicit kernels. In the second case, a similar result can only be

proved but only for a more restrictive class of boundary curves.
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1 Introduction

We study linear evolution PDEs posed on a time-dependent interval. Specifically, we consider linear

evolution PDEs on a t-dependent domain Ω(t) of the form

Ω(t) = {(x, s) : l1(s) < x < l2(s), 0 < s < t} ⊂ R2 (1.1)

where {lj(t)}21 are given, real, continuously differentiable functions, such that l1(s) < l2(s) for all

s > 0 and l1(0) = 0, l2(0) = L ≥ 0.

We first present some results for a general linear evolution PDE, and then concentrate on two

illustrative examples, namely the heat equation and the linear Schrödinger (LS) equation:

(heat) qt − qxx = 0, (1.2)

(LS) iqt + qxx = 0. (1.3)

For a given constant T > 0, we consider the above PDEs in the domain Ω(T ) and assume that

the following initial and Dirichlet boundary conditions are prescribed:

q(x, 0) = q0(x) ∈ C1[0, L]), 0 < x < L, (1.4)

q(l1(t), t) = f0(t) ∈ C1[0, T ], q(l2(t), t) = g0(t) ∈ C1[0, T ], 0 < t < T. (1.5)

We will develop our analysis in this general case, but for the particular example of the LS equation,

we will need to restrict the class of boundary functions l1(t), l2(t).

To obtain an effective representation of the solution q(x, t), for t < T , one needs to determine

the unknown Neumann boundary values {qx(lj(t), t)}21, in terms of the given initial and Dirichlet

boundary data {q0(x), f0(t), g0(t)}, i.e. to characterise the so-called Dirichlet to Neumann map.

The main result of this paper is the characterisation of the Dirichlet to Neumann map for equations

(1.2) and (1.3) through the unique solution of a system of two linear Volterra integral equations.

The results presented here provide a generalization of the results of [4] (see also [5], [6] and [7]),

where the analogous problem formulated on l(t) < x < ∞ was analysed. There are two important

differences between that case and the results presented here. Firstly, we must characterise two, rather

than one, unknown boundary value, and hence even in the case of second order linear equations the

solution is given in terms of the solution of a system of Volterra linear integral equations. Secondly,

the kernel of the integral equations that characterise the unknown Neumann boundary value may be

strongly singular. Hence to obtain a rigorous existence result this kernel must be regularised.

The main results of this paper for the two equations (1.2) and (1.3) are Theorem 1 and Theorem

2, which use the following formal representation results:
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Proposition 1 (Heat equation) Let q(x, t) be the solution of the heat equation (1.2) satisfying the

initial and Dirichlet boundary conditions (1.4) and (1.5). Denote by f1(t) and g1(t) the unknown

Neumann boundary values qx(x, t) evaluated at x = l1(t) and at x = l2(t):

f1(t) = qx(l1(t), t), g1(t) = qx(l2(t), t), 0 < t < T. (1.6)

The functions f1(t) and g1(t) can be expressed in terms of the given initial and boundary data as the

solution of the following system of coupled linear integral equations:

πf1(t) = N1(t) +

∫ t

0
K11(t, s)f1(s)ds−

∫ t

0
K12(t, s)g1(s)ds, 0 < t < T, (1.7a)

πg1(t) = N2(t)−
∫ t

0
K22(t, s)g1(s)ds+

∫ t

0
K21(t, s)f1(s)ds, 0 < t < T, (1.7b)

where the known functions Nj(t), j = 1, 2, are given by

Nj(t) =
√
π

{
1√
t

∫ L

0
e−

(x−lj(t))
2

4t q′0(x)dx−
∫ t

0

[e− (lj(t)−l1(s))
2

4(t−s)

√
t− s

f ′0(s)− e
−

(lj(t)−l2(s))
2

4(t−s)

√
t− s

g′0(s)
]
ds

}
, (1.8)

and the kernels Kjm(t, s), j,m = 1, 2, are given by

Kjm(t, s) =

√
π

2

lj(t)− lm(s)

t− s
e
−

(lj(t)−lm(s))2

4(t−s)

√
t− s

, 0 < s < t < T, j = 1, 2. (1.9)

Proposition 2 (Linear Schrödinger equation) Let q(x, t) be the solution of the linear Schrödinger

equation (1.3) satisfying the initial and Dirichlet boundary conditions (1.4) and (1.5). Let f1(t) and

g1(t) denote the unknown Neumann boundary values as given in expression (1.6). The unknown

boundary values f1(t) and g1(t) can be expressed in terms of the given initial and boundary data as

the solution of the following system of coupled linear integral equations:

πf1(t) = N1(t) +

∫ t

0
K11(t, s)f1(s)ds− lim

ε→0

∫ t

0
K12(t, s, ε)g1(s)ds, 0 < t < T, (1.10a)

πg1(t) = N2(t) + lim
ε→0

∫ t

0
K21(t, s, ε)f1(s)ds−

∫ t

0
K22(t, s)g1(s)ds, 0 < t < T, (1.10b)

where the functions Nj(t), j = 1, 2, are given by

Nj(t) =
(1− i)

√
2π

2

{
1√
t

∫ L

0
e

i(x−lj(t))
2

4t q′0(x)dx−
∫ t

0

[e i(lj(t)−l1(s))
2

4(t−s)

√
t− s

f ′0(s)− e
i(lj(t)−l2(s))

2

4(t−s)

√
t− s

g′0(s)
]
ds

}
.

