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ABSTRACT: We report a silver-induced switching of regioselectivity in gold-
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“silver effect”: that is, one that is implicated in the catalytic process itself, via o- X
gold z-silver acetylides. These results are of significance because they clearly

show that the use of silver as halide abstractors in gold-catalyzed reactions may

result in “silver effects” when terminal alkyne substrates are involved.
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H omogenous gold catalysis is widely used in synthesis for
the activation of z-bonds toward nucleophilic attack.'
Within this context, silver salts (AgX) are commonly used to
convert LAuCl to the active cationic complex LAuX via
halogen abstraction.”” However, there have long been
suspicions that silver is not totally innocent in many of these
gold-catalyzed reactions, so much so that the term “silver
effect” has been coined and its existence debated.’ In
particular, Zhdanko and Maier have recently carried out
detailed studies to explain and classify many of the “silver
effects” previously observed in the literature, with the
conclusion that none were frue silver effects.” In contrast,
formation of argento vinyl gold species A* has recently been
shown to be responsible for observed silver effects in gold-
catalyzed hydrofunctionalization of alkynes,” but A affects the
fraction of available in-cycle organogold intermediates rather
than the mechanism of the catalytic process itself (Scheme
1A). A true “silver effect” within gold-catalysis (i.e, one that
affects the catalytic cycle) has so far not been discovered.”

Scheme 1. Silver Effect
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While investigating the gold-catalyzed hydroamination®® of
terminal alkynyl sulfamides’ 1,% we serendipitously discovered
that the presence of silver causes a dramatic change in
regioselectivity from S-exo-dig to 6-endo-dig (2 vs 3, Scheme
1B). We herein provide evidence to suggest that this switching
of selectivity is an example of the elusive true “silver effect” and
propose that the mechanism for the formation of 3 involves a
o,m-mixed silver—gold acetylide B, whereas 2 involves the o,7-
digold acetylide C (Scheme 1B).

Our investigations commenced with the screening of
catalysts, silver, and bases to form 2a or 3a (Table 1, see
Supporting Information for full optimization studies). In the
presence of PPh;AuNTf, no reaction occurred (entry 1).
However, a mixture of PPh;AuCl and AgSbF, produces the 6-
endo-dig product 3a, albeit with undesired 4 as the main
product (entry 2). This encouraged us to test other silver salts
in combination with PPh;AuCl (entries 3—5). The use of
AgNTf, led to undesired sulfamide 4 as the only product
(entry 3) and AgOT( furnished 3a as the major product but
still with an appreciable amount of 4 (entry 4). Pleasingly,
further screening (see Supporting Information) revealed that
the combination of Ag,CO; and PPh;AuCl catalyzes the
formation of 3a with high efficiency and total regiocontrol
(entry S). Lowering the catalyst loading is detrimental to the
reaction, yielding mainly 4 (entries 6 and 7). In stark contrast,
control reactions using only either Ag,CO; or PPh;AuCl
resulted in no reaction (entries 8 and 9). Therefore, the
combination of PPh;AuCl and Ag,CO; is necessary for
successful formation of 3a.

The intriguing role of the Ag,CO; prompted us to study
other bases in the reaction. The addition of Et;N resulted in no
reaction (entry 10). While replacing Ag,CO; with K,CO; (0.1
equiv) provided a complex mixture of products (entry 11),
increasing the amount of base is beneficial for the formation of
S-exo-dig cyclization product 2a, which is the regioisomer of 3a
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Table 1. Screening of the Catalyst

