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Abstract

The life history characteristics of some elasmobranchs make them particularly vulnerable to fishing mortality; about a third
of all species are listed by the IUCN as Threatened or Near Threatened. Marine Protected Areas (MPAs) have been suggested
as a tool for conservation of elasmobranchs, but they are likely to be effective only if such populations respond to fishing
impacts at spatial-scales corresponding to MPA size. Using the example of the Celtic Sea, we modelled elasmobranch
biomass (kg h21) in fisheries-independent survey hauls as a function of environmental variables and ‘local’ (within 20 km
radius) fishing effort (h y21) recorded from Vessel Monitoring Systems data. Model selection using AIC suggested strongest
support for linear mixed effects models in which the variables (i) fishing effort, (ii) geographic location and (iii) demersal fish
assemblage had approximately equal importance in explaining elasmobranch biomass. In the eastern Celtic Sea, sampling
sites that occurred in the lowest 10% of the observed fishing effort range recorded 10 species of elasmobranch including
the critically endangered Dipturus spp. The most intensely fished 10% of sites had only three elasmobranch species, with
two IUCN listed as Least Concern. Our results suggest that stable spatial heterogeneity in fishing effort creates de facto
refugia for elasmobranchs in the Celtic Sea. However, changes in the present fisheries management regime could impair the
refuge effect by changing fisher’s behaviour and displacing effort into these areas.
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Introduction

An emerging requirement of the Ecosystem Approach to

Fisheries Management (EAFM) is to understand the spatial scales

at which the ecological impacts of fishing operate [1], [2]. Fish

communities typically are not homogeneous; structure and

composition can vary in space as a function of environmental

variables such as habitat and benthic community composition [3],

[4], and these patterns of spatial variation can remain consistent

over time [5]. Such environmentally driven spatial heterogeneity

or ‘patchiness’ in the marine fish community can be reflected in

regional variation in size-structure [6]. However, statistical

modelling of a metric of size-structure and species composition

(the Large Fish Indicator [7]) in the Celtic Sea suggests that the

fish community can also vary in space with ‘local’ (within 20–

40 km radius) fishing intensity [8]. This fishing effect on spatial

size-structure likely occurs because of temporal stability in the

regional distribution of fishing effort [9], [10] relative to

environment and habitat characteristics (e.g., substratum, [11]).

Such stability may reveal time-lagged Pressure-State relationships

between a local effort regime and the fish community it affects. In

this context, fishing impacts on the seabed (e.g., [12]) and on target

communities [1], [13] can be spatially discrete. Correct knowledge

of such fishing impacts is critical to the use of spatial management

measures (e.g., Marine Protected Areas, MPAs) in conservation

and recovery of exploited communities [14]. In particular, by

improving our understanding of the appropriate spatial scales at

which MPAs might have benefits for species with different life

history.

Fishing-induced curtailment of fish community size-structure

(e.g., [15], [16]) reflects changes in fish community species

composition and evenness [17]. This change typically comprises

loss of larger body-sized species having life history traits including

slow growth, late age at maturity and low fecundity. These

characteristics often render populations particularly vulnerable to

incidental [18] or target mortality [19], [20]. A group exemplifying

‘slow’ life history is the elasmobranchs, i.e., sharks, rays and

chimaeras, which have among the most complex reproductive

strategies of all fishes [21]. In the North Atlantic, relatively few

elasmobranch species are targeted commercially (e.g., [22]), but

many are known to be vulnerable to fishing (e.g., [23], [24]). Some

species of elasmobranchs may even have been extirpated in

heavily exploited regions, like the North Sea [25], [26]. In a

specific example, common skate Dipturus batis was already very rare

in the Irish Sea by 1981 [27] and (now classified as two separate

species: Dipturus intermedia and D. flossada) has been listed by the

IUCN as Critically Endangered [28].
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If fish community size-structure and species composition change