(1.11)
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The singular integral kernels Kjj(t, s) are given by

Kjj(t, s) =
(1− i)

√
2π

4

lj(t)− lj(s)
t− s

e
i(lj(t)−lj(s))

2

4(t−s)

√
t− s

, ε > 0, 0 < s < t < T, (1.12)

and the integral kernels Kjm(t, s, ε), j,m = 1, 2, j 6= m are given by

Kjm(t, s, ε) =
(1− i)

√
2π

4

lj(t)− lm(s)

t− s− iε
e

i(lj(t)−lm(s))2

4(t−s−iε)

√
t− s− iε

, ε > 0, 0 < s < t < T. (1.13)

The representations above are formal, and it is not immediately clear that they actually define

any function, let alone the boundary values of the given problem. In particular, in Proposition 2, we

need to guarantee that the limits as ε exist, and that the Volterra integral equations are well posed

and admit a unique solution.

Our main result for the heat equation is obtained by invoking classical theory for Volterra integral

equations.

Theorem 1 For given functions q0(x), f0(t) and g0(t) as in (1.4)-(1.5), the system of Volterra

integral equations (1.7) admits a unique solution (f1(t), g1(t)) ∈ C1[0, T )×C1[0, T ).

For the LS equation, we need to prove that the limits as ε → 0 appearing (1.10) yield a regular

kernel, and only then it will be possible to invoke classical theory.

Theorem 2 Assume the the boundary functions l1(t), l2(t) are twice differentiable in [0, T ], and

satisfy

l′1(t) < 0, l′′1(t) ≥ 0; l′2(t) > 0, l′′2(t) ≤ 0. (1.14)

For given functions q0(x), f0(t) and g0(t) as in (1.4)-(1.5), the limit system (1.10) is a system of

Volterra integral equations (1.10) which admits a unique solution (f1(t), g1(t)) ∈ C1[0, T )×C1[0, T ).

The paper is organized as follows. In section 2, we derive formally a representation of q(x, t) for

a general evolution PDE formulated in Ω(T ), as well as the associated global relation. In section 3,

we derive the formal representations of Propositions 1 and 2. Finally, in section 4 we prove Theorem

1 and Theorem 2. In the case of the linear Schrödinger equation, we also remark on the important

special case of linear boundaries.

2 A formal integral representation for a general evolution PDE

We consider the general linear evolution PDE(
∂t + i

∑n
j=1 αj(−i∂x)j

)
q(x, t) = 0, (x, t) ∈ Ω(T ), (2.1)
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where αn 6= 0 and all αj ’s are constants, and the domain Ω(T ) is described by (1.1).

Let

ω(λ) =
n∑
j=1

αjλ
j , (2.2)

Q(x, t, λ) = −
n∑
j=1

αj
(
(−i∂x)j−1 + λ(−i∂x)j−2 + · · ·+ λj−1

)
q(x, t). (2.3)

The PDE (2.1) can be written in the following divergence form:(
e−iλx+iω(λ)tq(x, t)

)
t

=
(
e−iλx+iω(λ)tQ(x, t, λ)

)
x
. (2.4)

Using the two-dimensional Green’s theorem in the domain Ω(t), we obtain∮
∂Ω(t)

(
e−iλx+iω(λ)sq(x, s)dx+ e−iλx+iω(λ)sQ(x, s, λ)ds

)
= 0, 0 < t < T, (2.5)

where ∂Ω(t) denotes the oriented boundary of the domain Ω(t), such that Ω(t) lies to the left-hand

side of the increasing direction. Equation (2.5) yields the relation∫ L

0
e−iλxq(x, 0)dx− eiω(λ)t

∫ l2(t)

l1(t)
e−iλxq(x, t)dx

−
∫ t

0
e−iλl1(s)+iω(λ)s

(
q(l1(s), s)l′1(s) +Q(l1(s), s, λ)

)
ds

+

∫ t

0
e−iλl2(s)+iω(λ)s

(
q(l2(s), s)l′2(s) +Q(l2(s), s, λ)

)
ds = 0, λ ∈ C, 0 < t < T.

(2.6)

Let

q̂0(λ) =

∫ L

0
e−iλxq(x, 0)dx, (2.7a)

q̂(t, λ) =

∫ l2(t)

l1(t)
e−iλxq(x, t)dx, (2.7b)

Q̂1(t, λ) =

∫ t

0
e−iλl1(s)+iω(λ)s

(
q(l1(s), s)l′1(s) +Q(l1(s), s, λ)

)
ds, (2.7c)

Q̂2(t, λ) =

∫ t

0
e−iλl2(s)+iω(λ)s

(
q(l2(s), s)l′2(s) +Q(l2(s), s, λ)

)
ds. (2.7d)

Equation (2.6) can be rewritten in the form of the following global relation:

q̂(t, λ) = e−iω(λ)tq̂0(λ)− e−iω(λ)tQ̂1(t, λ) + e−iω(λ)tQ̂2(t, λ), λ ∈ C, 0 < t < T. (2.8)

