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Abstract. In this paper, we consider the space BVA(Ω) of functions of bounded

A-variation. For a given first order linear homogeneous differential operator with
constant coefficients A, this is the space of L1–functions u : Ω→ RN such that the

distributional differential expression Au is a finite (vectorial) Radon measure. We

show that for Lipschitz domains Ω ⊂ Rn, BVA(Ω)–functions have an L1(∂Ω)–trace
if and only if A is C-elliptic (or, equivalently, if the kernel of A is finite dimensional).

The existence of an L1(∂Ω)–trace was previously only known for the special cases

that Au coincides either with the full or the symmetric gradient of the function u
(and hence covered the special cases BV or BD). As a main novelty, we do not use

the fundamental theorem of calculus to construct the trace operator (an approach

which is only available in the BV- and BD-setting) but rather compare projections
onto the nullspace as we approach the boundary. As a sample application, we study

the Dirichlet problem for quasiconvex variational functionals with linear growth

depending on Au.

1. Introduction

1.1. Aim and Scope. Let Ω be an open, bounded Lipschitz domain in Rn and let
1 ≤ p < ∞. A key tool in the study of partial differential equations is the assignment
of boundary values to elements u ∈ W 1,p(Ω;RN ), often being the first step towards
well-posedness results for such equations. In this respect, it is a well-established fact
(cf. [Maz11]) that if 1 < p < ∞, then there exists a surjective, bounded linear trace
embedding operator

tr : W 1,p(Ω;RN ) ↪→W 1−1/p,p(∂Ω;RN )(1.1)

which satisfies tr(u) = u|∂Ω for u ∈ C(Ω;RN ) ∩W 1,p(Ω;RN ). If p = 1 instead, a result
due to Gagliardo [Gag57] asserts that there exists a surjective, bounded linear trace
embedding operator

tr : W 1,1(Ω;RN ) ↪→ L1(∂Ω;RN ).(1.2)

The same holds true when W 1,1(Ω;RN ) is replaced by BV(Ω;RN ), the RN -valued func-
tions of bounded variation on Ω. Both boundary trace embeddings (1.1), (1.2) and the
corresponding variant for BV hinge on inequalities

‖u‖
W

1− 1
p
,p

(∂Ω;RN )
≤ C(‖u‖Lp(Ω;RN ) + ‖Du‖Lp(Ω;RN×n))

‖u‖L1(∂Ω;RN ) ≤ C(‖u‖L1(Ω;RN ) + ‖Du‖L1(Ω;RN×n))
(1.3)

if 1 < p <∞ or p = 1, respectively, to be satisfied for all u ∈ C(Ω;RN ) ∩W 1,p(Ω;RN ).
These estimates in turn are obtained as a consequence of the fundamental theorem of
calculus in conjunction with a smooth approximation argument.

As one of the fundamental achievements of 20th century harmonic analysis, Calderón
& Zygmund [CZ56] and Mihlin [Mih56] established that in a wealth of inequalities, the
full gradient can be replaced by weaker quantities only involving certain combinations
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of derivatives. Precisely, let A be a constant–coefficient, linear, homogeneous differential
operator from RN to RK , i.e., there exist fixed linear maps Aα : RN → RK with

A =

n∑
α=1

Aα∂α.(1.4)

Then for each 1 < p <∞ there exists c = c(p, n,A) > 0 such that there holds

‖Du‖Lp(Rn;RN×n) ≤ c‖Au‖Lp(Rn;RK) for all u ∈ C∞c (Rn;RN )(1.5)

if and only if A is elliptic. Here we say that A is elliptic if and only if for each ξ =
(ξ1, ..., ξn) ∈ Rn \ {0} the symbol map A[ξ] :=

∑
α ξαAα : RN → RK is an injective

linear map. A special instance of (1.5) is the case of the symmetric gradient operator
Eu := 1

2 (Du + D>u) acting on maps u : Rn → Rn (here N = n ≥ 2 and K = n2,

identifying Rn×n ∼= Rn2

). In this situation, (1.5) gives the usual Korn inequalities
which play a pivotal role in elasticity or fluid mechanics; see [FS99] for a comprehensive
overview.

Singular integrals or Fourier multiplier operators in general are not bounded on L1.
Thus one expects the exponent range 1 < p < ∞ for (1.5) to hold to be optimal
for general elliptic operators A. This is in fact true and manifested by Ornstein’s
celebrated Non-Inequality, stating the impossibility of non-trivial L1-estimates:

Theorem (Ornstein ([Orn62])). Let A and B be two constant-coefficient first order,
linear homogeneous differential operators from on Rn from RN to RK and from RN to
R, respectively. Suppose that there exists a constant c > 0 such that

‖Bu‖L1(Rn) ≤ c‖Au‖L1(Rn;RK) for all u ∈ C∞c (Rn;RN ).

Then there exists T ∈ L (RN ;R) such that B = T ◦ A.

This negative result – which faces contributions to date, see [CFM05, KK16] – im-
mediately yields that if p = 1, inequalities that involve the full gradients Du do not
necessarily generalise to those involving only Au. On the other hand, by [ST81] it is
known for the special case of A being the symmetric gradient operator that (1.3)(b) re-
mains valid indeed for p = 1 when D is replaced by E . However, the method employed in
[ST81, Bab15] to arrive at this result is very specific to the symmetric gradient operator
and its structural properties: Again based on the fundamental theorem of calculus, Eu
then allows to control a cone of line integrals emanating from the boundary, leading to
the desired trace inequality. In particular, it is far from clear whether and if so, how,
trace inequalities of the form (1.3) can be established for p = 1 and D being replaced by
differential operators A of the form (1.4). As we shall see below in Section 1.3, even for
general elliptic operators A the corresponding analogues of (1.3) break down and hence
the method employed for the symmetric gradient cannot easily generalise.

This leads us to the following classification problem: Classify all differential op-
erators of the form (1.4) such that for any open and bounded Lipschitz domain Ω ⊂ Rn
there exists a constant c > 0 such that

‖u‖L1(∂Ω;RN ) ≤ c(‖u‖L1(Ω;RN ) + ‖Au‖L1(Ω;RK))(1.6)

holds for all u ∈ C(Ω;RN ) ∩ C1(Ω;RN ). The overall objective of the present paper is
to solve this classification problem. Before we pass on to the precise description of our
results – in particular, Theorem 1.2 – we briefly pause and connect this theme to other
results available in the literature first.

1.2. Contextualisation and Function Spaces. The quest for classifying differential
operators A of the form (1.4) such that well-known inequalities generalise to the A-
framework for p = 1 has come up rather recently. Building on the foundational work
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of Bourgain & Brezis [BB03, BB07, BB04], Van Schaftingen [VS13] characterised
all operators A of the form (1.4) for which a Sobolev-type inequality

‖u‖
L

n
n−1 (Rn;RN )

≤ C‖Au‖L1(Rn;RK) for all u ∈ C∞c (Rn;RN )(1.7)

holds. Whereas ellipticity of A is easily seen to be necessary for (1.7), it is far from
sufficient and needs to be augmented by the so-called cancellation condition. Following
[VS13], we call A cancelling if and only if⋂

ξ∈Rn\{0}

A[ξ](RN ) = {0}.

Note that by ellipticity, u ∈ C∞c (Rn;RN ) can be represented via u = kA ∗ Au where
kA : Rn \{0} → L (RK ;RN ) satisfies the growth bound |kA(y)| ∼ |y|1−n for y ∈ Rn \{0}.
Then the fractional integration theorem only implies that the convolution with kA yields

an operator that maps L1(Rn;RK) → L
n
n−1
w (Rn;RN ) boundedly with the weak-L

n
n−1

space L
n
n−1
w (Rn;RN ), and so (1.7) implies a proper improvement based on the additional

cancellation condition.
To unify this theme also in view of (1.6), we wish to interpret the above inequalities

in terms of (boundary trace) embeddings and thus introduce function spaces via

WA,1(Ω) :=
{
v ∈ L1(Ω;RN ) : Au ∈ L1(Ω;RK)

}
,

BVA(Ω) :=
{
v ∈ L1(Ω;RN ) : Au ∈M(Ω;RK)

}
,

where Ω ⊂ Rn is open, A is a differential operator of the form (1.4) and M(Ω;RK)
denotes the RK-valued Radon measure of finite total variation on Ω. These spaces are
normed canonically via ‖u‖WA,1 = ‖u‖L1 + ‖Au‖L1 (similarly for BVA with the obvious

modifications); clearly, WA,1(Ω) ( BVA(Ω) and we shall refer to BVA(Ω) as space of
functions of bounded A-variation. In the literature, only particular instances of spaces
BVA have been studied in detail, namely for A = ∇ or A = E , leading to the spaces BV
or BD of functions of bounded variation or deformation, respectively. Precisely, we then
have W 1,1 = W∇,1, LD = W E,1, BV = BV∇, BD = BVE , and this paper is the first
attempt to characterise the properties of BVA-maps in terms of the properties of A in
a unifying manner. By this, we also aim to clarify the underlying mechanisms for the
corresponding trace inequalities to work in the known cases A = D and A = E .

Returning to the classification problem related to (1.6), we conclude this subsection
by pointing out that ellipticity in itself cannot yield the required L1-trace theory. In fact,
consider the operator EDu := Eu− 1

n div(u)En (En ∈ Rn×n being the identity matrix)
which is usually referred to as trace-free symmetric gradient operator, for n ≥ 2. This
operator enters in a variety of applications, so for instance fluid mechanics or general
relativity, cf. [Fei04] and [BI04]. Regardless of n ≥ 2, ED is elliptic, see Example
2.2 (c). However, the following example from [FR10] shows that an L1-trace does not
exists if n = 2. Identifying R2 ∼= C, ker(ED) essentially contains the holomorphic
functions. Upon identifying R2 with C and denoting D the open unit disc in C, the

map u : D 3 z 7→ 1/(z − 1) ∈ C even belongs to W E
D,1(B(0, 1)) whereas it is clear

that ‖tr(u)‖L1(∂B(0,1)) =∞. In view of (1.6), our main result, Theorem 1.2 below, will

cover the particular case of A = ED as a special case and provide a positive answer for
all n ≥ 3 and a negative answer for n = 2.

1.3. Main Results. Before we state our main result, we need to provide the definitions
of several important properties of our operator A. To begin with, we write the symbol
mapping A[ξ] : RN → RK as

A[ξ]v := v ⊗A ξ :=

n∑
α=1

ξαAαv, ξ = (ξ1, ..., ξn) ∈ Rn, v ∈ RN .(1.8)
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Moreover, we extend A[ξ]η = η⊗A ξ by (1.8) also to complex valued ξ ∈ Cn and η ∈ CN .
We strengthen terminology and say that A is R-elliptic if A[ξ] : RN → RK is injective
for all ξ ∈ Rn \ {0} (i.e., A is elliptic in the above sense), and C-elliptic provided
A[ξ] : CN → CK is injective for all ξ ∈ Cn \{0} (cf. Section 2.3 for more detail). Finally,
we shall say that A has finite dimensional nullspace if the kernel N(A) of A in the
distributional sense is finite dimensional, i.e.

dim(N(A)) <∞ with N(A) = {v ∈ D′(Rn;RN ) : Av ≡ 0},(1.9)

where D(Rn;RN ) = C∞0 (Rn;RN ). We will see later in Theorem 2.6 that A has a
finite dimensional nullspace if and only if it is C-elliptic. It is also equivalent to the
type (C) condition in the sense of [Ka l94], see Remark 2.1. However, the notion of R-
ellipticity is strictly weaker: For instance, ED for n = 2 is R-elliptic but not C-elliptic,
see Example 2.2 (c). We are now in position to formulate our main result.

Theorem 1.1. Let A be a differential operator of the form (1.4). Then the following
are equivalent:

(a) For all open and bounded Lipschitz domains Ω ⊂ Rn there exists a constant
c > 0 such that (1.6) holds for all u ∈ C(Ω;RN ) ∩ C1(Ω;RN ).

(b) A is C-elliptic.

Whereas necessity of C-ellipticity for (1.6) shall be addressed in Theorem 4.18 and
essentially follows from a construction relying on the properties of the two-dimensional
operator ED, the more involved part is the sufficiency. For future reference, we single
this out and state in the following more elaborate form; the full statement can be found
in Theorem 4.17:

Theorem 1.2 (Trace theorem). Let A be C-elliptic (or equivalently, A has finite di-

mensional nullspace). Then there exists a trace operator tr : BVA(Ω)→ L1(∂Ω,Hn−1)
such that the following holds:

(a) tr(u) coincides with the classical trace for all u ∈ BVA(Ω) ∩ C(Ω;RN ).

(b) tr(u) is the unique strictly-continuous extension of the classical trace on BVA(Ω)∩
C(Ω;RN ). Especially, tr : BVA(Ω)→ L1(∂Ω;Hn−1) is continuous for the norm

topology on BVA(Ω).