O;\ 4 (10[ﬁ1lgl%) Q.o  O°
i /S\NBn RN NBn OO
/ 80°C, 18 h ) RANTTNBn
1a 2a 3a 4
R=CH,CO,Et 5-exo-dig 6-endo-dig
entry [Au] additive ratio 2a:3a:4“ conv. (%)“
1 PPh,AuNTf, n.d. 0
2 PPh;AuCl AgSbF,” 0:25:75 100
3 PPh;AuCl AgNTE? 0:0:100 43
4 PPh;AuCl AgOTf" 0:75:25 70
s PPh;AuCl Ag,CO,” 0:100:0 100
6 PPh,AuCI¢ Ag,CO;° 0:22:78 65
7 PPh,AuCl Ag,CO;° 0:0:100 100
8 - Ag,CO," nd. 0
9 PPh,AuCl - n.d. 0
10 PPh;AuCl Et;N“ n.d. 0
11 PPh,AuCl K,CO," n.d.® 100
12 PPh;AuCl K,CO; 100:0:0 65
13 PPh,AuCl K,CO,¢ 100:0:0 100
14 PPh,;AuCl Na,CO;¢ 100:0:0 100
15 PPh,AuCl Cs,CO4¢ 100:0:0 23

“Determined by 'H NMR analysis. n.d. = not determined. “10 mol %.
°s mol %. “1 equiv. “Complex mixture.20 mol %. 35 mol %.

(entries 12—13). Gratifyingly, the use of 0.35 equiv. K,CO,
enabled the formation of 2a with total regiocontrol and full
conversion (entry 13). Other alkaline carbonates (Na,CO; and
Cs,CO,)’ also provide 2a exclusively (entries 14—15).
Therefore, the evidence so far seems to point toward the
silver counterion in Ag,CO; being responsible for switching
the regioselectivity from S-exo (2a, entries 13—15) to 6-endo
(3a, entries 4—5)."°

Before attempting to investigate the role of silver in this
dramatic switch of regioselectivity, we decided to first study the
scope of both the S-exo-dig as well as 6-endo-dig reactions
(Table 2). Using K,CO; as base (method A) allowed the
reaction to proceed smoothly with alkyl derivatives (R’ =
alkyl), providing the S-exo product 2 with excellent
regioselectivity (>20:1 2:3) and good yields (86—88%, entries
1—4). The steric size of the substituent R’ does not affect the
yield or regioselectivity, although in the case of R’ = ‘Bu,
method A has to be modified to 60 °C (entry 4) in order to
avoid isomerization of the exo-alkene in 2d to the
corresponding endo-alkene isomer. When K,COj is replaced
with Ag,CO; (method B) for these R’ = alkyl substrates, all the
6-endo products 3a—3c were obtained with decent to good
yields (58—84%) and excellent regioselectivity (>20:1 3:2),
except for 1d (R’ = ‘Bu), which afforded a complex mixture.
Steric hindrance on R’ is therefore tolerated for the S-exo
reaction, but not the 6-endo (entry 4).

When aromatic N-derivatives are employed (R = Ar),
method A required a further optimization of temperature in
order to obtain the best regioselectivity for 2 (entries 5—7,
Table 2). Such an approach was successful for le and 1f
(>20:1 2:3 at 25 and 60 °C respectively), but in the case of 1g
the regioselectivity could only be improved to 2.6:1 (2g:3g). In
contrast, all R = Ar derivatives 1e—1g successfully yielded the
6-endo-dig isomers 3e—g with good yields (74—82%) and
excellent regiocontrol (>20:1 3:2, entries S—7).
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Table 2. Scope of the Reaction

S PPhsAuCI Q_o o,
RHN"""NR' _ (10 mol%) RN/S\NR' or RN“SNR'
MeCN, 80 °C “
Z 18h -

Method A: K,CO3 (0.35 equiv.) favors 2
Method B: Ag,CO3 (0.1 equiv.) favors 3

entry substrate method A (green) method B (red)
2:3, yield (%)* 3:2, yield (%)“
1 R = CH,CO,Et >20:1,% 86% 2a >20:1,° 84% 3a
R'= CH,Ph 1a
2 R = CH,CO,Et >20:1, 86% 2b >20:1, 58% 3b
R’ ="Bu 1b
3 R = CH,CO,Et >20:1, 88% 2c¢ >20:1, 74% 3c
R = Pr 1c
4 R = CH,CO,Et >20:1,% 88% 2d complex mixture
R’ = Bu 1d
5 R = Ph >20:1,° 86% 2e >20:1 74% 3e
R’ = Bn le
6 R = p-MeO-CeH, >20:1,% 90% 2f >20:1, 78% 3f
R’ = Bn If
7 R = p—Cl-CjH, 2.6:1% (100%)" >20:1, 82% 3g
R’ =Bn Ig
8 R =Bn >20:1,%" 94% 2h >20:1; 64% 3h
R’ = Bn 1h
9 R = "Bu >20:1, 86% 2i >20:1; 849% 3i
R’ =Bn li
10 R =Pr >20:1,% (14%)" 2j traces
R’ = Bn 1j
11 R = Me 4.7:1,1 82% 2k >20:1, 11% 3k
R’ = Bn 1k
12 R = CH,CH,0OMe >20:1," 72% 21 >20:1, 78% 31
R'=Bn 1l