Equation (2.8) can be viewed either as the formal representation of the solution, or as the starting

point for determining the unknown boundary values. Indeed, the term q̂(t, λ) in (2.8) is the Fourier
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transform of q(x, t) on the finite interval l1(t) < x < l2(t). Inverting this Fourier transform for q(x, t),

we obtain the following formal representation of the solution:

q(x, t) =
1

2π

∫ ∞
−∞

eiλx−iω(λ)t
[
q̂0(λ)− Q̂1(t, λ) + Q̂2(t, λ)

]
dλ, (x, t) ∈ Ω(T ). (2.9)

Assuming that q(x, t) = 0 for x < l1(t) and for x > l2(t), equation (2.9) is also formally valid at

x = l1(t) and at x = l2(t), which in turn yields

q(l1(t), t) =
1

π

∫ ∞
−∞

eiλl1(t)−iω(λ)t
[
q̂0(λ)− Q̂1(t, λ) + Q̂2(t, λ)

]
dλ, (2.10)

and

q(l2(t), t) =
1

π

∫ ∞
−∞

eiλl2(t)−iω(λ)t
[
q̂0(λ)− Q̂1(t, λ) + Q̂2(t, λ)

]
dλ. (2.11)

We note that in the paper [9] it is shown that if there exist sufficiently regular functions

{q0(x), f0(t), g0(t), f1(t), g1(t)}

which satisfy the global relation, then there exists a unique regular solution q(x, t) of the PDE such

that

q(x, 0) = q0(x), q(l1(t), t) = f0(t), q(l2(t), t) = g0(t),

∂xq(l1(t), t) = f1(t), ∂xq(l2(t), t) = g1(t).
(2.12)

Therefore if the Dirichlet to Neumann map is constructed starting from the assumption that the

global relation holds, its solution does indeed provide the unique solution of the boundary value

problem.

3 The integral equations - formal derivation

3.1 The heat equation

We consider the heat equation (1.2) formulated in the time-dependent domain (1.1), with the given

initial value (1.4) and Dirichlet boundary conditions (1.5). The functions f1(t) and g1(t), as in (1.6),

denote the unknown Neumann boundary values at x = l1(t) and x = l2(t) respectively.

Our aim is to determine the unknown boundary values f1(t) and g1(t) in terms of the given

functions q0(x), f0(t) and g0(t), hence to characterise the Dirichlet to Neumann map. In order to

determine this map, we solve the global relation for the unknown boundary values, f1(t) and g1(t).

In the case of heat equation, in the notation of the previous section we have

ω(λ) = −iλ2, Q(x, t) = qx(x, t) + iλq(x, t). (3.1)
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Then the global relation (2.8) becomes

q̂0(λ)− eλ2tq̂(t, λ)−
∫ t

0
e−iλl1(s)+λ2s

[(
iλ+ l′1(s)

)
q(l1(s), s) + qx(l1(s), s)

]
ds

+

∫ t

0
e−iλl2(s)+λ2s

[(
iλ+ l′2(s)

)
q(l2(s), s) + qx(l2(s), s)

]
ds = 0, λ ∈ C, 0 < t < T,

(3.2)

where q̂0(λ) and q̂(t, λ) are defined by (2.7a) and (2.7b).

In order to derive a representation of qx(x, t), we follow [4] and first multiply (3.2) by iλ. For the

terms involving the unknown boundary functions, integration by parts yields the following identity,

with j = 1, 2:∫ t

0
e−iλlj(s)+λ2s

(
−λ2+iλl′j(s)

)
q(lj(s), s)ds = q(0, 0)−eλ2t−iλlj(t)q(lj(t), t)+

∫ t

0
eλ

2s−iλlj(s)q′(lj(s), s)ds.

(3.3)

Using the formulae (3.3), equation (3.2) can be written as

e−iλl2(t)q(l2(t), t)− e−iλl1(t)q(l1(t), t) + iλ

∫ l2(t)

l1(t)
e−iλxq(x, t)dx

=e−λ
2t
(
iλq̂0(λ)− q(0, 0) + e−iλLq(L, 0)

)
− e−λ2t

∫ t

0
e−iλl1(s)+λ2s

[
q′(l1(s), s) + iλqx(l1(s), s)

]
ds

+ e−λ
2t

∫ t

0
e−iλl2(s)+λ2s

[
q′(l2(s), s) + iλqx(l2(s), s)

]
ds.

(3.4)

Using the definitions (1.4), (1.5), (1.6), and the identities

e−iλl2(t)q(l2(t), t)− e−iλl1(t)q(l1(t), t) + iλ

∫ l2(t)

l1(t)
e−iλxq(x, t)dx =

∫ l2(t)

l1(t)
e−iλxqx(x, t)dx, (3.5a)

iλq̂0(λ)− q(0, 0) + e−iλLq(L, 0) =

∫ L

0
e−iλxq′0(x)dx, (3.5b)

equation (3.4) can be written in the form∫ l2(t)

l1(t)
e−iλxqx(x, t)dx = e−λ

2t

∫ L

0
e−iλxq′0(x)dx− e−λ2t

∫ t

0
e−iλl1(s)+λ2s

(
f ′0(s) + iλf1(s)

)
ds

+ e−λ
2t

∫ t

0
e−iλl2(s)+λ2s

(
g′0(s) + iλg1(s)

)
ds.