(c) tr(WA,1(Ω)) = tr(BVA(Ω)) = L1(∂Ω;Hn−1).

Regarding sufficiency, the core issue is how to replace the use of the fundamental
theorem of calculus by that of C-ellipticity. As a main consequence of the latter, we
will employ the nullspace of C-elliptic operators being finite dimensional. Using local
projections onto the nullspace N(A) close to the boundary, we construct suitable ap-

proximations of u ∈ BVA(Ω) that have classical traces. The limit of these traces provide
us with the trace of u. In particular, the projections to the finite dimensional nullspace
replace the fundamental theorem of calculus approach as used in [ST81, Bab15].
In addition to Theorem 4.17 we will show in Theorem 4.18 and Remark 4.19 that if A is
not C-elliptic, then in general there is no trace operator from BVA(Ω) to L1(∂Ω;Hn−1).
In particular, the existence of L1(∂Ω;Hn−1)–traces on arbitrary bounded Lipschitz do-
mains Ω ⊂ Rn is equivalent to C-ellipticity of A. This conclusion also identifies the
infinite dimensional nullspace of A as the reason for the failure of the trace embedding

of W E
D,1(Ω) into L1(∂Ω;Hn−1) for n = 2 (cp. Example 2.2 (c)). As a consequence of

Theorem 1.2 we also obtain a version of the Gauß-Green theorem, see Theorem 4.20, and
the gluing theorem, see Corollary 4.21. Let us also remark that Theorem 1.2 includes
both the trace theorems for the spaces BV and BD.

The relation between the condition of C-ellipticity and Van Schaftingen’s elliptic
and cancelling condition will be investigated in detail in the follow-up [GR17] to this pa-
per by Raita and the third author; among others, there will be shown that C-ellipticity
implies Van Schaftingen’s condition but in general not vice versa. In this sense and
as might be anticipated, L1-boundary traces require a stronger condition on A.
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1.4. Variational problems. As a concluding application of the trace theorem from
above, we address the Dirichlet problem for linear growth functionals involving operators
A. To be precise, we are interested in the minimisation of functionals of the form

F[u] :=

∫
Ω

f(x,Au) dx(1.10)

over a class of maps u : Ω→ RN subject to Dirichlet boundary data u = u0 on ∂Ω. Here
f : Ω × RN×n → R≥0 is a given variational integrand for which we suppose the linear
growth assumption

c1|z| ≤ f(x, z) ≤ c2|z|+ c3 for all x ∈ Ω and z ∈ RN×n.(1.11)

Additionally, we assume that our integrand f is A-quasiconvex (in a sense to specified
in Section 5, also see [FM99, Dac82]). Our objective here is to minimise F over the

Dirichlet class u0 +WA,1
0 (Ω), which are the WA,1(Ω)-functions whose traces agree with

the given boundary datum u0. From the treatment of the Dirichlet problem on BV (see
[GMS79, AFP00]) it is clear that the functional should be considered on the class of BV–
maps on a larger Lipschitz domain U . More precisely, we need to consider the weak*–
lower semi-continuous envelope of F on BV(U). Whereas in the convex situation one
can make use of the classical results due to Reshetnyak [Res68], the quasiconvex case is
substantially more involved. The sequentially weak*-lower semicontinuous envelope F of
F on BV(Ω) (so A = ∇) was characterized in [ADM92, FM93]. The corresponding issue
for the symmetric-quasiconvex (so A = E) situation was resolved in [Rin11]. Invoking
the recent outstanding generalisation of Alberti’s rank one-theorem [DPR16], the weak*–
lower semicontinuity result of [ARDPR17] and the area-strict continuity of [KR10a], we

give a precise characterization of the weak*-lower semicontinuous envelope F on BVA(Ω),
see Proposition 5.1.

In consequence, a merger with Theorem 1.2 allows us to formulate the minimisation
problem with Dirichlet data u0 purely in terms of BVA(Ω), see Corollary 5.2. We
demonstrate both the existence of minima and the absence of a Lavrentiev-gap with

respect to the Dirichlet class u0 +WA,1
0 (Ω), see Thm. 5.3.

1.5. Organisation of the paper. The paper is organised as follows. In Section 2
we fix notation, introduce the assumptions on the differential operators A and collect
elementary implications for the Sobolev–type spaces WA,1(Ω) and the spaces of functions

of bounded A–variation BVA(Ω). In Section 3 we introduce local projection operators
onto the nullspace N(A) on balls and derive Poincaré–type inequalities. In Section 4, we

construct the trace operator tr : BVA(Ω) → L1(∂Ω;Hn−1) and thereby give the proof
of Theorem 1.2. Moreover, we establish a Gauß–Green formula and a gluing lemma for
BVA–maps. The final Section 5 is dedicated to the existence of BVA–minimisers of A–
quasiconvex variational problems with linear growth subject to given Dirichlet boundary
data.

Acknowledgments. The authors wish to thank Jan Kristensen for numerous helpful discus-

sions, comments and reading a preliminary version of this paper. The third author further

acknowledges financial support and hospitality of the Max–Planck–Institut für Mathematik in

den Naturwissenschaften during a research stay in Leipzig in May 2017, where parts of this

project were concluded.
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2. Functions of Bounded A-Variation

In this section we introduce spaces of functions of bounded variation associated with
a differential operator A.

2.1. General Notation. To avoid too many different constants throughout, we write
a . b if there exists a constant c (which does not depend on the crucial quantities) with
a ≤ c b. If a . b and b . a, we also write a h b. By `(B) we denote the diameter of
a ball B and by |B| its n–dimensional Lebesgue measure. We write d(·, ·) for the usual
euclidean distance. For the euclidean inner product of a, b ∈ Rm we use the equivalent
notations 〈a, b〉 or a · b. Given f ∈ L1

loc(Rn;RK) and a measurable subset U ⊂ Rn with
|U | > 0, we use the equivalent notations

−
∫
U

f(x) dx := 〈f〉U := |U |−1
∫
U

f(x) dx

for the mean value integral. Lastly, for notational simplicity, we shall often surpress the
possibly vectorial target space when dealing with function spaces and, e.g., write L1(Rn)
instead of L1(Rn;RN ), but this will be clear from the context.

2.2. Function Space Setup. Let A be given by (1.4). The corresponding dual (or
formally adjoint) operator A∗ is the differential operator on Rn from RK to RN given
by

A∗ :=

n∑
α=1

A∗α∂α,(2.1)

where each A∗α is the adjoint matrix of Aα. For an open domain Ω ⊂ Rn we define the
Sobolev space WA,1(Ω) associated to the operator A by

WA,1(Ω) = WA,1(Ω;RN ) :=
{
u ∈ L1(Ω;RN ) : Au ∈ L1(Ω;RK)

}
.(2.2)

This is a Banach space with respect to the norm

‖u‖WA,1(Ω) := ‖u‖L1(Ω) + ‖Au‖L1(Ω).(2.3)

We moreover define the total A–variation of u ∈ L1
loc(Ω;RN ) by

|Au|(Ω) := sup

{∫
Ω

〈u,A∗ϕ〉dx : ϕ ∈ C1
c(Ω;RK), |ϕ| ≤ 1

}
(2.4)

and consequently say that u is of bounded A–variation if and only if u ∈ L1(Ω;RN ) and
|Au|(Ω) <∞. Denoting M(Ω;RK) the finite RK–valued Radon measures on Ω, by the
Riesz representation theorem this amounts to

BVA(Ω) :=
{
u ∈ L1(Ω;RN ) : Au ∈M(Ω;RK)

}
.(2.5)

Here, the shorthands Au ∈ L1 or Au ∈ M above have to be understood in the sense
that the distributional differential expressions Au can be represented by L1–functions
or Radon measures, respectively. The norm

‖u‖BVA(Ω) := ‖u‖L1(Ω) + |Au|(Ω)(2.6)

makes BVA(Ω) a Banach space. However, due to the lack of good compactness proper-
ties, the norm topology turns out not useful in many applications and one needs to con-
sider weaker topologies. We now introduce the canonical generalisations of well–known
convergences in the full– or symmetric gradient cases, see [AFP00]. Let u ∈ BVA(Ω)

and (uk) ⊂ BVA(Ω). We say that

• (uk) converges to u in the weak*–sense (in symbols uk
∗
⇀ u) if and only if uk → u

strongly in L1(Ω;RN ) and Auk
∗
⇀ Au in the weak*–sense of RK–valued Radon

measures on Ω as k →∞.
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• (uk) converges to u in the strict sense (in symbols uk
s→ u) if and only if

ds(uk, u)→ 0 as k →∞, where for v, w ∈ BVA(Ω) we set

ds(v, w) :=

∫
Ω

|v − w|dx+
∣∣|Av|(Ω)− |Aw|(Ω)

∣∣.
• (uk) converges to u in the area-strict sense (in symbols uk

〈·〉→ u) if and only if∫
Ω

√
1 +

∣∣dAuk
dLn

∣∣2 dL n + |Asuk|(Ω)→
∫
Ω

√
1 +

∣∣ dAu
dLn

∣∣2 dL n + |Asu|(Ω), k →∞,

where Av = dAv
dLnL n + dAv

d|Asv| |A
sv| is the Radon–Nikody̌m decomposition of

Av ∈M(Ω;RK) with respect to the Lebesgue measure L n.

Strictly speaking, these notions are reserved for the BV–versions and hence the above
notions have to be read as A–weak*, A–strict and A–area strict convergence. However,
to keep terminology simple, we tacitly assume that the differential operator A is fixed
throughout and stick to the above terminology.

Note that the A-variation is sequentially lower semicontinuous with respect conver-

gence in the weak*–sense, i.e., if uk
∗
⇀ u, then |Au|(Ω) ≤ lim infk→∞ |Auk|(Ω). More-

over, if uk ∈ BVA(Ω) is a bounded sequence with uk ⇀ u in L1(Ω;RN ), then al-

ready uk
∗
⇀ u. Finally, if Ω is open and bounded with Lipschitz boundary, then it is

easy to conclude by the theorem of Banach–Alaoglu that if (uk) ⊂ BVA(Ω) is uniformly

bounded in the BVA–norm, then there exists u ∈ BVA(Ω) and a subsequence (uk(j)) of

(uk) such that uk(j)
∗
⇀ u as j →∞ in the sense specified above. We shall often refer to

this as the weak*–compactness principle (for BVA).

2.3. Assumptions on the Differential Operator A. For our trace result we need
some structure on A which we introduce now.

Let A be given by (1.4). Then A induces a bilinear pairing ⊗A : RN × Rn → RK by

v ⊗A z :=

n∑
α=1

zαAαv, for z ∈ Rn and v ∈ RN .(2.7)

For all ϕ ∈ C1(Rn) and v ∈ C1(Rn;RN ) we have

A(ϕv) = ϕAv + v ⊗A ∇ϕ.(2.8)

Note that if A is the usual gradient, then ⊗A can be identified with the usual dyadic
product ⊗, and if A is the symmetric gradient, then ⊗A is given by the symmetric tensor
product �.

Recalling the notions of R– and C–ellipticity from Section 1.3, we now pass on to
a more detailled discussion and begin with linking them to the type–(C) condition as
introduced in [Ka l94].

Remark 2.1. The operator A is C-elliptic if and only if it is of type (C) in the sense
of [Ka l94]. More precisely, since Aα[ξ] is a linear operator from RN to RK for each
ξ ∈ Rn, we find coefficients Aα,j,k such that

(
A[ξ]η

)
k

=:

n∑
α=1

N∑
j=1

Aα,j,kξαηj .

for every for ξ ∈ Rn and η ∈ RN . Then

Pj,ku :=

n∑
α=1

Aα,j,k∂αuj
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for k = 1, . . . ,K is the family of scalar differential operators as used in [Ka l94]. The
corresponding symbols are

Pj,k(ξ) :=

n∑
α=1

Aα,j,kξα

with j = 1, . . . , N and k = 1, . . . ,K. Now according to [Ka l94] the family (Pk)k is of
type (C) if and only if (Pj,k(ξ))j,k has rank K for all η ∈ Cn \ {0}. Since

N∑
j=1

K∑
k=1

Pj,k(ξ)ηj =

n∑
α=1

N∑
j=1

K∑
k=1

Aα,j,kξαηj = A[ξ]η

this is equivalent to the injectivity of A[ξ] for all η ∈ CN \ {0}, which is exactly the
C-ellipticity of A.

We now turn to some examples which shall refer to frequently.

Example 2.2. In what follows, we carefully examine the gradient, symmetric and trace–
free symmetric gradient operators. As these typically map RN to the matrices RN×n
instead of a vector in RK , we henceforth put K = Nn and identify RK with RN×n.

(a) Let Au := ∇u. Then N(A) just consists of the constants and

(v ⊗∇ z)j,k = vjzk.