in space with environment and fishing intensity, then heteroge-

neity in distribution and abundance of vulnerable elasmobranchs

can be expected. Rogers et al. [29] note that current elasmobranch

abundance is lowest in the most heavily fished (south-eastern) part

of the North Sea, although previously such species were common

in this area [30]. Greenstreet et al. [31] also observed that demersal

fish species diversity has declined in those areas of the North Sea

showing greatest fishing effort, with the decline reflecting loss of

species such as the globally ‘Vulnerable’ (IUCN) spiny dogfish

Squalus acanthius. In contrast, Walker & Heessen [23] speculated

that areas in the North Sea that are difficult to access with towed

gear could become refugia for elasmobranch populations. If such

areas of low fishing intensity do act as refugia, this may create

opportunities for informed spatial management. There is evidence

that formal MPAs can contribute to conservation and manage-

ment of elasmobranchs [32], [33], although this is strongly

contingent on movement patterns [34], which can vary with

environmental conditions [35]. For an MPA to succeed, elasmo-

branch abundance would have to respond to ‘local’ fishing

intensity at a scale expedient to realistic (socio-economically

acceptable) MPA size [36]. Some modelling studies suggest that

temperate MPAs should encompass around 80% of a fish species

range, and thus to be successful MPA size must increase with

assumed species mobility [37]. However, meta-analysis suggests

that temperate protected areas (,100 km2) are associated with

positive responses in the abundance and biomass of some fish

species, although often this coincides with strong habitat associ-

ation within the MPA boundary [38], [39]. Given the critical

conservation status and growing public profile of elasmobranchs, it

is important to understand the spatial scale at which MPAs might

be effective tools to conserve populations.

The Celtic Sea retains some of the largest remaining

populations of many NE Atlantic elasmobranch species [29],

including the critically endangered D. intermedia and D. flossada. In

the current paper, we combined fisheries-independent survey data

and fine-scale fishing effort (Vessel Monitoring Systems, VMS)

data from the Celtic Sea with several key environmental

descriptors. The objective was to establish whether spatial

heterogeneity in fishing effort can lead to a temporally stable

mosaic of fished and unfished areas that would generate de facto

refugia resulting in local changes in biomass and species

composition of elasmobranchs. De facto refugia (sensu [40]) are

here considered to be areas without formal restrictions on the

spatial allocation of fishing effort, but where there are natural

obstacles (e.g., rough seabed or distance from port) that act to

minimize actual fishing activity. Such refugia may represent sites

where establishment of formal MPAs would result in minimal

fishing effort displacement and therefore would be good candidate

areas for such management interventions.

Methods

In studies of spatial or temporal variation in fish abundance,

standardised catch rate (e.g., Catch Per Unit of Effort, CPUE) is

often used. Standardised CPUE accounts for variation in

abundance or biomass due to environmental or other factors

(see [41] for a review). In the current study, linear mixed effects

models that included environmental variables were used to test for

an effect of local fishing effort regime (hours fishing per year, h

y21) on biomass of elasmobranchs caught per hour of survey trawl

sampling (kg h21) in the Celtic Sea.

Ecological data
The Irish Groundfish Survey (IGFS) is a standardized bottom-

trawl survey that includes the Celtic Sea (Figure 1), and has

occurred in late autumn since 1997. The Irish Marine Institute

operate the survey following standard International Bottom Trawl

Survey (IBTS) protocol. Sampling gear is a Grande Ouverture

Verticale (GOV) trawl fitted with a 20 mm codend liner. In a

given year, trawl samples (approx. 30 min duration) are collected

at sites randomly selected from a pool of around 100 fixed

sampling stations (‘Prime Stations’). All fish captured are identified

to species and measured (total length; L).

Using IGFS survey data (2006–2011), catch numbers at length

were converted to weight (W) at length using weight at length

relationships (W =aLb), where the parameters a and b were

obtained by direct analysis (common species) or from FishBase

(www.fishbase.org). Catch weight at each length class of each

demersal fish species in each trawl sample (haul) was then

converted to a density (kg h21) by dividing by the precise trawl

duration. Elasmobranch species richness (total number of species)

and biomass density (kg h21) was then calculated for each survey

haul.