(3.6)

The term on the left hand side of (3.6) is the Fourier transform of qx(x, t) on the finite interval

l1(t) < x < l2(t). Inverting this Fourier transform, we obtain

qx(x, t) =
1

2π

∫ +∞

−∞
eiλx−λ

2t
[ ∫ L

0
e−iλξq′0(ξ)dξ −

∫ t

0
e−iλl1(s)+λ2s

(
f ′0(s) + iλf1(s)

)
ds

+

∫ t

0
e−iλl2(s)+λ2s

(
g′0(s) + iλg1(s)

)
ds
]
dλ, (x, t) ∈ Ω(T ).

(3.7)
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Assuming that qx(x, t) = 0 for x < l1(t) and for x > l2(t), equation (3.7) is also formally valid at

x = l1(t) and at x = l2(t). Hence, we obtain

f1(t) =
1

π

∫ +∞

−∞
eiλl1(t)−λ2t

[ ∫ L

0
e−iλξq′0(ξ)dξ −

∫ t

0
e−iλl1(s)+λ2s

(
f ′0(s) + iλf1(s)

)
ds

+

∫ t

0
e−iλl2(s)+λ2s

(
g′0(s) + iλg1(s)

)
ds
]
dλ,

(3.8)

and

g1(t) =
1

π

∫ +∞

−∞
eiλl2(t)−λ2t

[ ∫ L

0
e−iλξq′0(ξ)dξ −

∫ t

0
e−iλl1(s)+λ2s

(
f ′0(s) + iλf1(s)

)
ds

+

∫ t

0
e−iλl2(s)+λ2s

(
g′0(s) + iλg1(s)

)
ds
]
dλ.

(3.9)

Let

Ej(λ, t, x) = eiλ(lj(t)−x)−λ2t, j = 1, 2, (3.10a)

Ejm(λ, t, s) = eiλ(lj(t)−lm(s))−λ2(t−s), j,m = 1, 2. (3.10b)

We rewrite equations (3.8) and (3.9) as

πf1(t) = N1(t)− i
∫ ∞
−∞

λ

[∫ t

0
(E11(λ, t, s)f1(s)− E12(λ, t, s)g1(s)) ds

]
dλ, (3.11a)

πg1(t) = N2(t)− i
∫ ∞
−∞

λ

[∫ t

0
(E21(λ, t, s)f1(s)− E22(λ, t, s)g1(s)) ds

]
dλ, (3.11b)

where

Nj(t) =

∫ ∞
−∞

[∫ L

0
Ej(λ, t, x)q′0(x)dx−

∫ t

0

(
Ej1(λ, t, s)f ′0(s)− Ej2(λ, t, s)g′0(s)

)
ds

]
dλ, j = 1, 2. (3.12)

Claim 1 The functions Nj(t), j = 1, 2, are given by (1.8).

Interchanging the order of integration in (3.12), we find

Nj(t) =

∫ L

0

(∫ ∞
−∞

Ej(λ, t, x)dλ

)
q′0(x)dx

−
∫ t

0

[(∫ ∞
−∞

Ej1(λ, t, s)dλ

)
f ′0(s)−

(∫ ∞
−∞

Ej2(λ, t, s)dλ

)
g′0(s)

]
ds, j = 1, 2.

(3.13)

The λ-integrals appearing in (3.13) can be evaluated explicitly:∫ ∞
−∞

Ej(λ, t, x)dλ =

√
π√
t
e−

(x−lj(t))
2

4t , j = 1, 2, (3.14a)∫ ∞
−∞

Ejm(λ, t, s)dλ =

√
π√

t− s
e
−

(lj(t)−lm(s))2

4(t−s) , j,m = 1, 2. (3.14b)

Substituting the above expressions into (3.13), we immediately obtain the formulae (1.8).
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Claim 2 For a given function h(s) ∈ C[0, T ], the following identities hold:

−i
∫ ∞
−∞

λ

∫ t

0
Ejj(λ, t, s)h(s)dsdλ =

∫ t

0
Kjj(t, s)h(s)ds, (3.15)

where Kjj(t, s), j = 1, 2, as given by (1.9), is a weakly singular kernel;

−i
∫ ∞
−∞

λ

∫ t

0
Ejm(λ, t, s)h(s)dsdλ =

∫ t

0
Kjm(t, s)h(s)ds, (3.16)

where Kjm(t, s) are the non-singular integral kernels given by (1.9) when j 6= m.

To show both claims, we formally interchange the order of double integration in the left hand

side of (3.15) and (3.16). We will justify the validity of this procedure by showing that all integrands

are integrable.

This yields

−i
∫ ∞
−∞

λ

∫ t

0
Ejm(λ, t, s)h(s)ds dλ =

∫ ∞
−∞

λ

∫ t

0
−ie−λ2(t−s)+iλ(lj(t)−lm(s))h(s)ds dλ

=

∫ t

0
Kjm(t, s)h(s)ds,

(3.17)

where

Kjm(t, s) = −i
∫ ∞
−∞

λe−λ
2(t−s)+iλ(lj(t)−lm(s))dλ. (3.18)

The integral (3.18) can be computed explicitly. Indeed, we have

Kjm(t, s) =
i

2(t− s)

∫ ∞
−∞

(
∂

∂λ
e−λ

2(t−s+ε)+iλ(lj(t)−lm(s))

)
dλ

+
lj(t)− lm(s)

2(t− s)

∫ ∞
−∞

e−λ
2(t−s)+iλ(lj(t)−lm(s))dλ, j,m = 1, 2.