A has a finite dimensional nullspace and is C-elliptic, since

|A[ξ]η|2 = |ξ|2|η|2.

(b) Let Au := E(u) := 1
2 (∇u+ (∇u)T ) with N = n. Then N(E) just consists of the

generators of rigid motions, i.e.,

N(E) = {x 7→ Ax+ b : A ∈ Rn×n, A = −AT , b ∈ Rn}

and

(v ⊗E z)j,k = 1
2 (vjzk + vkzj).

E has a finite dimensional nullspace and is C-elliptic, since

|A[ξ]η|2 = 1
2 |ξ|

2|η|2 + 1
2 |〈ξ, η〉|

2
.

(c) Let Au := ED(u) = 1
2 (∇u+ (∇u)T )− 1

ndiv(u)Idn with N = n. Then

(v ⊗ED z)j,k = 1
2 (vjzk + vkzj)−

1

n
δj,k

n∑
l=1

vlzl

and

|A[ξ]η|2 = 1
2 |ξ|

2|η|2 + 1
2 |〈ξ, η〉|

2 − 1
n 〈ξ, η̄〉

2
.

If n ≥ 3, then A is C-elliptic and it has the finite dimensional nullspace

N(ED) =
{
x 7→ Ax+ b+ (2(a · x)x− |x|2a) : A ∈ Rn×n, A = −AT , a, b ∈ Rn

}
.

Elements of N(ED) are also known as conformal killing vectors [Dai06].
If n = 2, then A is only R-elliptic, but not C-elliptic. Indeed, A[ξ]η = 0

for ξ = (1, i)T and η = (1,−i)T . Moreover, the nullspace N(A) is of infinite
dimension: Indeed, if we identify R2 ∼= C, then the kernel of ED consists of the
holomorphic functions. We will substantially use this property in the proofs of
Lemma 2.5 and Theorem 4.18.

We now draw some consequences of the single ellipticity conditions and link them to
the finite dimensionality of the nullspace of A.
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Lemma 2.3. Let A be K-elliptic with K = R or K = C. Then there exists two constants
0 < κ1 ≤ κ2 <∞ such that

κ1|v| |z| ≤ |v ⊗A z| ≤ κ2|v| |z| for all v ∈ KN and z ∈ Kn .

Proof. By scaling it suffices to assume |v| = |z| = 1. We have |v ⊗A z| > 0, since
A is K-elliptic. Now the claim follows by compactness of {(v, z) : |v| = |z| = 1} and
continuity. �

Lemma 2.4. Let A have a finite dimensional nullspace. Then A is R-elliptic.

Proof. We proceed by contradiction. Assume that A is not R-elliptic. Then there
exists ξ ∈ Rn \ {0} and η ∈ RN \ {0} with A[ξ]η = 0. For every f ∈ C1

c(R;R) we
define uf (x) := f(〈ξ, x〉)η. Then (Auf )(x) = A[ξ]η f(〈ξ, x〉) = 0. Since η 6= 0 and ξ 6= 0,

the mapping f 7→ uf is injective. Therefore, the set {uf : f ∈ C1
c(R)} is an infinite

dimensional subspace of N(A). This contradicts the fact that A has finite dimensional
nullspace. �

Lemma 2.5. Let A have a finite dimensional nullspace. Then A is C-elliptic.

Proof. Since A has finite dimensional nullspace, it is R-elliptic by Lemma 2.4.
We proceed by contradiction, so assume that A is not C-elliptic. Then there exists ξ ∈

Cn \ {0} and η ∈ CN \ {0} with 0 = A[ξ]η = η⊗A ξ. We split ξ and η into their real and
imaginary parts by ξ =: ξ1 + iξ2 and η =: η1 + iη2. Then A[ξ]η = 0 implies

A[ξ1]η1 − A[ξ2]η2 = 0 and A[ξ1]η2 + A[ξ2]η1 = 0.(2.9)

We will show not that ξ1 and x2, resp. η1 and η2, are linearly independent.
We begin with the linear independence of ξ1 and ξ2. If ξ1 = 0, then ξ2 6= 0 and

then the R-ellipticity of A and (2.9) implies η1 = η2 = 0, which contradicts η 6= 0. By
the same argument, also ξ2 = 0 is not possible. Hence, we have ξ1 6= 0 and ξ2 6= 0.
We now show the linear independence of ξ1 and ξ2 by contradiction, so let us assume
that ξ2 = λξ1 with λ 6= 0. Then it follows from (2.9) that

A[ξ1]η1 = A[ξ2]η2 = λA[ξ1]η2 = −λA[ξ2]η1 = −λ2A[ξ1][η1].

This implies A[ξ1][η1] = 0. Hence by R-ellipticity of A and ξ1 6= 0, we get η1 = 0.
Now, (2.9) implies A[ξ2][η2] = 0, so again the R-ellipticity of A gives η2 = 0. Overall,
η = 0, which is a contradiction. This proves that ξ1 and ξ2 are linearly independent.

The proof of the linear independence of η1 and η2 is completely analogous. Indeed,
η1 = γη2 implies A[ξ1]η1 = −γ2A[ξ1]η1, so A[ξ1][η1] = 0. As above this implies η = 0,
which is a contradiction.

Let us define now τ : Rn → C and σ : C→ RN by

τ(x) := 〈ξ, x〉 = 〈ξ1, x〉+ i〈ξ2, x〉,
σ(z) := Re(z)η1 − Im(z)η2.

Let O(C) denote the set of holomorphic functions on C. Then dim(O(C)) =∞. More-
over, for f ∈ O(C) we have ∂z̄f(z) = 0 in the sense of complex derivatives. Let us define
hf : Rn → RN by hf := σ ◦ f ◦ τ . Our goal is to prove Ahf = 0. We identify in the
following C with R2. With the chain rule we conclude

(Ahf )(x) = A[ξ1]η1(∂1f1)(τ(x))− A[ξ1]η2(∂1f2)(τ(x))

+ A[ξ2]η1(∂2f1)(τ(x))− A[ξ2]η2(∂2f2)(τ(x)).
(2.10)

Using the Cauchy-Riemann equations ∂1f1 = ∂2f2 and ∂1f2 = −∂2f1 and (2.9) we get

(Ahf )(x) = (A[ξ1]η1 − A[ξ2]η2)(∂1f1)(τ(x)) + (A[ξ1]η2 + A[ξ2]η1)(∂2f1)(τ(x)) = 0.

So for each f ∈ O(C), we constructed an hf : Rn → RN such that Ahf = 0. We need
to show that dim({hf : f ∈ O(C)}) = ∞. For this, it suffices to show that the linear
mapping f 7→ hf is injective. Recall that hf = σ ◦ f ◦ τ . Hence, it suffices to show that
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σ is injective and that τ is surjective. This, however, follows from the fact that ξ1 and
ξ2, resp. η1 and η2, are linearly independent. This concludes the proof. �

Theorem 2.6. The following are equivalent.

(a) A has a finite dimensional nullspace.
(b) A is C-elliptic.
(c) There exists l ∈ N with N(A) ⊂ Pl, where Pl denotes the set of polynomials

with degree less or equal to l.

Proof. Lemma 2.5 proves (a)⇒(b). Obviously, (c)⇒(a). It remains to show (b)⇒(c).
Since A is C-elliptic, it is of type–(C) in the sense of [Ka l94], see Remark 2.1. Fix ω ∈

C∞c (B(0, 1)) with
∫
B(0,1)

ω dx = 1. Then for an arbitrary ball B, we obtain by dilation

and translation a function ωB ∈ C∞c (B) with
∫
B
ωB(y) dy = 1. For every l ∈ N0 let P lB

denote the averaged Taylor polynomial with respect to B of order l (see [DS78]), i.e.

P lBu(x) :=

∫
B

∑
|β|≤l

∂βy

(
(y − x)β

β!
ωB(y)

)
u(y) dy.

The formula is obtained by multiplying Taylor’s polynomial of order l by the weight ωB
and integrating by parts. Note that P lBu ∈Pl.

It follows from the representation formula of [Ka l94], Theorem 4], that for all x ∈ B

|u(x)− (P lBu)(x)| ≤ c
∫
B

|(Au)(y)|
|x− y|n−1 dy,(2.11)

for some l ∈ N0 (which is fixed from now on) and all u ∈ C∞(B). We do not know the
exact value of l, but at least l is so large that N(A) ⊂Pl (there is, however, an upper
bound for l in terms of n and N .)

Now, let v ∈ N(A), i.e. v ∈ D′(Rn;RN ) with Av = 0 in the distributional sense.
Let ϕε denote a standard mollifier, i.e., ϕε(x) := ε−nϕ(x/ε) with a radially symmetric
function ϕ ∈ C∞c (B; [0, 1]) with

∫
B
ϕdx = 1. Then v ∗ ϕε ∈ C∞(Rn) and A(v ∗ ϕε) =

(Av) ∗ ϕε = 0. Hence, it follows from (2.11) that v ∗ ϕε ∈ Pl(Rn). This implies v ∈
Pl(Rn) as desired. The proof is complete. �

Remark 2.7. Let us compare our conditions with the ones of Van Schaftingen [VS13],
building on the fundamental work of Bourgain & Brezis [BB07, BB04]. According
to [VS13] the operator A is cancelling1 if⋂

ξ 6=0

A[ξ](RN ) = {0}.(2.12)

It has been shown in [VS13, Theorem 1.4] that whenever A is R-elliptic and cancelling,
then we have the Sobolev–type inequality

‖u‖
L

n
n−1 (Rn;RN )

≤ C‖Au‖L1(Rn;RK)(2.13)

for all u ∈ C∞c (Rn;RN ). Moreover, the R-ellipticity and cancellation property of A is
necessary for such inequality.

For our result on traces we need C-ellipticity of A. So the natural question arises
how C-ellipticity compares to the canceling property. It will been shown in [GR17] that
C-ellipticity implies the canceling property but not vice-versa. Indeed, the operator

A(u) :=

(
1
2∂1u1 − 1

2∂2u2
1
2∂1u2 + 1

2∂2u1 ∂3u1

1
2∂1u2 + 1

2∂2u1
1
2∂1u1 − 1

2∂2u2 ∂3u2

)
is R-elliptic and cancelling but it is not C-elliptic, since it fails the finite dimensional
nullspace property (recall Thm. 2.6).

1The definition of cancelling in [VS13] is given in terms of the annihilating operator L from the exact

sequence in (5.6). However, it translates in our setting to (2.12).
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2.4. Smooth approximations in the interior. In this section we show that func-
tions from WA,1(Ω) and BVA(Ω) can be approximated in a certain sense by functions
from WA,1(Ω) ∩ C∞(Ω;RN ). The proof is in the spirit of [EG15, Chpt. 5.2] and is
included for the reader’s convenience.

Theorem 2.8 (Smooth Approximation). Let Ω ⊂ Rn be open. Then the following hold:

(a) The space (C∞ ∩WA,1)(Ω) is dense in WA,1(Ω) with respect to the norm topol-
ogy.

(b) The space (C∞ ∩BVA)(Ω) is dense in BVA(Ω) with respect to the area-strict
topology.

Proof. Fix u ∈ BVA(Ω). For k = 2, 3, . . . define Ωk := {x ∈ Ω : 1
k+1 < d(x, ∂Ω) < 1

k−1}.
Now pick a sequence (ψk) such that for each k ∈ N, ψk ∈ C∞c (Ωk; [0, 1]) together with∑
k ψk = 1 globally in Ω. Now let ηε : Rn → R be a standard mollifier (even and

non-negative).
For j ∈ N and k ∈ N we can find εj,k > 0 such that

(i) spt(ηεj,k ∗ (ψku)) ⊂ Ωk,

(ii) ‖ψku− ηεj,k ∗ (ψku)‖L1(Ω) < 2−k−j ,

(iii) ‖u⊗A ∇ψk − ηεj,k ∗ (u⊗A ∇ψk)‖L1(Ω) < 2−k−j .

(iv) If u ∈WA,1(Ω), we additionally require ‖ψkAu− ηεj,k ∗ (ψkAu)‖L1(Ω) < 2−k−j .

This allows us to define uj ∈ C∞(Ω) by uj :=
∑
k∈N ηεj,k ∗ (ψku), which is well defined

in L1
loc(Ω), since the sum is locally finite. Then in L1

loc(Ω)

u− uj =
∑
k

(
ψku− ηεj,k ∗ (ψku)

)
.

This and (ii) implies ‖u− uj‖L1(Rn) . 2−j . If u ∈ WA,1(Ω), then (iii) and (iv) imply

‖Au− Auj‖L1(Rn) . 2−j . This proves (a).

It remains to prove uj
〈·〉→ u for j → ∞ for u ∈ BVA(Ω). In fact, the proof is like in

the standard BV case. For simplicity of notation we just show uj
s→ u for j →∞. The

necessary changes to pass from strict convergence to area-strict convergence are just like
in [Bil03, Lemma B.2].