In any spatial investigation of the fish community it is necessary

to account for biogeography [29]. All stations were allocated to a

Celtic Sea biogeographic sub-region based on ‘similar’ [42]

demersal fish species composition (henceforth ‘fish assemblage

region’) (Figure 2). This factorial variable (having four classes, East,

Onshore, Midshore, Offshore) was derived from root-transformed

species abundance data from the IGFS. A resemblance matrix was

generated using the Bray-Curtis index of similarity, creating a

dendrogram using the group-average linkage clustering method

and then followed by a SIMPROF test [42] to define clusters a

posteriori that were significantly (P,0.05) different [9]. In the study

region (as in the North Sea, [4], [5]) demersal fish assemblage was

related to seabed substratum but may also integrate the effects on

fish community structure of associated oceanographic variables,

especially depth [43]. Each sampling station was also allocated to a

substratum class (gravel, sand or mud) using maps available on the

Mapping European Seabed Habitats (MESH) website (www.

searchmesh.net). Because of differences in the fish community

between the shallower eastern area of the Celtic Sea and the

deeper western shelf (e.g., [44], [45]), depth (m) and location

(longitude + latitude) were also modelled as candidate explanatory

variables of relative elasmobranch biomass.

Fishing effort data
International fishing effort was derived from Vessel Monitoring

System (VMS) records (2006–2011) for the area of the Celtic Sea

within the Irish Exclusive Economic Zone (EEZ) (Figure 1). VMS

transmits the position and speed of fishing vessels at least every

2 hours. All demersal gears (otter and beam trawls and scallop

dredges) were included and speed criteria were applied to

distinguish fishing activity from steaming and other non-fishing

activity. Using records from on-board observers, Gerritsen &

Lordan [46] found that for otter bottom trawlers, vessel speeds

between 1.5 and 4.5 knots correctly identified fishing activity in

88% of cases. Each VMS record where the vessels were deemed to

be fishing was allocated an effort value that was equal to the time

interval between successive VMS records (generally 2 hours). For

each IGFS sampling station, the value used for analysis was

summed annual fishing effort (h y21) within a 20 km radius circle

from the survey haul midpoint (Figure 1). International VMS data

were only available for survey stations within the Irish EEZ.

However, some circles extended outside this national boundary

and/or onto land. In these cases, effort was corrected for the area

Elasmobranch Refuges
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Figure 1. Location of IGFS survey hauls in 2007 with associated 20 km circles; other study years have similar sample distribution.
Fishing effort is shown as a background, where increasing effort is represented as darker shading; note that effort data outside the Irish EEZ is
incomplete. Black dots indicate main fishing ports. The border between UK and Irish Exclusive Economic Zones (EEZ) is shown.
doi:10.1371/journal.pone.0049307.g001

Figure 2. Environmental variables included in models of elasmobranch abundance in the Celtic Sea: Depth, Location (latitude +
longitude) and Fish assemblage region (East, Inshore, Midshore, Offshore). Black dots indicate main fishing ports.
doi:10.1371/journal.pone.0049307.g002
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of each circle for which data were available by dividing recorded

values by the proportion of each circle comprising sea within the

EEZ. Only stations where .50% of the area of the 20 km circle

was sea and within the Irish EEZ were used.

Analysis
The effect of fishing effort (h y21) on elasmobranch biomass (kg

h21) by survey haul was estimated using models that accounted for

environmental variables. Model selection was conducted in an

information theory context using AIC. The full starting model

included: Fish assemblage region (Assemblage), Substratum,

Depth (m), sampling location (Location: latitude + longitude)

and interactions. A preliminary comparison indicated that a linear

model had lower AIC than a (nonlinear) GAM and hence further

analysis focused on linear models. Boxplots of model residuals

showed variation in elasmobranch biomass by Prime Station

(Figure 3), and so a random effect of Prime Station was included.

In order to allow direct comparison of model coefficients,

numerical variables were standardised such that mean = 0 and

variance = 1. The ‘best’ final model (lowest AIC) had the following

form:

Biomassij~a z b2| Effortijz b3| Locationijz

b4| Assemblageijz B5| Effortij| Assemblageijzaiz eij

Where: Biomassij is elasmobranch biomass (kg h21) for

observation (haul) j at Prime Station i and ai is the random effect

of Prime Station. Residual distributions suggested non-heteroge-

neity so a structure was added that allowed variance to change

with location; this resulted in acceptable residuals. A spline

correlogram of model residuals against location (latitude and

longitude) showed no spatial autocorrelation.