(3.19)

The first integral of the right hand side of the above equation vanishes, whereas the second integral

can be computed explicitly (see (3.14b)). Hence

Kjm(ε, t, s) =
lj(t)− lm(s)

2(t− s)

√
π√

t− s
e
−

(lj(t)−lm(s))2

4(t−s) , j,m = 1, 2, (3.20)

which is (1.9).

Collecting the results of these claims, equations (3.12) yield the system (1.7).
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3.2 The linear Schrödinger equation

We consider the linear Schrödinger equation (1.3). A for the case of the heat equation considered

in the previous section, to determine the unknown Neumann boundary values f1(t) and g1(t) given

in (1.6) in terms of the given functions q0(x), f0(t) and g0(t) we solve the global relation for the

unknown boundary values f1(t) and g1(t).

In the case of linear Schrödinger equation, we have

ω(λ) = λ2, Q(x, t) = iqx(x, t)− λq(x, t). (3.21)

Hence the global relation (2.8) becomes

q̂0(λ)− eiλ2tq̂(t, λ)−
∫ t

0
e−iλl1(s)+iλ2s

[(
l′1(s)− λ

)
q(l1(s), s) + iqx(l1(s), s)

]
ds

+

∫ t

0
e−iλl2(s)+iλ2s

[(
l′2(s)− λ

)
q(l2(s), s) + iqx(l2(s), s)

]
ds = 0, λ ∈ C, 0 < t < T.

(3.22)

In analogy to the case of heat equation, in order to obtain a representation of qx(x, t), we multiply

(3.22) by iλ and then employ integration by parts for the terms involving the known functions

q(l1(t), t) and q(l2(t), t). In this way, equation (3.22) yields the equation

e−iλl2(t)q(l2(t), t)− e−iλl1(t)q(l1(t), t) + iλ

∫ l2(t)

l1(t)
e−iλxq(x, t)dx

=e−iλ
2t
(
iλq̂0(λ)− q(0, 0) + e−iλLq(L, 0)

)
− e−iλ2t

∫ t

0
e−iλl1(s)+iλ2s

[
q′(l1(s), s)− λqx(l1(s), s)

]
ds

+ e−iλ
2t

∫ t

0
e−iλl2(s)+iλ2s

[
q′(l2(s), s)− λqx(l2(s), s)

]
ds.

(3.23)

Employing the identities (3.5), equation (3.23) can be written in the form

∫ l2(t)

l1(t)
e−iλxqx(x, t)dx

=e−iλ
2t

∫ L

0
e−iλξq′0(ξ)dξ − e−iλ2t

∫ t

0
e−iλl1(s)+iλ2s

[
q′(l1(s), s)− λqx(l1(s), s)

]
ds

+ e−iλ
2t

∫ t

0
e−iλl2(s)+iλ2s

[
q′(l2(s), s)− λqx(l2(s), s)

]
ds.

(3.24)

The term on the left hand side of (3.24) is the Fourier transform of qx(x, t). Inverting this Fourier
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transform of qx(x, t) and evaluating it at x = lj(t), j = 1, 2, we arrive at

qx(lj(t), t)

=
1

π

∫ ∞
−∞

eiλlj(t)

[
e−iλ

2t

∫ L

0
e−iλxq′0(x)dx− e−iλ2t

∫ t

0
e−iλl1(s)+iλ2s

(
q′(l1(s), s)− λqx(l1(s), s)

)
ds

+ e−iλ
2t

∫ t

0
e−iλl2(s)+iλ2s

(
q′(l2(s), s)− λqx(l2(s), s)

)
ds

]
dλ, j = 1, 2.

(3.25)

Setting

Ej(λ, t, x) = eiλ(lj(t)−x)−iλ2t, j = 1, 2, (3.26a)

Ejm(λ, t, s) = eiλ(lj(t)−lm(s))−iλ2(t−s), j,m = 1, 2, (3.26b)

and using (1.4), (1.5) and (1.6), we write equation (3.25) in the form

πf1(t) = N1(t) +

∫ ∞
−∞

λ

[∫ t

0
(E11(λ, t, s)f1(s)− E12(λ, t, s)g1(s)) ds

]
dλ, (3.27a)

πg1(t) = N2(t) +

∫ ∞
−∞

λ

[∫ t

0
(E21(λ, t, s)f1(s)− E22(λ, t, s)g1(s)) ds

]
dλ, (3.27b)

where, for j = 1, 2,

Nj(t) =

∫ ∞
−∞

[∫ L

0
Ej(λ, t, x)q′0(x)dx−

∫ t

0

(
Ej1(λ, t, x)f ′0(s)− Ej2(λ, t, x)g′0(s)

)
ds

]
dλ. (3.28)

We want to rewrite (3.27) in the form (1.10).

Claim 3 The functions Nj(t), j = 1, 2, are given by (1.11).

Interchanging the order of integration in (3.28), we find

Nj(t) =

∫ L

0

(∫ ∞
−∞
Ej(λ, t, x)dλ

)
q′0(x)dx

−
∫ t

0

[(∫ ∞
−∞
Ej1(λ, t, s)dλ

)
f ′0(s)−

(∫ ∞
−∞
Ej2(λ, t, s)dλ

)
g′0(s)

]
ds, j = 1, 2.