Since uj → u in L1(Rn) it follows by by the lower semicontinuity of the total A–
variation that |Au|(Ω) ≤ lim infj→∞ |Auj |(Ω). It remains to prove lim supj→∞ |Auj |(Ω) ≤
|Au|(Ω). For this we invoke the dual characterisation (2.4) of the total A–variation. Let
ϕ ∈ C1

c(Ω;RK) with |ϕ| ≤ 1 be arbitrary. We compute∫
Ω

〈uj ,A∗ϕ〉dx =
∑
k

∫
Ω

〈ηεj,k ∗ (ψku),A∗ϕ〉dx =
∑
k

∫
Ω

〈ψku,A∗(ηεj,k ∗ ϕ) dx

=
∑
k

∫
Ω

〈u,A∗(ψk(ηεj,k ∗ ϕ))〉dx−
∑
k

∫
Ω

〈u, (ηεj,k ∗ ϕ)⊗A∗ ∇ψk〉dx

=: Ij + IIj .

The sums are well defined, since ϕ ∈ C1
c(Ω) and uj =

∑
k ηεj,k ∗ (ψku) in L1

loc(Ω). Now∣∣∣∑
k

ψk(ηεj,k ∗ ϕ)
∣∣∣ ≤∑

k

ψk|ηεj,k ∗ ϕ| ≤
∑
k

ψk‖ϕ‖∞ = ‖ϕ‖∞ ≤ 1.

Therefore,

Ij =

∫
Ω

〈
u,A∗

(∑
k

ψk(ηεj,k ∗ ϕ)
)〉

dx ≤ |Au|(Ω).
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Using
∑
k∇ψk = 0 and ϕ ∈ C1

c(Ω), we now rewrite IIj as

IIj =
∑
k

∫
Ω

〈u, (ηεj,k ∗ ϕ)⊗A∗ ∇ψk〉dx−
∑
k

∫
Ω

〈u, ϕ⊗A∗ ∇ψk〉dx

=
∑
k

∫
Ω

〈ηεj,k ∗ (u⊗A ∇ψk)− (u⊗A ∇ψk), ϕ〉dx.

Invoking (iii) and ‖ϕ‖∞ ≤ 1 we obtain |IIj | . 2−j . Hence, collecting estimates we
obtain as desired lim supj→∞ |Auj |(Ω) ≤ lim supj→∞(|Au|(Ω) + c 2−j) = |Au|(Ω). �

3. Projections and Poincaré Inequalities

In this section we derive several versions of Poincaré’s inequality. We assume through-
out the section that A is C-elliptic (or, equivalently: A has a finite dimensional nullspace,
see Thm. 2.6).

3.1. Projection Operator. We begin with some projection estimates.
For every ball B ⊂ Rn and u ∈ L2(B;RN ) we define ΠBu as the L2-projection of u

onto N(A). Hence, ∫
B

|ΠBu|2 dx ≤
∫
B

|u|2 dx.

Since N(A) is finite dimensional, there exists a constant c > 0 with

‖ΠBu‖L∞(B) ≤ c −
∫
B

|ΠBu| dx.(3.1)

Indeed, this is clear for the unit ball and extends to general balls by dilation and trans-
lation. It follows from this as usual that

−
∫
B

|ΠBu| dx ≤ c −
∫
B

|u| dx.(3.2)

Thus, ΠB can be extended to L1(B;RN ) such that (3.2) remains valid.

Lemma 3.1. Then there exists c ≥ 1 with

inf
q∈N(A)

‖u− q‖L1(B) ≤ ‖u−ΠBu‖L1(B) ≤ c inf
q∈N(A)

‖u− q‖L1(B).

Proof. The first estimate is obvious. Now, for all q ∈ N(A) we have ΠBq = q. This
and (3.2) imply

‖u−ΠBu‖L1(B) ≤ ‖u− q‖L1(B) + ‖ΠB(u− q)‖L1(B) ≤ c ‖u− q‖L1(B).

Taking the infimum over q ∈ N(A) proves the lemma. �

3.2. Poincaré Inequalities. In this subsection we derive Poincaré–type inequalities
for WA,1 and BVA. Recall that for a ball B we denote by `(B) its diameter.

Theorem 3.2. There exists a constant c > 0 such that for all balls B and all u ∈
BVA(B) it holds

inf
q∈N(A)

‖u− q‖L1(B) ≤ ‖u−ΠBu‖L1(B) ≤ c `(B) |Au|(B),

where ΠB is the L2-orthogonal projection onto N(A) from Subsection 3.1.
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Proof. By dilation and translation, it suffices to prove the claim for the unit ball B =
B(0, 1). Moreover, by smooth approximation (see Theorem 2.8) it suffices to consider
u ∈ C∞(B;RN ) ∩WA,1(B).

We use the averaged Taylor polynomals as in the proof of Theorem 2.6. Recall that
by (2.11) we have the estimate

|u(x)− (P lu)(x)| ≤ c
∫
B

|(Au)(y)|
|x− y|n−1 dy for all x ∈ B.(3.3)

Since P lu is not necessarily in the kernel of A, we wish to replace it by ΠB(P l). Thus,
we start with

|u(x)−ΠB(P lu)(x)| ≤ |u(x)− (P lu)(x)|+ |(P lu)(x)− (ΠB(P lu))(x)|.(3.4)

Now, for any p ∈Pl there holds

‖p−ΠBp‖L∞(B) ≤ c −
∫
B

|Ap| dx.(3.5)

Indeed, both sides define a norm on the finite dimensional space Pl/N(A) and vanish
on N(A). Hence, for all x ∈ B

|(P lu)(x)− (ΠB(P lu))(x)| ≤ ‖P lu−ΠB(P lu)‖L∞(B)

≤ c −
∫
B

|A(P lu)| dx.(3.6)

The definition of the averaged Taylor polynomial implies that

A(P lu) = P l−1(Au),(3.7)

where P−1u := 0 if l = 0. The L1-stability of the averaged Taylor polynomial gives

‖P l−1(Au)‖L1(B) ≤ c ‖Au‖L1(B).(3.8)

Now, (3.5) and (3.8) yield

|(P lu)(x)− (ΠB(P lu))(x)| ≤ c `(B)−
∫
B

|Au| dy ≤ c
∫
B

|(Au)(y)|
|x− y|n−1 dy.

So, (3.3) and (3.4) imply the estimate

|u(x)− (ΠBP lu)(x)| ≤ c
∫
B

|(Au)(y)|
|x− y|n−1 dy.(3.9)

Now, integration over x ∈ B gives∫
B

|u−ΠB(P lu)| dx ≤ c
∫
B

∫
B

|(Au)(y)|
|x− y|n−1 dy dx

≤ c
∫
B

|(Au)(y)|
∫
B

|x− y|1−n dx dy

≤ c `(B)

∫
B

|Au| dy.

We have shown

‖u−ΠB(P lu)‖L1(B) ≤ c `(B)‖Au‖L1(B).(3.10)

The rest follows by Lemma 3.1.
�
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Theorem 3.3. Let B′ and B are two balls with B′ ⊂ B and `(B) . `(B′). Then for

all u ∈ BVA(B) with u = 0 on B′, there holds

‖u‖L1(B) ≤ c `(B)|Au|(B).

The constant only depends on the ratio `(B)/`(B′).

Proof. We use the same construction as in the proof of Theorem 3.2. However, we
choose ω ∈ C∞c (B) in the construction of the averaged Taylor polynomial additionally
as ω ∈ C∞c (B′). This implies that P lu only depends on the values of u on B′. Hence,
we obtain P lu = 0. Hence, Theorem 3.2 proves the claim. �

Finally, let us remark that variants of Poincaré–type inequalities can also be estab-
lished along the lines of [AH96, Lem. 8.3.1] or [Zie89, Chpt. 4]. However, this requires
additional extension and compactness arguments which need to be proven independently.

4. Traces

In this section we show that the space of functions bounded A–variation admits a
continuous trace operator to L1(∂Ω) if and only if A is C-elliptic (or, equivalently: A
has a finite dimensional nullspace, see Thm. 2.6).

4.1. Assumptions on the Domain. In order to ensure a proper trace we need to make
certain regularity assumptions on Ω. Our results include all Lipschitz graph domains.
However, we will consider even more general domains. Indeed, the non-tangentially
accessible domains (NTA domains) provide a natural setting for our construction of the
trace operator. We refer to [HMT10] for more information on NTA domains.

We begin with the necessary conditions on our domain.

Definition 4.1 (Interior/Exterior Corkscrew Condition). Let Ω ⊂ Rn.

(a) We say that Ω satisfies the interior corkscrew condition if there exist R > 0 and
M > 2 such that for all x ∈ ∂Ω and all r ∈ (0, R) there exists a y ∈ Ω such that

1

M
r ≤ |x− y| ≤ r and B(y, r/M) ⊂ Ω.

(b) We say that Ω satisfies the exterior corkscrew condition if Rn \ Ω satisfies the
interior corkscrew condition.

Definition 4.2 (Harnack Chain Condition). We say that Ω ⊂ Rn satisfies the (interior)
Harnack chain condition if there exist R > 0 and M ∈ N such that for any ε > 0,
r ∈ (0, R), x ∈ ∂Ω and y1, y2 ∈ B(x, r) ∩ Ω with |y1 − y2| ≤ ε2k and d(yj , ∂Ω) ≥ ε
for j = 1, 2 there exists a chain of Mk balls B1, . . . , BMk in Ω connecting y1 and y2

satisfying

(a) y1 ∈ B1, y2 ∈ BMk,
(b) 1

M `(Bj) ≤ d(Bj , ∂Ω) ≤M`(Bj) for j = 1, . . . ,Mk,

(c) `(Bj) ≥ 1
M min

{
d(y1, Bj), d(y2, Bj)

}
for j = 1, . . . ,Mk.

Definition 4.3 (NTA domain). We say that a domain Ω ⊂ Rn is an NTA (non-
tangentially accessible) domain if Ω satisfies the interior corkscrew condition, the exte-
rior interior corkscrew condition and the interior Harnack chain condition.

Definition 4.4. We say that Ω ⊂ Rn has Ahlfors regular boundary if there exists R > 0
and M > 0 such that for all r ∈ (0, R)

1

M
rn−1 ≤ Hn−1(B(x, r) ∩ ∂Ω) ≤Mrn−1.(4.1)

In the following we tacitly require that our domains satisfy the following assumption:

Assumption 4.5. We assume that Ω satisfies the following assumptions:

(a) Ω is an NTA domain.
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(b) Ω has Ahlfors regular boundary.

Note that all Lipschitz graph domains satisfy this assumption.
Let us now construct families of balls that we will use later in the construction of our

traces:
For each j ∈ Z, let (Bj,k)k denote a (countable) cover of balls of Rn with diame-

ter `(Bj,k) such that

(a) 1
8 · 2

−j ≤ `(Bj,k) ≤ 1
4 · 2

−j .

(b) The scaled balls ( 7
8Bj,k)k cover Rn.

(c) Each family (Bj,k)k is locally finite with covering constant independent of j, i.e.

sup
j

∑
k

χBj,k ≤ c.

For each j let (ηj,k)k be a partition of unity with respect to the (Bj,k)k such that for
all j, k

‖ηj,k‖L∞ + `(Bj,k)‖∇ηj,k‖L∞ ≤ c.(4.2)

Now, we define the 2−j-neighbourhood Uj of ∂Ω by

Uj := {x ∈ Ω : d(x, ∂Ω) < 2−j}.

Since Ω satisfies the interior corkscrew condition, we can find for each ball Bj,k close

to the boundary a reflected ball B]j,k close by. We will use these reflected balls later to
define the local projections of our functions. More precisely:

(B1) There exists j0 ∈ Z, such that the following holds: For each Bj,k with j ≥ j0 and

Bj,k ∩ Uj 6= ∅, there exists a ball B]j,k ⊂ Ω with `(B]j,k) h `(Bj,k) h d(B]j,k, ∂Ω)

and d(Bj,k, B
]
j,k) . `(Bj,k), where the hidden constants are independent of j, k.

Moreover, due to the Harnack chain condition we can connect two reflected balls of
neighbouring balls by a small chain of balls. More precisely, we have the following.

(B2) If Bj,k ⊂ Ω and j ≥ j0, then there exists a chain of balls W1, . . . ,Wγ with γ
uniformly bounded, such that

(a) W1 = Bj,k and Wγ = B]j,k;

(b) |Wβ ∩Wβ+1| h |Wβ | h |Wβ+1| h |Bj,k| for β = 1, . . . , γ − 1;
(c) `(Wβ) h `(Bj,k) for β = 1, . . . , γ;

The hidden constants are independent of j, k, β.

We define Ω(Bj,k, B
]
j,k) :=

⋃γ
β=1Wβ .