“Isolated yields unless otherwise stated. 8 h. °5 h. 960 °C. €25 °C, 4
d.77 h. %2g decomposes upon column chromatography. Conversion
by 'H NMR analysis. ‘[Au] = 15 mol %. /2 d.

Entries 8—12 demonstrate that the S-exo products 2h—i and
2k—1 can be effectively and selectively formed using method A
when R = alkyl. However, the reaction is sensitive to steric
hindrance on the nucleophilic N, with a secondary alkyl on 1j
causing a drop in conversion to 14% (entry 10). The formation
of 3h—I using method B is also affected by steric size on R.
While 3h—i and 31 are formed smoothly (entries 8—9 and 12),
1j, where R = Pr, is reluctant to undergo hydroamination
presumably due to sterics as in the case above (entry 10).
Surprisingly, the methyl substituted 1k also produces a low
conversion and yield of 11% (entry 11).

The results in Table 2 demonstrate that the switching
between S-exo-dig and 6-endo-dig using methods A and B,
respectively, is a general phenomenon for terminal alkynyl
sulfamides, regardless of the identity of substituents R or R on
1.

The terminal alkyne on 1, however, was found to be crucial
for the switching of regioselectivity between 2 and 3 to be
effective. This is clearly demonstrated using internal alkyne
1m, where both methods A and B resulted in exactly the same
10:90 2m:3m ratio, albeit with a lower conversion using
K,CO; compared to Ag,CO; (60% vs 100%, Scheme 2). This
difference in reactivity could be attributed to the lower
efficiency of K vs Ag as chlorine scavenger in the formation of
the cationic gold complex."’

DOI: 10.1021/acscatal.9b00249
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Scheme 2. Reaction of Internal Alkyne 1m with Both
Catalytic Systems
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Ag,CO3 (0.1 equiv.) 1 day, 100% conv., 10:90 (2m:3m)
K,CO3 (0.35 equiv.) 2 days, 60% conv., 10:90 (2m:3m)

This unexpected result prompted us to undertake a
mechanistic study in order to gain insight into the reason for
regiodivergence. The formation of 3m as the major isomer,
even under optimal conditions for 2 (method A), led us
initially to hypothesize that a gold acetylide could be an
intermediate in the formation of the S-exo-dig products 2a—I,
which is activated via o,7-digold complex (C’, Scheme 3A),"
while formation of the 6-endo-dig regioisomer 3a—l might be
promoted by classical z-activation-only of the alkyne (D,
Scheme 3A).

In order to investigate our initial hypothesis, deuterated D-
1h was submitted to methods A and B (Scheme 3B). The
complete loss of the D-label in 2h is consistent with the in situ
generation of a gold acetylide, as expected. However, the
unexpected loss of D in the presence of Ag,CO; would suggest
the presence of a gold acetylide in the formation of 3h as well,
thereby ruling out our initial hypothesis of 7-activation only for
the formation of 3. We therefore revised our hypothesis to
suggest that the formation of both 2 and 3 proceeds via a gold
acetylide complex E (see later, Scheme 3C). Only when
formation of the gold acetylide is not possible (e.g, 1m) does
competitive m-activation-only (D) occur, thereby explaining
the identical ratio of 2m:3m under both conditions (Scheme
2).