(3.29)

The λ-integrals appearing in (3.29) can be evaluated explicitly:∫ ∞
−∞
Ej(λ, t, x)dλ =

(1− i)
√

2π

2
√
t

e
i(x−lj(t))

2

4t , j = 1, 2, (3.30a)∫ ∞
−∞
Ejm(λ, t, s)dλ =

(1− i)
√

2π

2
√
t− s

e
i(lj(t)−lm(s))2

4(t−s) , j,m = 1, 2. (3.30b)

Substituting (3.30) into (3.29) we immediately obtain the formulae (1.11).
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Claim 4 For a given function h(s) ∈ C[0, T ], the following identities hold:∫ ∞
−∞

λ

∫ t

0
Ejj(λ, t, s)h(s)dsdλ =

∫ t

0
Kjj(t, s)h(s)ds, (3.31)

∫ ∞
−∞

λ

∫ t

0
Ejm(λ, t, s)h(s)dsdλ = lim

ε→0

∫ t

0
Kjm(t, s, ε)h(s)ds, (3.32)

where Kjj(t, s), Kjm(s, t, ε) j,m = 1, 2, are the integral kernels given by (1.12) and (1.13) respec-

tively.

If we interchange the order of double integration in the left hand side of (3.31), we obtain an

integrable functions of s. However, for the case j 6= m of (3.32), we obtain a function that is not

integrable with respect to s. Thus, before interchanging the order of the integration we must first

regularise the relevant λ-integral. Therefore, we write∫ ∞
−∞

∫ t

0
λEjm(λ, t, s)h(s)dsdλ =

∫ ∞
−∞

λ

∫ t

0
lim
ε→0+

e−ελ
2−iλ2(t−s)+iλ(lj(t)−l1(s))h(s)dsdλ

= lim
ε→0+

∫ ∞
−∞

λ

∫ t

0
e−ελ

2−iλ2(t−s)+iλ(lj(t)−l1(s))h(s)ds dλ,

(3.33)

where the last identity follows from the dominated convergence theorem, thanks to the exponential

decay of the term e−ελ
2
. Now we can interchange the order of integration, hence the expression in

(3.33) is equal to

lim
ε→0+

∫ t

0
Kjm(t, s, ε)h(s)ds, Kjm(t, s, ε) =

∫ ∞
−∞

λe−iλ
2(t−s−iε)+iλ(lj(t)−lm(s))dλ,

j,m = 1, 2, j 6= m. (3.34)

The λ-integral (3.34) can be evaluated explicitly. Indeed, the λ-derivative of the exponent of the

exponential appearing in (3.34) is given by the expression:

[−2iλ(t− s− iε) + i (lj(t)− lm(s))] e−iλ
2(t−s−iε)+iλ(lj(t)−lm(s)).

Hence, we can rewrite Kjm(t, s, ε) in the form

Kjm(t, s, ε) =
−1

2i(t− s− iε)

∫ ∞
−∞

(
∂

∂λ
e−iλ

2(t−s−iε)+iλ(lj(t)−lm(s))

)
dλ

+
lj(t)− lm(s)

2(t− s− iε)

∫ ∞
−∞

e−iλ
2(t−s−iε)+iλ(lj(t)−lm(s))dλ, j,m = 1, 2.

(3.35)

The first integral of the right hand side of the above equation vanishes, because of to the large λ

decay of the term e−λ
2ε, whereas the second integral can be computed explicitly (see (3.30b). This

yields the expression

Kjm(t, s, ε) =
lj(t)− lm(s)

2(t− s− iε)
(1− i)

√
2π

2
√
t− s− iε

e
i(lj(t)−lm(s))2

4(t−s−iε) , j,m = 1, 2, j 6= m. (3.36)
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In summary, using (3.33)-(3.35), we find∫ ∞
−∞

λEjm(λ, t, s)h(s)ds =
(1− i)

√
2π

4
lim
ε→0+

∫ t

0

lj(t)− lm(s)

(t− s− iε)3/2
e

i(lj(t)−lm(s))2

4(t−s−iε) h(s)ds, (3.37)

yielding the conclusion of Proposition 2.

4 Proof of the main theorems

We now sketch the step needed to prove that the representation derived in the previous section yield

Volterra integral equations that admit a unique solution. The only new ingredient in this section is

the analysis of the ε→ 0 limit of the integrals appearing in the representation given by Proposition

2.

After proving that these limits yield a well defined system of Volterra integral equations, possibly

weakly singular, the proof is analogous to the proof given in [4] for the problem formulated on

l(t) < x < ∞. We refer to these papers for details, and concentrate on showing that the integral

equations derived in the previous section are of a type that can be treated using classical results.

We note that for both the case of the heat equation and the linear Schrödinger equation, the case

that j = m yields a weakly singular kernel.

Indeed, in this case, the singularity at s = t due to the term 1
t−s is removable, as

lim
s→t

lj(t)− lj(s)
2(t− s)

=
1

2
l′j(t).

Hence the kernel Kjj has the weak, integrable singularity 1√
t−s .

However, if j 6= m, this is not the case. We consider the two theorems separately.