(B3) If Bj,k ∩ Bl,m 6= ∅ and j, l ≥ j0 with |j − l| ≤ 1, then there exists a chain of
balls W1, . . . ,Wγ with γ uniformly bounded, such that

(a) W1 = B]j,k and Wγ = B]l,m;

(b) |Wβ ∩Wβ+1| h |Wβ | h |Wβ+1| h |Bj,k| for β = 1, . . . , γ − 1;
(c) d(Wβ , ∂Ω) h `(Wβ) h `(Bj,k) for β = 1, . . . , γ;

The hidden constants are independent of j, k, β.

We define Ω(B]j,k, B
]
l,m) :=

⋃γ
β=1Wβ .

By construction of the chains above, we get:

(B4) There exists k0 ≥ 2 such that the following holds uniformly in j ≥ j0∑
m :Bj,m∩Uj 6=∅

χB]j,m
≤ c χUj−k0\Uj+k0 ,∑

m :Bj,m∩Uj 6=∅

∑
k :Bj+1,k∩Bj,m 6=∅

χΩ(B]j,m,B
]
j+1,k) ≤ c χUj−k0\Uj+k0 .
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4.2. Trace operator. We will now construct the trace operator of BVA(Ω). We will
obtain the traces by a suitable approximation process. In particular, we will define
truncations Tju which are smooth close to the boundary and admit classical traces. The
limits will later provide our trace.

We define

Πj,ku := ΠB]j,k
u.

Let ρj ∈ C∞(Ω) be such that χUj+1
≤ ρj ≤ χUj and ‖∇ρj‖∞ . 2j and let u ∈ BVA(Ω).

Then for j ≥ j0 we define Tju in Ω by

Tju := u− ρj
∑
k

ηj,k
(
u−Πj,ku

)
= (1− ρj)u+ ρj

∑
k

ηj,kΠj,ku.(4.3)

Due to the support of ηj,k the sum in the definition is locally finite. In particular, the
sum is well defined in L1

loc(Ω). The function Tju is an approximation of u, that replaces
the values of u in the neighborhood of ∂Ω of distance 2−j by local averages. These

averages are performed slightly inside the domain on the balls B]j,k.
We begin with an auxiliary estimate involving Πj,ku.

Lemma 4.6. We have the following estimates:

(a) There holds

‖Πj,ku‖L∞(Bj,k) . −
∫
B]j,k

|u| dx.

(b) If Bj,m ∩ (Uj \ Uj+2) 6= ∅, then Bj,m ⊂ Ω and

‖u−Πj,mu‖L1(Bj,m) . `(Bj,m)|Au|
(
Ω(Bj,m, B

]
j,m)

)
.

(c) If Bj+1,k ∩Bj,m 6= ∅, then

|Bj,m| ‖Πj+1,ku−Πj,mu‖L∞(Bj,m) . `(Bj,m)|Au|
(
Ω(B]j+1,k, B

]
j,m)

)
.

Proof.

(a) Since Πj,k maps to N(A) and N(A) ⊂Pl, this is just the usual inverse estimate
for polynomials of a fixed degree.

(b) The definition of Uj and `(Bj,m) ≤ 1
42−j implies Bj,m ⊂ Ω. We compute

‖u−Πj,mu‖L1(Bj,m) = ‖u−ΠB]j,m
u‖

L1(Bj,m)

≤ ‖u−ΠBj,mu‖L1(Bj,m)
+ ‖ΠBj,mu−ΠB]j,m

u‖
L1(Bj,m)

.

The first term can be estimated by Poincaré’s inequality from Theorem 3.2 which
yields immediately

‖u−ΠBj,mu‖L1(Bj,m)
. `(Bj,m)|Au|

(
Bj,m

)
.

For the second term we make use of the Harnack chain conditions (recall Defi-

nition 4.2) and, using (B2), connect Bj,m and B]j,m by a chain

Ω(Bj,k, B
]
j,m) =

γ⋃
β=1

Wβ ,

where W1, ...,Wγ are balls of size proportional to `(Bj,m). In particular, we have

W1 = Bj,m and Wγ = B]j,m. Moreover, we can assume that |Wβ ∩Wβ+1| h
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|Wβ | h `(Bj,m) for all β. Now, we gain

‖ΠBj,mu−ΠB]j,m
u‖

L1(Bj,m)
≤

γ−1∑
β=1

‖ΠWβ+1
u−ΠWβ

u‖
L1(Bj,m)

.
γ−1∑
β=1

‖ΠWβ+1
u−ΠWβ

u‖
L1(Wβ+1∩Wβ)

.
γ∑
β=1

‖u−ΠWβ
u‖

L1(Wβ)

using equivalence of norms on N(A). Finally, using again Theorem 3.2 in con-
junction with (B4),

‖ΠBj,mu−ΠB]j,m
u‖

L1(Bj,m)
. `(Bj,m)

γ∑
β=1

|Au|
(
Wγ

)
. `(Bj,m)|Au|

(
Ω(Bj,m, B

]
j,m)

)
.

Gathering estimates, we arrive at the claim.
(c) First, by the inverse estimate for polynomials, we have

|Bj,m| ‖Πj+1,ku−Πj,mu‖L∞(Bj,m) . ‖Πj+1,ku−Πj,mu‖L1(Bj,m)

= ‖ΠB]j+1,k
u−ΠB]j,m

u‖
L1(Bj,m)

.

Now, connecting B]j+1,k and B]j,m via the chain Ω(B]j+1,k, B
]
j,m) (recall (B3)),

we obtain the claim arguing exactly as in b).

�

The following lemma shows that Tj is well defined on L1(Ω).

Lemma 4.7. Tj : L1(Ω)→ L1(Ω) is linear and bounded.

Proof. We estimate pointwise on Ω

|Tju| ≤ (1− ρj)|u|+ ρj
∑
k

χBj,k‖Πj,ku‖L∞(Bj,k).(4.4)

With Lemma 4.6 we get

|Tju| . χΩ\Uj+1
|u|+

∑
k :Bj,k∩Uj 6=∅

χBj,k −
∫
B]j,k

|u| dx.

This implies

‖Tju‖L1(Ω) . ‖u‖L1(Ω\Uj+1) +
∑

k :Bj,k∩Uj 6=∅

|Bj,k| −
∫
B]j,k

|u| dx

. ‖u‖L1(Ω\Uj+1) +
∑

k :Bj,k∩Uj 6=∅

∫
B]j,k

|u| dx.

Since the B]j,k are locally finite by (B4), we get ‖Tju‖L1(Ω) . ‖u‖L1(Ω) as desired. �

The next two lemmas show now that Tj+1u−Tju is summable in L1(Ω) and BVA(Ω).

Lemma 4.8. Let u ∈ L1(Ω) and j ≥ j0. Then

‖Tj+1u− Tju‖L1(Ω) . ‖u‖L1(Uj+1−k0\Uj+k0 ).
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Proof. Let j ≥ j0. Then we have

Tj+1u− Tju = (ρj − ρj+1)u+ ρj+1

∑
k

ηj+1,kΠj+1,ku− ρj
∑
m

ηj,mΠj,mu.

Now

‖(ρj − ρj+1)u‖L1(Ω) ≤ ‖u‖L1(Uj\Uj+2).

Moreover, by Lemma 4.6 (a) it follows that

‖ρjηj,mΠj,mu‖L1(Ω) ≤ c|Bj,m|‖Πj,mu‖L∞(Bj,m) ≤ c ‖u‖L1(B]j,m),

where it suffices to consider those j with Bj,m ∩ Uj 6= ∅. Now (B4) implies∑
m

‖ρjηj,mΠj,mu‖L1(Ω) ≤ c ‖u‖L1(Uj−k0\Uj+k0 ).

Analogously, ∑
k

‖ρjηj+1,kΠj+1,ku‖L1(Ω) ≤ c ‖u‖L1(Uj+1−k0\Uj+1+k0
).

Combining the above estimates proves the lemma. �

Lemma 4.9. Let u ∈ BVA(Ω) and j ≥ j0. Then

‖A(Tj+1u− Tju)‖L1(Ω) . |Au|(Uj−k0 \ Uj+k0).

Proof. Using that
∑
m ηj,m =

∑
k ηj+1,k = 1 in Ω we get

Tj+1u− Tju = (ρj − ρj+1)
∑
m

ηj,m(u−Πj,mu)

+ ρj+1

∑
k,m

ηj+1,kηj,m(Πj+1,ku−Πj,mu)

=: I + II.

(4.5)

In order to estimate ‖A(Tj+1u− Tju)‖L1(Ω) it is crucial that AΠj+1,ku = AΠj,mu = 0

and the gradients of ρj , ρj+1, ηj,m and ηj+1,k are bounded by 2j , recall (4.2). Let us
consider II. We only have to estimate those summands with k,m satisfying Bj+1,k ∩
Bj,m 6= ∅ since otherwise ηj+1,kηj,m = 0. For each such k,m we estimate the L1(Ω)-norm
of AII by Lemma 4.6 (c). Now, in combination with (B4) we get

‖AII‖L1(Ω) . |Au|(Uj−k0 \ Uj+k0).

Let us consider I. We only need to estimate those summands with m satisfying Bj,m ∩
(Uj \ Uj+2) 6= ∅, since otherwise (ρj − ρj+1)ηj,m = 0. For each such m we estimate
the L1(Ω)-norm of AI by Lemma 4.6 (b). Now, in combination with (B4) we get

‖AI‖L1(Ω) . |Au|(Uj−k0 \ Uj+k0).

The proof is complete. �

Based on the two lemmas above, we now study the convergence Tju→ u.

Corollary 4.10. If u ∈ L1(Ω), then

u = Tj0u+

∞∑
l=j0

(
Tl+1u− Tlu

)
= lim
j→∞

Tju(4.6)

in L1(Ω). If additionally u ∈ BVA(Ω), then (4.6) also holds in BVA(Ω).
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Proof. Since ρj → 0 in L1
loc(Ω), it is clear that Tju→ u in L1

loc(Ω).
Note that for j ≥ j0

Tju = Tj0u+

j−1∑
l=j0

(
Tl+1u− Tlu

)
(4.7)

It follows from Lemma 4.8 and Lemma 4.9 that Tl+1u − Tlu are summable in L1(Ω),

resp. in BVA(Ω), since the Uj+1−k0 \ Uj+k0 are locally finite with respect to j. Hence,

Tju is a Cauchy sequence in L1(Ω), resp. in BVA(Ω). Since the limit must agree with
the L1

loc(Ω) limit, which is u, the claim follows. �

Since Tju is smooth close to the boundary ∂Ω, it is possible to evaluate the classical
trace tr(Tju). We now show that these traces form a L1(∂Ω)-Cauchy sequence.

Lemma 4.11. Let u ∈ BVA(Ω). Then

‖tr(Tj+1u)− tr(Tju)‖L1(∂Ω) . |Au|(Uj−k0 \ Uj+k0)

and ∥∥tr(Tj0u)
∥∥
L1(∂Ω)

. 2j0‖u‖L1(Uj0−k0\Uj0+k0
).

Proof. We begin with the first estimate. It follows from (4.5) that

tr(Tj+1u)− tr(Tju) =
∑
k,m

tr
(
ηj+1,kηj,m(Πj+1,ku−Πj,mu)

)
,

where the sums are locally finite sums. Hence,

‖tr(Tj+1u)− tr(Tju)‖L1(∂Ω) ≤
∑
k,m

∥∥tr(ηj+1,kηj,m(Πj+1,ku−Πj,mu))
∥∥
L1(∂Ω)

.

We only have to consider those k,m with Bj+1,k ∩Bj,m 6= ∅. For such k,m∥∥tr
(
ηj+1,kηj,m(Πj+1,ku−Πj,mu)

)∥∥
L1(∂Ω)

≤
∥∥Πj+1,ku−Πj,mu

∥∥
L∞(Bj,m)

Hn−1(∂Ω ∩Bj+1,k ∩Bj,m).

We estimate the first factor by Lemma 4.6 (c) and the second by the Ahlfors regularity
of the boundary, see (4.1), and thereby obtain∥∥tr

(
ηj+1,kηj,m(Πj+1,ku−Πj,mu)

)∥∥
L1(∂Ω)

. |Au|
(
Ω(B]j+1,k, B

]
j,m)

)
.

Summing over k and m and using (B4) implies

‖tr(Tj+1u)− tr(Tju)‖L1(∂Ω) . |Au|(Uj−k0 \ Uj+k0).

This proves the first estimate.
Let us now estimate ‖tr(Tj0)‖L1(∂Ω). We begin with

tr(Tj0) =
∑
k

tr
(
ηj0,kΠj0,ku

)
.

For each k with Bj0,k ∩ ∂Ω there holds∥∥tr
(
ηj0,kΠj0,ku

)∥∥
L1(∂Ω)

≤ ‖Πj0,ku‖L∞(Bj0,k)H
n−1(∂Ω ∩Bj0,k).