In order to ascertain how much silver is required for
regioselectivity switching, the influence of the Ag:Au ratio was
investigated (Table 3). Regioselectivity is not affected when
silver is doubled (entry 2). In contrast, when the Ag:Au ratio is
lower than 2:1, the formation of 2a starts to be competitive
(entry 3). Finally, when 1:1 Ag:Au is employed, only S-exo
isomer 2a is formed (entry 4). Thus, under our optimal
conditions, the silver needs to be in excess of the gold catalyst
for the switching of regioselectivity to take effect. It should be
noted, however, that for other commonly used and more
cationic silver sources such as AgSbF¢ and AgOT{, the 3a:2a
ratio is >20:1 even when the Ag:Au ratio is 1:1 (entries 2 and
4, Table 1). Therefore, the silver need not always be in excess
of gold for the silver effect to take place.

With the evidence shown in Scheme 3B and Table 3 in
mind, a mechanistic proposal was postulated (Scheme 3C).
The proposed catalytic cycle begins with the 7-coordination of
the cationic gold complex”'” to the alkyne (D)."> This
coordination increases the acidity of the terminal alkyne
proton, thus boosting the formation of the gold acetylide E in
the presence of the carbonate base.'"" An alternative possibility
involving a silver acetylide en route to 3 was ruled out, since
control experiments with silver acetylide favors the formation
of 2 instead of 3 (see Supporting Information).

E can then either be activated via the 6—7z-digold complex''
C’ in the presence of an excess of LAu" or the o-gold z-silver
activated alkyne'* B’ when Ag" is available. Next, cyclization
and protodemetalation promoted by bicarbonate produces 2
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Scheme 3. Possible Activation Modes, D-Labeling Studies
and Mechanistic Proposal

(A) Possible activation modes

NP o, 0 o, 0
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Table 3. Influence of Ag:Au Ratio on Regioselectivity

< Q o S/
i PPhsAuCI ‘57 57
RHN""°NBn — 325 N~ + RN""°NBn
Ag,CO;3 NBn
= MeCN, 80 °C, 18 h

1a R = CH2C02Et 2a 3a
entry Ag,CO; (mol %)  PPh;AuCl (mol %)  Ag:Au 3a:2a“
1 10 10 2:1 >20:1
2 20 10 4:1 >20:17
3 10 15 1.5:1 1.25:1
4 10 20 1:1 1:>20

“Determined by 'H NMR analysis. “Decomposition of starting
material observed.

and 3 from C’ and B’, respectively, while regenerating the gold
catalyst and carbonate base.

To support our hypothesis, we attempted to synthesize the
gold acetylide E from 1h. While attempts to isolate the L=

DOI: 10.1021/acscatal.9b00249
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PPh; complex failed due to stability issues, reaction of 1h with
JohnPhosAuCl pleasingly provides the stable gold acetylide S,
confirmed by single crystal X-ray diffraction (Scheme 4A).

Scheme 4. Structure and '"H NMR Analysis of 5
(A) Ortep drawing of 5 shown as 50% ellipsoids, H atoms omitted

for clarity
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(B) 'H NMR analysis in CDzCN
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To our delight, and as predicted, the exposure of § to
PPh;AuCl induced the clean formation of the S-exo-dig isomer
2h, whereas exposure of S to Ag" provides the 6-endo-dig
product 3h as the major product (Scheme 4B)."” Although we
are not yet able to ascertain why different intermediates
produce different regioisomers, these results are nevertheless
fully consistent with the proposed mechanism shown in
Scheme 4 and lend support toward the activation via C’ and B’
respectively. Furthermore, coordination of gold or silver to
gold acetylides (forming C and B, respectively) has been
reported to be more favorable than to the parent terminal
alkyne (forming D),'* which may explain why D only operates
when the formation of gold acetylide is not possible (e.g.,
Scheme 2).

In conclusion, the presence of silver can induce a dramatic
switch in regioselectivity in gold-catalyzed hydroamination of
terminal alkynyl sulfamides, and mechanistic studies suggest
that the regiodivergence results from either o—zn-digold
acetylides C’ in the absence of silver to produce 2, or o-gold
m-silver acetylides B’ in the presence of silver to produce 3.
These results are of significance because it clearly shows that
utilizing silver salts in gold-catalyzed reactions with terminal
alkynes may result in “silver effects”.
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