4.1 Theorem 1

For the kernel given by expression (3.20), the singularity 1
(t−s)3/2 is removable as it is cancelled by

the zero of the exponential term e
−

(lj(t)−lm(s))2

4(t−s) . Therefore the kernel Kjm, j 6= m, is regular at s = t.

Under our regularity assumptions on the known data, it follows that the system of Volterra

integral equations (1.7) admits a unique solution. The proof is identical to the proof given in [4] and

relies on general results for Volterra integral equations with weakly singular kernels, given e.g. in [8].

4.2 Theorem 2

Next we consider the kernel given by expression (3.36). For ε > 0, this kernel has no singularity,

hence invoking again the general results of [4, 8] we can deduce that the vector Volterra integral
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equation (
f ε1 (t)

gε1(t)

)
=

(
N1(t)

N2(t)

)
+

∫ t

0

(
K11(t, s) −K12(t, s, ε)

K21(t, s, ε) −K22(t, s)

)(
f ε1 (s)

gε1(s)

)
ds (4.1)

admits a unique solution (f ε1 , g
ε
1) ∈ C[0, T )×C[0, T ) for every ε > 0.

The last step in the proof is the consideration of the ε → 0+ limit in the expression above. It

must be shown that this limit exists. To avoid technicalities and focus on the essential issue of the

ε → 0 limit, we show this for the analogous scalar case - the extension to the case of the vector

integral equation (4.1) is immediate.

We first consider the ε-dependent kernel K12. Recall that, for a function h(s) : [0, t]→ R bounded

and sufficiently regular,∫ t

0
K12(t, s, ε)h(s)ds =

(1− i)
√

2π

4

∫ t

0

l1(t)− l2(s)

(t− s− iε)3/2
e

i(l1(t)−l2(s))
2

4(t−s−iε) h(s)ds. (4.2)

We now consider the exponential appearing in the integrand

E12(t, s, ε) = e
i(l1(t)−l2(s))

2

4(t−s−iε)

Differentiating E with respect to s, and rearranging, we can write the integrand in (4.2) as

l1(t)− l2(s)

(t− s− iε)3/2
E12(t, s, ε) = −4i

(t− s− iε)1/2

l1(t)− l2(s)− 2l′2(s)(t− s− iε)
∂E12

∂s
.

Hence ∫ t

0
K12(t, s, ε)h(s)ds = (i+ 1)

√
2π

∫ t

0

(t− s− iε)1/2

l1(t)− l2(s)− 2l′2(s)(t− s− iε)
∂E12

∂s
h(s)ds.

Integration by parts yields
1

(i+ 1)
√

2π

∫ t

0
K12(t, s, ε)h(s)ds =

(−iε)1/2

l1(t)− l2(t) + 2l′2(t)iε
h(t)E12(t, t, ε)− (t− iε)1/2

l1(t)− l2(0)− 2l′2(0)(t− iε)
h(0)E12(t, 0, ε)

−
∫ t

0
E12(t, s, ε)


h(s)

2(t−s−iε)1/2 + (t− s− iε)1/2h′(s)

l1(t)− l2(s)− 2l′2(s)(t− s− iε)
− (t− s− iε)1/2h(s) + l′2(s)− 2l′′(s)(t− s− iε)

(l1(t)− l2(s)− 2l′2(s)(t− s− iε))2

 ds.

We now need to take the limit as ε→ 0; in order to pass to the limit inside the integral on the right

hand side using the dominated convergence theorem, we must show that the integrand is dominated

by an integrable function.

Let

H1(t, s) = l1(t)− l2(s)− 2l′2(s)(t− s). (4.3)
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If H1(t, s) 6= 0 for all s ∈ [0, t], then the integrand can be dominated by g(s) = c√
t−s , and this

function is integrable in[0, t]. Therefore, under this assumption, that we will return to below, we can

pass to limit under the integral and we find

lim
ε→0

1

(i+ 1)
√

2π

∫ t

0
K12(t, s, ε)h(s)ds = − t1/2

l1(t)− l2(0)− 2tl′2(0)
h(0)E12(t, 0, 0)

−
∫ t

0
E12(t, s, 0)


h(s)

2(t−s)1/2 + (t− s)1/2h′(s)

l1(t)− l2(s)− 2l′2(s)(t− s)
− (t− s)1/2h(s) + l′2(s)− 2l′′(s)(t− s)

(l1(t)− l2(s)− 2l′2(s)(t− s))2

 ds

= − t1/2

l1(t)− l2(0)− 2tl′2(0)
h(0)E12(t, 0, 0)

+

∫ t

0
E12(t, s, 0)

l′2(s)− 2l′′2(s)(t− s)
(l1(t)− l2(s)− 2l′2(s)(t− s))2ds

−
∫ t

0
E12(t, s, 0)

{
1

2(t− s)1/2(l1(t)− l2(s)− 2l′2(s)(t− s))
− (t− s)1/2

(l1(t)− l2(s)− 2l′2(s)(t− s))2

}
h(s)ds

+

∫ t

0
E12(t, s, 0)

{
(t− s)1/2

l1(t)− l2(s)− 2l′2(s)(t− s)

}
h′(s)ds.