This statistical modelling indicated a distinct area in the NE

Celtic Sea where minimal fishing effort was combined with greater

biomass and species richness of elasmobranchs. We hypothesised

that this de facto refuge developed because fishermen avoid the area

for one or more of the following reasons:

1. The catch (landings per unit effort, LPUE) of target species is

relatively low in this area.

2. The relative cost of fishing this area, measured as distance from

nearest port, is high.

3. The risk of losing gear is unacceptably high due to rough or

unpredictable seabed conditions.

Data were not available to support a robust quantitative analysis

of this question, so a qualitative approach was taken involving

mapping and informal questioning of fishermen who operate

around the area.

Results

Model coefficients indicated a negative effect of fishing effort on

Celtic Sea elasmobranch biomass. There was also an effect on

elasmobranch biomass of fish assemblage region, and an

interaction between effort and assemblage region with the

strongest effort effect across the ‘East’ region (Figure 4) where

greatest elasmobranch biomass was observed (Figure 5). In

addition, there was a positive effect on elasmobranch biomass of

location (latitude + longitude), with greatest biomass in the NE

Celtic Sea. Fishing effort, location and fish assemblage region had

approximately equal importance as explanatory variables in the

final model (Table 1).

There was a distinct area in the NE Celtic Sea where low fishing

effort overlapped closely with greater elasmobranch biomass and

species richness (Figure 5; Figure 6). This area showed moderate

Figure 3. Boxplot of elasmobranch abundance by survey Prime Station. Values are residuals from the ‘best’ (lowest AIC) linear model.
doi:10.1371/journal.pone.0049307.g003
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LPUE for commercial species, and was closer to port than other

much more heavily fished areas of the Celtic Sea (Figure 5).

However, fishermen indicated that the seabed in much of the area

comprised highly dynamic sand features that made trawling

inefficient and unpredictable. We therefore suggest that hypothesis

(3: risk of losing gear due to rough or unpredictable seabed) likely

best explains the low effort area of the Celtic Sea that now

represents a de facto elasmobranch refuge.

Discussion

The spatial distribution of fishing effort is often very uneven

[12] and can remain stable over time [10]. In the NE Celtic Sea,

this creates areas where annual fishing effort within a 20 km radius

of IGFS survey sampling sites is consistently ,3.0 h km22. We

find that these areas have many more elasmobranch species and

greater elasmobranch biomass than geographically proximate

heavily-fished areas. Our results suggest that heterogeneity in

effort may create de facto refugia for Celtic Sea elasmobranchs,

provided this mosaic of fishing effort distribution remains stable

through time.

The distribution of elasmobranchs in the NE Atlantic shows

broad patterns that are most likely driven by environmental

parameters at regional scales (100 s km) [37]. Many elasmobranch

species also respond to local habitat characteristics such as

substratum type [47], [48] and depth [49], [50]. In this context,

it might be suggested that remaining (relatively) high biomass

patches just reflect areas where high quality habitat supported

greatest elasmobranch biomass prior to fishing. Populations

depleted by spatially homogenous fishing mortality would likely

contract spatially into to such optimal areas [51]. However, we

found that both fishing effort and habitat/environmental descrip-

tors were retained as important explanatory variables in models of

Figure 4. Display of modelled effects on elasmobranch biomass (kg h21): fishing effort (h y21) by demersal fish assemblage region
(East, Inshore, Midshore, Offshore).
doi:10.1371/journal.pone.0049307.g004
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elasmobranch biomass. This suggests that de facto elasmobranch

refugia may occur when low commercial fishing effort overlaps

with favourable habitat.