We estimate the first factor by Lemma 4.6 (a) and the second by the Ahlfors regularity
of the boundary, see (4.1). This gives∥∥tr

(
ηj0,kΠj0,ku

)∥∥
L1(∂Ω)

.
1

`(Bj0)

∫
B]j0,k

|u| dx.

Summing over k and m and using (B4) implies∥∥tr(Tj0u)
∥∥
L1(∂Ω)

. 2j0‖u‖L1(Uj0−k0\Uj0+k0
).
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This proves the claim. �

Recall that by Corollary 4.10 we have

u = Tj0u+

∞∑
l=j0

(
Tl+1u− Tlu

)
= lim
j→∞

Tju

in BVA(Ω). Morover, Lemma 4.11 shows that

tr(Tj0u) +
∑
j≥j0

(
tr(Tj+1u)− tr(Tju)

)
= lim
j→∞

tr(Tj(u)).

is well defined in L1(∂Ω). Finally,∥∥ lim
j→∞

tr(Tj(u))
∥∥
L1(∂Ω)

≤
∥∥tr(Tj0(u))

∥∥
L1(∂Ω)

+
∑
j≥j0

∥∥tr(Tj+1u)− tr(Tju)
∥∥
L1(∂Ω)

. 2j0‖u‖L1(Uj0−k0\Uj0+k0
) +

∑
j≥j0

|Au|(Uj−k0 \ Uj+k0)

. ‖u‖L1(Ω) + |Au|(Ω)

by Lemma 4.11. This allows us to define for every u ∈ BVA(Ω) a trace

t̃r(u) := lim
j→∞

tr(Tju),(4.8)

the limit being understood in the L1(∂Ω)-sense. This limit satisfies∥∥t̃r(u)
∥∥
L1(∂Ω)

. ‖u‖L1(Ω) + |Au|(Ω).(4.9)

We now show that t̃r coincides with tr for all smooth functions and hence start with an
approximation result.

Lemma 4.12. Let u ∈ C0(Ω) be uniformly continuous. Then Tju→ u in C0(Ω).

Proof. We have

u− Tju = ρj
∑
k

ηj,k(u−Πj,ku),

where it suffices to take the sum over those k with Bj,k ∩ Uj 6= ∅. Let us take one
of those k. We will show that ‖ηj,k(u−Πj,ku)‖L∞(Ω) will be small for large j. Since

the Bj,k are locally finite with respect to k (with a covering number independent of j),
this will prove the lemma.

Since A maps constants to zero, the projections Πj,k map constants to themselves.
Let 〈u〉B]j,k := −

∫
B]j,k

u dx, then with Lemma 4.6 (a)

‖ηj,k(u−Πj,ku)‖L∞(Bj,k) ≤ ‖u− 〈u〉B]j,k‖L∞(Bj,k) + ‖Πj,k(u− 〈u〉B]j,k)‖
L∞(Bj,k)

. ‖u− 〈u〉B]j,k‖L∞(Bj,k)
+ −
∫
B]j,k

|u− 〈u〉B]j,k | dx.

Since u is uniformly continuous, the Bj,k and B]j,k are small and close to each other, cf.

(B1), we see that both expressions on the right-hand side are small for large j uniformly
in k. The concludes the proof. �

Corollary 4.13. Let u ∈ BVA(Ω)∩C0(Ω) be uniformly continuous. Then t̃r(u) = tr(u).

Proof. We see from Corollary 4.10 and Lemma 4.12 that Tju → u in BVA(Ω) and

in C0(Ω). By definition of t̃r(u), we have tr(Tju) → t̃r(u). Since Tju → u in C0(Ω),

we also have tr(Tju)→ tr(u) in C0(∂Ω). The limits must agree in L1
loc(∂Ω), so t̃r(u) =

tr(u). �
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We have already seen that t̃r : BVA(Ω)→ L1(∂Ω) is continuous with respect to the

norm topology. We wish to use this to conclude that t̃r is the only extension of the
classical trace to BVA(Ω). However, as smooth functions are not dense in BVA with
respect to the norm topology, we switch to strict convergence as in the BV–case.

Lemma 4.14. The trace operator t̃r : BVA(Ω) → L1(∂Ω;RN ) is continuous with

respect to the strict convergence of BVA(Ω).

Proof. Let u, uk ∈ BVA(Ω) with uk
s→ u and m ∈ N.

It follows from the definition (4.3) of Tj that for j > m + k0, there holds for all v ∈
BVA(Ω)

Tj(ρmv) = ρm Tjv.

Indeed, ρm = 1 on the Bj,k and the B]j,k for all m that contribute to the sum in (4.3).
This implies that

t̃r(v) = lim
j→∞

tr(Tjv) = lim
j→∞

tr(Tj(ρmv)) = t̃r(ρmv) in L1(∂Ω).

Now, for all k ∈ N,

‖t̃r(uk − u)‖L1(∂Ω) = ‖t̃r(ρm(uk − u))‖L1(∂Ω).

Thus, by (4.9)

‖t̃r(uk − u)‖L1(∂Ω) . ‖ρm(uk − u)‖L1(Ω) + |A(ρm(uk − u))|(Ω)

. ‖uk − u‖L1(Ω) + |Auk|(Um) + |Auk|(Um) + 2−m‖uk − u‖L1(Um).

Now, let k, l→∞. Since uk
s→ u in BVA(Ω) and Um is open, we get

‖t̃r(uk − u)‖L1(∂Ω) . |Au|(Um).

The right-hand side converges to zero for m → ∞. Thus t̃r(uk) → t̃r(u) in L1(∂Ω) for
k →∞. �

In order to proceed, we need an smooth approximation result up to the boundary in
the area-strict topology.

Lemma 4.15. Let u ∈ BVA(Ω). Then there exists uj ∈ C∞(Ω) with uj
〈·〉→ u in BVA(Ω).

Proof. For j ≥ j0 consider Tju. Then Tju is C∞ in Uj+1. Indeed, for all x ∈ Uj+1 we
have

(Tju)(x) =
∑
k

ηj,kΠj,ku.

For each k with Bj,k ∩ Uj+1 6= 0 we have

‖∇(ηj,kΠj,ku)‖∞ . ‖∇ηj,k‖L∞(Bj,k)‖Πj,ku‖L∞(Bj,k) + ‖∇Πj,ku‖L∞(Bj,k).

Using inverse estimates for polynomials and Lemma 4.6 we get

‖∇(ηj,kΠj,ku)‖∞ . `(Bj,k)|Bj,k|‖Πj,ku‖L1(Bj,k) . 2j(n+1)‖u‖L1(B]j,k).

Hence, Tju is uniformly continuous on U j+1.
Now, let ηε : Rn → R be an standard mollifier (even and non-negative). It is well

known that uj,ε := ρj+1Tju + ((1 − ρj+1)Tju) ∗ ηε converges to Tju as ε ↘ 0 in L1(Ω)
as well as in the area-strict sense. Hence, we can find εj such that

‖uj,εj − Tju‖L1(Ω)
≤ 2−j ,∣∣|A(Tju)|(Ω)− |A(uj,εj )|(Ω)
∣∣ ≤ 2−j .

Moreover, recall that Tju → u strongly in BVA(Ω). This implies that uj := uj,εj has
the desired property. This proves the strict convergence. The area-strict convergence
follows by the same steps. �
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As a consequence of Lemma 4.14 and Lemma 4.15 we immediately obtain the following
corollary.

Corollary 4.16. The trace t̃r : BVA(Ω) → L1(∂Ω;Hn−1) is the unique strictly-

continuous extension of the classical trace on BVA(Ω) ∩ C0(Ω).

Due to the above results it is not anymore necessary to distinguish the classical trace
and our new trace. We collect our results proven so far in the following theorem.

Theorem 4.17. Let A be C-elliptic and let Ω be an NTA domain with Ahlfors regular
boundary (see Assumption 4.5). Then there exists a trace operator tr : BVA(Ω) →
L1(∂Ω,Hn−1) such that the following holds:

(a) tr(u) conincides with the classical trace for all u ∈ BVA(Ω) ∩ C0(Ω).

(b) tr(u) is the unique strictly-continuous extension of the classical trace on BVA(Ω)∩
C0(Ω).

(c) tr(WA,1(Ω)) = tr(BVA(Ω)) = L1(∂Ω,Hn−1).

Proof. The existence of tr is shown in Lemma 4.14. Part a) follows from Corollary 4.13,
whereas b) is a consequence of Corollary 4.16. Finally, the third part is a consequence of
the fact that tr(W 1,1(Ω;RN ) = L1(∂Ω;RN ) and W 1,1(Ω;RN ) ⊂WA,1(Ω). In particular,
the sufficiency part of Theorem 1.2 is complete. �

4.3. Necessity of C-ellipticity. In this section we show that it is not possible to define
an L1-trace of BVA–functions if the operator A is not C-elliptic. As such, we extend the
observation of Fuchs and Repin [FR10] that D 3 z 7→ 1/(z − 1) ∈ C is holomorphic and
belongs to L1(D;C) but does not belong to L1(∂D;C) (cp. Example 2.2(c)).

Theorem 4.18 (Without a Trace). Suppose that A is not C-elliptic. Let B denote
the unit ball of Rn. Then there exists a vector ξ1 ∈ Rn \ {0}, such that for the half ball
B+ := {x ∈ B : 〈ξ1, x〉 > 0} and the hyperplane H := {x ∈ Rn : 〈ξ1, x〉 = 0} there exists
a function u ∈WA,1(B+) ∩ C∞(B+) such that u /∈ L1(H ∩B,Hn−1).

Proof. We begin with the case that A is not R-elliptic. Let us define f(x1, x2) :=

(|x1| + |x2|2)−
3
4 . The crucial observation now is that f, ∂2f ∈ L1(B). However, f /∈

L1({x1 = 0}|B ,Hn−1). We have to adapt this example to our situation. Since A is
not R elliptic, there exists ξ1 ∈ Rn \ {0} and η1 ∈ RN \ {0} with A[ξ1]η1 = 0. We
choose ξ2, . . . , ξn such that ξ1, . . . , ξn is a basis. Now, define τ : Rn → R2 and σ :
R → RN by τ(x) := (〈ξ1, x〉, 〈ξ2, x〉) and σ(z) := z η1. Moreover, we define hf :

Rn → RN by hf := σ ◦ f ◦ τ . Then we obtain (Ahf )(x) =
∑2
j=1 A[ξj ]η1(∂jf)(τ(x))

(compare (2.10)). Since A[ξ1]η1 = 0, this simplifies to (Ahf )(x) = A[ξ2]η1(∂2f)(τ(x)).
We choose the hyperplace H := {x : 〈ξ1, x〉 = 0}. It follows from f, ∂2f ∈ L1(B) and
f /∈ L1({x1 = 0}|B ,Hn−1) that u,Au ∈ L1(B) and so in particular u,Au ∈ L1(B+) with
B+ := {x ∈ B : 〈ξ1, x〉 > 0} but u /∈ L1(H ∩B,Hn−1). This concludes the proof in the
case that A is not R-elliptic.

Assume now that A is R-elliptic but not C-elliptic. Then as in Lemma 2.5 there
exist ξ1, ξ2 ∈ Rn, resp. and η1, η2 ∈ Rn, which are linearly independent such that
A[ξ1 + ix2](η1 + iη2) = 0. Define f : C→ C by f(z) := 1

z . Then f ∈ L1(B1) with B1 :=

{|z| < 1} but f /∈ L1({Re(z) = 0}|B1
,Hn−1). As in Lemma 2.5 we define τ : Rn → C

and σ : C → RN by τ(x) := 〈ξ, x〉 = 〈ξ1, x〉 + i〈ξ2, x〉 and σ(z) := Re(z)η1 − Im(z)η2.
Moreover, define hf : Rn → RN by hf := σ ◦ f ◦ τ . Then as in Lemma 2.5 we have
(Ahf )(x) = 0 in D′(B+) with B+ := {x ∈ B : 〈x1, x〉 > 0}. It follows from f ∈ L1(B+)
and f /∈ L1({Re(z) = 0}|B1 ,Hn−1) that hf ∈ WA,1(B) but hf /∈ L1(H ∩B,Hn−1) with
H := {x : 〈ξ1, x〉 = 0}. This concludes the proof if A is R-elliptic but not C-elliptic. �

Remark 4.19. Theorem 4.18 shows the non-existence of a trace on some particular
boundary hyperplane. If Ω does not enjoy this simple geometry but is a bounded domain
with C∞–boundary, then we choose a boundary point x0 ∈ ∂Ω such that a suitable
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translation of the hyperplanes H from the preceding proof becomes tangent to ∂Ω at x0.
In this situation, straightening the boundary locally around x0 and applying the preceding
theorem directly yield the non–existence of boundary traces in L1(∂Ω;Hn−1). We leave
the details to the reader.