Thus this limit has the form

lim
ε→0

1

(i+ 1)
√

2π

∫ t

0
K12(t, s, ε)h(s)ds = M12(t)−

∫ t

0
E12(t, s)

1

H1(t, s)

[
1

2(t− s)1/2
− (t− s)1/2 1

H1(t, s)

]
h(s)ds

+

∫ t

0
E12(t, s)(t− s)1/2 1

H1(t, s)
h′(s)ds

with

M12(t) = −E12(t, 0, 0)t1/2
1

H1(t, 0)
h(0) +

∫ t

0
E12(t, s)

[
l′2(s)− 2l′′2(s)(t− s)

] 1

H1(t, s)2
ds

and H1(t, s) given by (4.3). Hence for f(t) = limε→0 f
ε(t), g(t) = limε→0 g

ε(t), using equation (4.1)

we find the integral equation

f(t) = N1(t)− (i+ 1)
√

2πM12(t) +

∫ t

0
K11(t, s)f(s)ds

+ (i+ 1)
√

2π

{∫ t

0
E12(t, s)

1

H1(t, s)

[
1

2(t− s)1/2
− (t− s)1/2 1

H1(t, s)

]
g(s)ds

−
∫ t

0
E12(t, s)(t− s)1/2 1

H1(t, s)
g′(s)ds

}
, (4.4)

where N1(t) is given by (1.11).
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An analogous computation for the kernel K21 yields

g(t) = N2(t)− (i+ 1)
√

2πM21(t)−
∫ t

0
K22(t, s)g(s)ds

− (i+ 1)
√

2π

{∫ t

0
E21(t, s)

1

H2(t, s)

[
1

2(t− s)1/2
− (t− s)1/2 1

H2(t, s)

]
f(s)ds

+

∫ t

0
E21(t, s)(t− s)1/2 1

H2(t, s)
f ′(s)ds

}
, (4.5)

with N2(t) given by (1.11),

E21(t, s, ε) = e
i(l2(t)−l1(s))

2

4(t−s−iε) ,

M21(t) = −E21(t, 0, 0)t1/2
1

H2(t, 0)
h(0) +

∫ t

0
E21(t, s, 0)

[
l′2(s)− 2l′′2(s)(t− s)

] 1

H2(t, s)2
ds

and

H2(t, s) = l2(t)− l1(s)− 2l′1(s)(t− s).

We claim that the two equations (4.4)-(4.5) above are a system of a generalised Volterra integral

equation of the second kind with a weakly integral kernel.

We first note that these equations are not in the usual form of a Volterra integral equation for

the functions f(t), g(t), since the right hand side contains not only the functions but also their first

derivative. A modification of the iterative proof of existence of a solution for the usual Volterra case

also works in this generalised case, see [1].

It remains to prove that the kernels appearing in the two integral on the right hand side of (4.4)-

(4.5) are weakly singular. This is clearly the case provided H1(t, s) and H2(t, s) do not vanish for

any s ∈ [0, t].

For H1(t, s) the condition is that

l1(t)− l2(s)− 2l′2(s)(t− s) 6= 0, ∀ 0 ≤ s ≤ t.

Since l1(t) < l2(t), if we assume that l2(t) satisfies the condition (1.14) we have

l1(t)− l2(s)− 2l′2(s)(t− s) < l2(t)− l2(s)− 2l′(s)(t− s) = (t− s)[l′2(σ)− 2l′(s)] < 0, s ≤ σ ≤ t.

Similarly, for H2(t, s) the condition is

l2(t)− l1(s)− 2l′1(s)(t− s) 6= 0, ∀ 0 ≤ s ≤ t.

and if l1(t) satisfies the condition (1.14) we have

l2(t)− l1(s)− 2l′1(s)(t− s) > l1(t)− l1(s)− 2l′1(s)(t− s) > 0.

Hence under the assumption (1.14), the regularity condition is satisfied for both K12 and K21. This

completes the proof of the theorem.
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Remark 1 (Linear boundaries) The case that boundaries are linear is often of interest in appli-

cations. In this case, we can extend the validity of theorem beyond the assumption (1.14). Assume

that the boundary curves are of the form

l1(s) = αs, l2(s) = βs+ L, 0 < s < t, 0 < 2α < β, L ≥ 0. (4.6)

For H1(t, s) the non-zero condition becomes

(α− 2β)t+ βs− L 6= 0⇐⇒ s 6= 2β − α
β

t+
L

β
.

Since s ≤ t, this always holds if β > α > 0. For H2(t, s), under the assumption (4.6), the non-zero

condition is

(β − 2α)t+ αs+ L 6= 0

which is always true if all terms are positive, i.e. if β > 2α > 0.

Therefore, Theorem (2) is valid for linear boundaries of the form (4.6).

5 Conclusions

We have shown how to give a solution representation for boundary value problems for linear evolution

equation in one spatial variable, posed between two time-dependent boundaries, issuing from the

common point set at the origin of the (x, t) plane.

For the specific example of the heat equation, the solution is obtained as the unique solution of

a system of Volterra integral equations (1.7), valid for any choice of differentiable boundary curves

not intersecting for positive times.

For the case of the linear Schrödinger equation, the solution is again given as the unique solution

of the system of generalised Volterra integral equations (4.4)-(4.5), but only for a more restricted

class of boundaries, satisfying condition (1.14) or (4.6).
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