Anecdotal information from fishers suggested that shifting sandy

seabed in parts of the refuge area makes trawling difficult and

hence uneconomic under the current management regime. The

environment may thus impart some degree of on-going natural

protection from fishing. However, some commercial fishing does

occur in the area and LPUE can be quite high. This existing effort

means that changes in the present fisheries management regime in

the Celtic Sea (e.g., introduction of MPAs for other reasons) could

displace the distribution of effort into this area [52] and perhaps

quickly impair its value as an elasmobranch refuge. Historical data

Figure 5. Landings Per Unit of Effort (LPUE) of all commercial species by Irish fishing vessels (2006–2011). The hashed area indicates
insufficient data for LPUE estimates. Locations of all IGFS trawl samples used in the current study are shown. Standardized survey elasmobranch
biomass (kg h21) by sampling year is illustrated by the size of the bubbles. The legend shows reference bubble sizes with associated biomass values.
Black dots indicate main fishing ports.
doi:10.1371/journal.pone.0049307.g005

Table 1. Coefficients for a model relating standardised
elasmobranch biomass (kg h21) in Celtic Sea survey hauls to
annual fishing effort (h y21) (2006–2011) within 20 km radius.

Variable Value SE DF t value p value

Intercept 0.687 0.317 110 2.169 0.032

Fishing effort 20.535 0.176 110 23.046 0.003

Location 0.174 0.062 110 2.793 0.006

Inshore 20.829 0.321 40 22.582 0.014

Midshore 20.974 0.331 40 22.944 0.005

Offshore 20.862 0.346 40 22.491 0.017

Effort:Inshore 0.544 0.201 110 2.71 0.008

Effort:Midshore 0.431 0.184 110 2.342 0.021

Effort:offshore 0.669 0.181 110 3.69 ,0.001

Additional variables are demersal fish assemblage class (East, Inshore, Midshore,
Offshore) and Location (latitude + longitude).
doi:10.1371/journal.pone.0049307.t001

Figure 6. Standardised biomass (kg h21) and species compo-
sition of elasmobranchs in survey hauls (2006–2011) at
sampling sites in the upper (High) and lower (Low) 10% of
the observed eastern Celtic Sea fishing effort (h y21) range.
IUCN status of each species is given.
doi:10.1371/journal.pone.0049307.g006
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(noted by [53]) on fisheries discards of skates indicates that these

species were previously abundant in areas proximate to the Celtic

Sea refuge, from where they now have been almost extirpated.

Further work is required to understand how this de facto refuge

functions to sustain elasmobranch biomass and species richness.

Protection of nursery areas has been considered important in

management of shark populations [54], [55]. Many shark species

have distinct nursery areas, typically in nearshore areas [56].

Juveniles are often sedentary [57] meaning that they are likely to

remain close to their natal area. Juveniles of Raja clavata can show

strong site fidelity [58], and Frisk et al. [59] found that enhanced

juvenile survival could help recovery of exploited skates. Notably,

an analysis of long-term fisheries survey data (1967–2002) around

the British Isles identified the area of greatest elasmobranch

biomass observed in the current study as being important to

juvenile Rajids, and also found that juveniles of the critically

endangered D. Batis were only found in the Celtic Sea [60].

In contrast, recent evidence suggests that protection of adults

may be a more effective elasmobranch conservation strategy than

focusing on nursery grounds (see review in [55]). This is because

deterministic stock/recruitment relationships mean that the

contribution of juveniles to population growth rate is low

compared to that of sub-adults and mature adults (e.g., [21]).

For example, modelling suggests that a 3-season closure would

protect Thames Estuary thornback ray from fishing pressure, but

predominately by conserving larger size-classes [61]. Adults of

some elasmobranch species, e.g. D. batis, are highly sedentary [62]

and don’t move out of low-effort areas where they receive some

protection from fishing. Other ray populations can also benefit

from MPAs, although the effect varies with species life history [63].

If protection of adult elasmobranchs is the optimal conservation

strategy, then the discovery of a Celtic Sea refuge for at least ten

elasmobranch species becomes even more important. Populations

in this refuge, if protected, could possibly act as a source that

would help sustain recruitment of these species in the Celtic Seas

region.

The legal and management cost of establishing an MPA can be

significant [64]. However, the key restrictions on the success of

MPAs include negative cultural [65], political [66] and economic

[67] impacts, and displacement of effort to other areas [68]. The

Celtic Sea refuge area currently identified consistently receives

very little effort and hence these problems may be limited because

MPAs sited with reference to existing effort patterns are typically

relatively effective [36]. At the most pragmatic level, such an MPA

would protect an area for which survey data records greater

elasmobranch abundance and species richness than anywhere else

in the region. Annual fisheries displacement by the MPA could be

less than three hours per km2.
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