4.4. Gauß–Green Formula. In this section we deduce the Gauß-Green formula for
functions from BVA(Ω) which, with Theorem 1.2 at our disposal, is a direct consequence
of the Gauß–Green formula for smooth functions. Let us note that up to here, only
Assumption 4.5 is required whereas in what follows we stick to a Lipschitz assumption2

on ∂Ω.

Theorem 4.20 (Gauß-Green formula). Let Ω ⊂ Rn be open and bounded with Lipschitz

boundary. For all u ∈ BVA(Ω) and all ϕ ∈ C1(Ω;RN ) we have∫
Ω

Au · ϕdx = −
∫
Ω

u · A∗ϕdx+

∫
∂Ω

(tr(u)⊗A ν) · ϕdHn−1,(4.10)

where ν denotes the unit outer normal of Ω.

Proof. Due to Lemma 4.15 there exists a sequence uj ∈ C∞(Ω) such that uj
s→ u in

BVA(Ω). Due to Lemma 4.14 we also have uj → u in L1(∂Ω,Hn−1). Now, (4.10) is
valid for each uj . Passing to the limit proves the claim. �

Corollary 4.21. Let Ω b U ⊂ Rn such that Ω and U are open and bounded and have
Lipschitz boundary. For u ∈ BVA(Ω) and v ∈ BVA(U \ Ω) define w := χΩu + χU\Ωv.

Then w ∈ BVA(U) and

Aw = Au Ω + Av U\Ω + (tr+(v)− tr−(u))⊗A νHn−1
∂Ω,(4.11)

where tr+(u) denotes the interior trace of u and tr−(v) denotes the exterior trace of v
and ν the unit outer normal of Ω.

Proof. Let w be as given and let ϕ ∈ C1
c (U). We split the domain U into Ω and U \ Ω

and apply the Gauß-Green formula (4.10) first to U and then to Ω and U \Ω separately.
This yields

−
∫
U

w · A∗ϕdx = −
∫
Ω

u · A∗ϕdx−
∫
U\Ω

v · A∗ϕdx

=

∫
Ω

Au · ϕdx−
∫
∂Ω

(tr+(u)⊗A ν) · ϕdHn−1

+

∫
U\Ω

Av · ϕdx+

∫
∂Ω

(tr+(v)⊗A ν) · ϕdHn−1.

This proves that w ∈ BVA(U) and the representation formula (4.11). �

4.5. Sobolev Spaces with Zero Boundary Values. Using our trace operator, it is
natural to define subspace of functions with zero boundary values, i.e.

WA,1
0 (Ω) := {u ∈WA,1(Ω) : tr(u) = 0}.

BVA
0 (Ω) := {u ∈ BVA(Ω) : tr(u) = 0}.

However, in the context of Sobolev spaces WA,1
0 (Ω) there are two more variants to define

these spaces. One by zero extension and one by closure of C∞c (Ω). We will show below
in Theorem 4.23 that all three definitions define the same spaces.

We begin with an auxiliary lemma which we need for WA,1
0 (Ω). For slightly more

generality we state it for BVA
0 (Ω).

2In principle, this can be weakened towards more general domains, but we will not need this in the

sequel.
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Lemma 4.22. Let u ∈ BVA
0 (Ω). Then (1 − ρj)u → u in BVA(Ω), with ρj as in

Section 4.2.

Proof. We can assume that Ω b U ⊂ Rn for some open, bounded U with Lipschitz
boundary. By Corollary 4.21 we can extend u on U \ Ω by zero.

We have

A((1− ρj)u− u) = −ρjAu− u⊗A ∇ρj .
Hence,

|A((1− ρj)u− u)|(Ω) ≤ |Au|(Uj) + c r−1
j ‖u‖L1(Uj)

.

We will now show that

r−1
j ‖u‖L1(Uj)

. |Au|(Uj−m)

for some m ∈ N (and sufficiently large, i.e. j +m ≥ j0). In fact, for fixed j define

Kj := {k : Bj,k ∩ Uj 6= ∅}.
By the geometry of Ω, we can find a factor λ > 0, such that for each k ∈ Kj , the enlarged
ball λBj,k contains some ball B′j,k that is completely in Rn \ Ω. Now, for each k ∈ Kj ,
we get by Theorem 3.3

‖u‖L1(Bj,k) . ‖u‖L1(λBj,k) . rj |Au|(λBj,k) = rj |Au|(Ω ∩ λBj,k).

Since the (Bj,k)k are locally finite, so are the (λBj,k)k. Now, if we choose m ∈ N such
that Ω ∩ λBj,k ⊂ Uj−m, then

r−1
j ‖u‖L1(Uj)

.
∑
k∈Kj

r−1
j ‖u‖L1(Bj,k) .

∑
k∈Kj

‖Au‖L1(Ω∩λBj,k) . |Au|(Uj−m).

Overall, we obtain

|A((1− ρj)u− u)|(Ω) ≤ |Au|(Uj−m).

Now, |Au|(Uj−m) → 0, since Uj−m ↘ ∅. This proves the claim by the Poincaré-
inequality from Theorem 3.3. �

Theorem 4.23 (Zero Traces). Let Ω b U ⊂ Rn for some open, bounded U with Lipschitz
boundary and let u ∈WA,1(Ω). The following are equivalent:

(a) u ∈WA,1
0 (Ω).

(b) The extension ũ := χΩu by zero on U \ Ω is in WA,1(U).
(c) There exist uk ∈ C∞c (Ω) with uk → u in WA,1(Ω).

Proof. (a) ⇒ (b): Let u ∈ WA,1
0 (Ω) and let ũ = χΩu be its zero extension on U . Then

by Corollary 4.21 we have Aũ = Au Ω ∈ L1(U), so ũ ∈WA,1(U).
(b) ⇒ (a): Let ũ = χΩu ∈ WA,1(U). Then by Corollary 4.21 we have Aũ = Au Ω +

tr+(u)⊗A νHn−1
∂Ω. Since Aũ ∈ L1(U), the singular part must vanish, i.e. tr+(u)⊗A

νHn−1
∂Ω = 0. So by R-ellipticity of A we have tr+(u) = 0 on ∂Ω.

(c) ⇒ (a): By continuity of the trace operator we have tr(u) = limk→∞ tr(uk) = 0 in

L1(∂Ω), so u ∈WA,1
0 (Ω).

(a)⇒ (c): Let vk := (1−ρk)u as in Lemma 4.22. Then vk → u in WA,1(Ω). Moreover,
the vk have compact support, since vk = 0 on Uk+1. Now, let ηε : Rn → R be an standard
mollifier with support on Bε(0). Then we find εk such that

‖vk − vk ∗ ϕεk‖L1(Ω) + ‖Avk − A(vk ∗ ϕεk)‖L1(Ω) ≤ 2−k

and supp(vk ∗ ϕεk) b Ω. The sequence uk := vk ∗ ϕεk has the desired properties. �

Proposition 4.24 (Trace–Preserving Area-Strict Smoothing). Let Ω b U ⊂ Rn such
that Ω and U are open and bounded and have Lipschitz boundary. Let u0 ∈ WA,1(U).

Futher let u ∈ BVA(U) with u = u0 on U \ Ω. Then there exists uj ∈ u0 + C∞0 (Ω) such

that uj
〈·〉→ u in BVA(U).
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Proof. The proof is a straightforward modification of the corresponding statement for
BV-functions, see [Bil03, Lemma B.2] or [KR10b, Lemma 1]. Let us just explain the
basic idea: The usual localization argument by a partition of unity reduces the question
to a local Lipschitz graph. Then split u into u0 + χΩ(u− u0). Now the χΩ(u− u0) part
is moved by translation slightly into Ω. In a second step it is mollified to get a C∞c (Ω)
term. �

5. The Dirichlet Problem on BVA–Spaces

This final section is devoted to variational problems with linear growth involving Au
subject to given boundary data.

Let Ω ⊂ Rn be an open, bounded set with Lipschitz boundary. Our goal is to study
the functional F : WA,1(Ω)→ R given by

F[v] :=

∫
Ω

f(x,Av) dx.(5.1)

subject to linear growth conditions. Given a boundary datum u0 ∈ WA,1(Ω), we wish

to minimise F within the Dirichlet class u0 + WA,1
0 (Ω). The existence of a minimiser

together with the precise formulation of the problem at our disposal will be given in
Theorem 5.3 below.

Let us define the A-rank one cone C (A) = RN ⊗A Rn ⊂ RK with ⊗A as given by

(2.7). This cone is important to characterise the jump terms of BVA functions as in
Corollary 4.21. Also in the product rule (2.8), we have v ⊗A ∇ϕ ∈ C (A) pointwise for
ϕ ∈ C1(Rn) and v ∈ C1(Rn;RN ).

By use of the Fourier transform, we see that A(u) = (A[ξ]û)∨. Since A[ξ]û ∈ C (A)
pointwise, we obtain A(u) ∈ span(C (A)) pointwise. Hence, we define the effective range
of A as R(A) := span(C (A)) ⊂ RK , i.e., Au ∈ R(A) pointwise. As a consequence, we
only need to require that the second argument of f in (5.1) is from R(A). We assume
that

f : Ω×R(A)→ R is continuous(5.2)

and satisfies the following linear growth assumption

c1|z| ≤ f(x, z) ≤ c2|z|+ c3(5.3)

for all x ∈ Ω and z ∈ R(A). Moreover, we require A to be C-elliptic, which allows us to
use the trace results of the previous sections.

Furthermore, we assume that there exists a modulus of continuity ω such that

|f(x,A)− f(y,A)| ≤ ω(|x− y|)(1 + |A|)(5.4)

holds for all x, y ∈ Ω and all A ∈ R(A). In all of what follows, we tacitly stick to these
assumptions.

We say that g : R(A) → R is A–quasiconvex if for all ϕ ∈ W 1,∞
0 ((0, 1)n;RN ) and

A ∈ R(A) there holds

g(A) ≤
∫

(0,1)n

g(A+ Aϕ) dx.(5.5)

We say that f : Ω×R(A)→ R is A–quasiconvex if f(x, ·) is A-quasiconvex for each x ∈
Ω.

Let us link this notion of quasiconvexity to that of Fonseca and Müller [FM99,
Def. 3.1]. Since A is C-elliptic, it is also R-elliptic. So by [VS13, Proposition 4.2],
there exists M ∈ N and a linear, homogeneous constant coefficient differential operator
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L with symbol mapping L[ξ] from RK to RM that annihilates A in the sense that the
corresponding symbol complex

RN A[ξ]−−−→ RK L[ξ]−−−→ RM(5.6)

is exact for every ξ ∈ Rn \ {0}. In this situation, A is called a potential for L, and L an
annihilator for A. Since A[ξ](RN ) has the same dimension for all ξ 6= 0, the operator L
has constant rank. Consequently, our A–quasiconvexity equals L–quasiconvexity3 of
Fonseca and Müller [FM99]. By exactness of the above symbol complex (5.6), it is easy
to see that the wave cone (or characteristic cone) ΛL :=

⋃
ξ∈Rn\{0} ker(L[ξ]) of L agrees

with our A-rank one cone C (A).
We define the strong recession function f∞ : Ω×R(A)→ R by

f∞(x,A) := lim
x′→x
A′→A
t→∞

f(x′, tA′)

t
,(5.7)

whenever the limit exists.
Since f is A-quasiconvex, satisfies the linear growth condition (5.3) and the continuity

condition (5.4), Lemma 6.1 from the appendix yields that f∞ is automatically well-
defined on Ω× C (A).

As usual the Dirichlet class u0 +WA,1
0 (Ω) is not large enough to ensure the existence

of minimisers for variational problems with linear growth. Here, the passage to BVA(Ω)

allows to access the necessary sequential compactness. However, elements of BVA(Ω)
do not admit control over their exterior trace. To overcome this problem we proceed as
in [GMS79] and pass to a larger superset U , i.e., let Ω b U with ∂U Lipschitz. Now,

we extend F to BVA(U) and minimise over those u ∈ BVA(U) which agree with u0

on U \ Ω. For this, we further need to accomplish the following: First, we have to
extend f : Ω × R(A) → R to f : U × R(A) → R, while preserving the structure
of f , see Lemma 6.2 in the appendix. Second, we need to extend our boundary data
to U , which is always possible, since tr(WA,1(Ω)) = L1(∂Ω,Hn−1) = tr(W 1,1(U \ Ω))
by Theorem 4.17. In particular, we assume in the following that u0 ∈WA,1(U).

We define the functional FU : BVA(U)→ R by

FU [w] :=

∫
U

f

(
x,

dAw
dL n

)
dx+

∫
U

f∞
(
x,

dAw
d|Asw|

)
d|Asw|

and the Dirichlet class

Du0
= {w ∈ BVA(U) : w = u0 on U \ Ω}.

Hence, our aim is to minimise FU over Du0 . Later we will see that this minimisation can

also be expressed only in terms of BVA(Ω) with an additional term f∞(·, tr(u−u0)⊗Aν)
which penalises the deviations from the correct boundary values, see Theorem 5.3.

We begin with a characterisation of the extension of F : WA,1(Ω) → R to BVA(Ω).
For this, recall that Ω ⊂ Rn is a bounded Lipschitz domain and that (5.2)–(5.5) are in
action.

Proposition 5.1. Let F : BVA(Ω)→ R be given by

F[u] :=

∫
Ω

f

(
x,

dAu
dL n

)
dx+

∫
Ω

f∞
(
x,

dAu
d|Asu|

)
d|Asu|,

is the A-area strict continuous extension of F : WA,1(Ω) → R. Moreover, F[u] :

BVA(Ω)→ R is sequentially weak*–lower semicontinuous on BVA(Ω).

3In [FM99], first order annihilating operators are considered, and in general this is not the case in

our situation (e.g., the symmetric gradient is annihilated by curl curl). However, the generalisation of

the concept of L–quasiconvexity extends to higher order operators L in the obvious manner.



TRACES OF BVA–MAPS 27

Proof. We begin with the A-area strict continuity of F : BVA(Ω)→ R. If f∞ existed on
all of Ω ×R(A), we could just use [KR10a, Theorem 4]. However, we can only rely on
the existence of f∞ on Ω× C (A) due to Lemma 6.1 from the appendix. The following
steps show how to overcome this technical issue and hence how the argument of [KR10a,
Theorem 4] can be made work.

Let us denote by E(Ω,R(A)) those functions g : Ω×R(A)→ R such that (x, ξ) 7→
(1−|ξ|)g(x, (1−|ξ|)−1ξ) has a continuous extension to Ω× BK ; here, BK denotes the unit
ball in R(A). In particular, the strong recession function g∞ exists on all of Ω×R(A).
Functionals with integrands from E(Ω,R(A)) enjoy good continuity properties.

Due to [AB97, Lemma 2.3] there exists a sequence fk ∈ E(Ω,R(A)) with

sup
k∈N

fk(x,A) = f(x,A) and sup
k∈N

f∞k (x,A) = f#(x,A) := lim inf
x′→x
A′→A
t→∞

f(x′, tA′)

t
.(5.8)

Let uj
〈·〉→ u in BVA(Ω). Since fk ∈ E(Ω,R(A)) we may apply the Reshetnyak–type

continuity theorem in the version of [KR10a, Theorem 5] to conclude

lim inf
j→∞

F[uj ] ≥ lim inf
j→∞

∫
Ω

fk

(
x,

dAuj
dL n

)
dx+

∫
Ω

f∞k

(
x,

dAsuj
d|Asuj |

)
d|Asuj |

=

∫
Ω

fk

(
x,

dAu
dL n

)
dx+

∫
Ω

f∞k

(
x,

dAsu
d|Asu|

)
d|Asu|

and so, by monotone convergence,∫
Ω

f
(
x,

dAu
dL n

)
dx+

∫
Ω

f#

(
x,

dAu
d|Asu|

)
d|Asu| ≤ lim inf

j→∞
F[uj ].

Due to the generalisation of Alberti’s celebrated Rank–One Theorem by De Philippis
and Rindler in [DPR16], we know that dAu

d|Asu| ∈ C (A) pointwisely |Asu|-a.e. . Now, by

Lemma 6.1 from the appendix, we find that f# = f∞ on Ω× C (A). Hence

F[u] =

∫
Ω

f
(
x,

dAu
dL n

)
dx+

∫
Ω

f∞
(
x,

dAu
d|Asu|

)
d|Asu| ≤ lim inf

j→∞
F[uj ].

Since f is continuous, we may apply the same argument to −f to obtain F[u] ≥
lim supj→∞ F[uj ]. Hence F[u] = limj→∞ F[uj ]. This proves that F : BVA(Ω) → R
is A–area strictly continuous.

Due to Theorem 4.15, WA,1(Ω) is dense in BVA(Ω) with respect to A–area strict

convergence. Since F = F on WA,1(Ω), we see that F : BVA(Ω)→ R is the A-area strict
extension of F : WA,1(Ω)→ R.

It remains to prove the sequential weak*–lower semicontinuity of F : BVA(Ω) → R
on BVA(Ω). Let L be an A–annihilating operator as in the exact sequence (5.6). Now,
the sequential weak*–lower semicontinuity just follows from [ARDPR17, Theorem 1.2]
(note that f∞ is well defined on Ω× C (A) due to Lemma 6.1 from the appendix). The
proof is complete. �

If we apply to our Dirichlet class Du0
, then we obtain the following results:

Corollary 5.2. Let f satisfy (5.2)–(5.5) and let Fu0
: BVA(Ω)→ R be given by

Fu0
[u] :=

∫
Ω

f
(
x,

dAu
dL n

)
dL n +

∫
Ω

f∞
(
x,

dAu
d|Asu|

)
d|Asu|

+

∫
∂Ω

f∞
(
x, ν∂Ω ⊗A tr(u− u0)

)
dHn−1

(5.9)
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is sequentially weak*–lower semicontinuous on BVA(Ω).

Proof. Proposition 5.1 (applied with Ω replaced by U) shows that FU : BVA(U) →
R is area-strictly continuous on BVA(U) and sequentially weak*–lower semicontinuous

on BVA(U).

For u ∈ BVA(Ω) let ũ := χU\Ωu0 + χΩu. Then due to Corollary 4.21 we have ũ ∈
BVA(U) and, with the outer normal ν of Ω,

Aũ = Au Ω + Au0L
n (U \ Ω) + tr(u− u0)⊗A νHn−1 ∂Ω.(5.10)

Hence,

FU [ũ] = Fu0
[u] +

∫
U\Ω

f(x,Au0) dx.(5.11)

If uk
∗
⇀ u in BVA(Ω), then ũk

∗
⇀ ũ in BVA(U). Indeed, it is clear that uk → u in L1(U).

Moreover, since uk is bounded in BVA(Ω), so is Auk ∈ M(Ω) and tr(uk) in L1(∂Ω)

(using the Trace Theorem 4.17). This and (5.10) shows that ũk is bounded in BVA(U).

In conjunction with uk → u in L1(U) we obtain ũk
∗
⇀ ũ in BVA(U).

Since FU is sequentially weak*–lower semicontinuous on BVA(U), it follows that Fu0

sequentially weak*–lower semicontinuous on BVA(Ω). �

Theorem 5.3. Let f satisfy (5.2)–(5.5). Then the functional Fu0
: BVA(Ω) → R is

coercive and has a minimiser on BVA(Ω). Moreover, we have

min
BVA(Ω)

Fu0
= inf
u0+WA,1

0 (Ω)
F.(5.12)

Proof. We begin with the coerciveness of Fu0
. Let (vk) ⊂ BVA(Ω) with (Fu0

(uk))

bounded. We have to show that (vk) is bounded in BVA(Ω). Let ṽk := χU\Ωu0 + χΩvk

as in Corollary 5.2. Then due to (5.11), FU (ṽk) is bounded. By the linear growth
condition (5.3) we see that (Avk) is uniformly bounded in M(U ;RK). Now choose a
ball B′ ⊂ Ω and another ball B with U ⊂ B. Since vk−u0 = 0 on U \Ω, we can extend

it by zero to a function from BVA(B) due to Theorem 4.23 (b). Now, we can apply
Poincaré’s inequality in the form of Theorem 3.3 to conclude that (vk) is also bounded

in L1(U). Hence, (vk) is bounded on BVA(Ω), which is the desired coerciveness.

By positivity of f and f∞, Fu0
[w] ≥ 0 for all w ∈ BVA(Ω), and so we may pick

a minimising sequence (uk) in BVA(Ω). By coerciveness, this sequence is bounded

in BVA(Ω). We can pick a (non–relabeled) subsequence such that uk
∗
⇀ u in BVA(Ω)

for some u ∈ BVA(Ω). By the sequential weak*–lower semicontinuity from Corollary 5.2,
we deduce that u is a minimiser of Fu0

.
We conclude the proof by showing (5.12). The ’≤’-part is obvious. Due to Proposi-

tion 4.24 we find a sequence wk ∈ Du0
such that wk

〈·〉→ u in BVA(U). By the A–area strict

continuity of FU on BVA(U), see Proposition 5.1, we see that FU (u) = limk→∞ FU (wk).
This and (5.11) proves the ’≥’-part of (5.12). �

6. Appendix

We now collect some auxiliary results that have been used in the main part of the
paper. The following lemma shows that the recession function is automatically well-
defined on the A-rank one cone.

Lemma 6.1. Let A be R-elliptic, let f : Ω×R(A)→ R be A-quasiconvex in the sense
of (5.5), satisfy the linear growth condition (5.3) and the continuity condition (5.4).
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Then f(x, ·) is Lipschitz continuous in R(A) uniformly in x ∈ Ω. Moreover, the strong
recession function f∞ : Ω×R(A)→ R with

f∞(x,A) := lim
x′→x
A′→A
t→∞

f(x′, tA′)

t

is well-defined on Ω×C (A). (Note that the limit A′ → A is taken in R(A).) Moreover,

|f∞(x,A)− f∞(x′, A)| ≤ ω(|x′ − x|)|A|

for all x, x′ ∈ Ω and A ∈ C (A).

Proof. We begin with the Lipschitz continuity of f on R(A).
Let A ∈ R(A) and B = a⊗A b ∈ C (A). Since f is A-quasiconvex, it is a consequence4

of [FM99, Prop. 3.4] that t 7→ f(x,A+ tB) is convex on R. This property is known as
C (A)-convexity, see [KK16].

Thus the function g(t) := |f(x,A+ ta⊗A b)− f(x,A)|/t is increasing. Hence, with
λ := (1 + |A+B|+ |A|)/|B| > 1, we obtain

|f(x,A+B)− f(x,A)| = g(1) ≤ g(λ)

≤ |f(x,A+ λa⊗A b)− f(x,A)| |B|
1 + |A+B|+ |A|

≤ c2(2|A|+ λ|B|) + 2c3
1 + |A+B|+ |A|

|B|

≤ c2(1 + 3|A|+ |A+B|) + 2c3
1 + |A+B|+ |A|

|B|

≤ (3c2 + 2c3)|B|

using (5.3). This proves the Lipschitz continuity in C (A)-directions.
If B ∈ R(A), then by R(A) = span(C (A)) we can decompose B into at most K

summands from C (A). Now the Lipschitz continuity in C (A)-directions, implies

|f(x,A+B)− f(x,A)| ≤ K(3c2 + 2c3)|B|(6.1)

for all A,B ∈ R(A). This proves the Lipschitz continuity part.
Let A ∈ C (A) and x ∈ Ω. Then t 7→ (f(x, tA)− f(x, 0))/t is increasing in t by C (A)-

convexity of f(x, ·) and bounded by c2|A|due toy the linear growth condition (5.3). This
allows us to define g∞ : Ω× C (A)→ R by

g∞(x,A) = lim
t→∞

f(x, tA)

t
= sup

t>0

f(x, tA)

t
.

Now, let A′ ∈ R(A) and x′ ∈ Ω, then with (6.1) and (5.4)∣∣∣∣f(x′, tA′)

t
− f(x, tA)

t

∣∣∣∣ ≤ ∣∣∣∣f(x′, tA′)− f(x′, tA)

t

∣∣∣∣+

∣∣∣∣f(x′, tA)− f(x, tA)

t

∣∣∣∣
≤ K(3c2 + 2c3)|A−A′|+ ω(|x′ − x|)1 + t|A|

t
.

This proves f∞(x,A) = g∞(x,A) for all x ∈ Ω and A ∈ C (A). Consequently, we obtain
the existence of f∞ in Ω× C (A).

The continuity of f∞(·, A) for A ∈ C (A) is a direct consequence of the continuity
of f(·, A). �

4As proven in [FM99], if A is a first order linear homogeneous differential operator, then A–
quasiconvex functions are ΛA–convex. Note that in our setting, L = A need not be first of first order,

however, their arguments extend to the case of higher order annihilating operators A in a straightforward

manner.
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Lemma 6.2. Let A be R-elliptic, let f : Ω×R(A)→ R be A-quasiconvex in the sense
of (5.5), satisfy the linear growth condition (5.3) and the continuity condition (5.4).

Furthermore, let Ω b U with ∂U Lipschitz. Then there exists an extension f̃ : U ×
R(A)→ R of f , which is A-quasiconvex, satisfies the linear growth condition (5.3) and
the continuity condition (5.4). (The modulus of continuity might change by a factor.)

Proof. Since ∂U and ∂Ω are Lipschitz, we find a Lipschitz map Φ : U → Ω, which is
the identity on Ω. Now define f̃(x,A) := f(Φ(x), A). �
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