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Abstract— The shore mounted “Pico” OWC has a relief valve 

mounted in parallel to the turbine which connects the chamber to 

the atmosphere. The aperture of this valve is adjustable and can 

be used to regulate the pneumatic power exposed to the turbine. 

Here we develop an algorithm to actively control the relief valve 

aperture so that the peak pneumatic power of each wave cycle 

approaches but does not breach the turbine stall threshold, thus 

providing the maximum pneumatic power possible without the 

turbine stalling. The relief valve aperture is slow to adjust so the 

hydrodynamic and pneumatic behaviour is forecasted to allow 

enough time to achieve the correct aperture before the wave 

reaches the chamber. The chamber hydrodynamics are 

forecasted using a neural network that considers hydrodynamic 

measurements made 60 meters up wave and other operational, 

environmental and preceding wave, parameters. Turbine stalls 

were identified approximately by the gradient in turbine 

vibration and the angular velocity dependent pneumatic power 

threshold for turbine stall is found empirically. The relationship 

between the forecasted chamber hydrodynamics, relief valve 

aperture and the resultant pneumatic behaviour, is also found 

empirically and this is used to select the relief valve aperture that 

the control algorithm targets. 

Keywords— OWC, control, forecasting, wave energy, Pico, relief 

valve, artificial neural network 

I. INTRODUCTION 

Pico is one of the few full scale, grid connected, wave 

energy converters (WEC) in the world. It is a shore mounted 

oscillating water column type WEC located on the Portuguese 

island of Pico in the Azores archipelago. The plant has a 

chamber with a submerged opening to incident waves. Details 

and dimensions of the plant can be found in [1]. The 

oscillation of the water surface from wave action acts as a 

piston to compress and expand air in the chamber, creating a 

reciprocating flow through a duct connected to the atmosphere 

that house a Wells turbine connected to a generator. A Wells 

turbine is used because the tangential lifting force on the 

turbine blades is in the same direction regardless of the air 

flow direction. Also the comparative simplicity of a fixed 

blade turbine compared to variable pitch turbines is appealing. 

However, one limitation of the Wells turbine is the stall effect. 

The angle of attack of the turbine blades is the angle between 

the vector sum of both the velocity of the blades and the 

velocity of the driving air flow, and the plane of the turbines 

rotation. When the turbines velocity slows or the driving 

airflow velocity increases the angle of attack increases. At a 

critical upper threshold of the angle of attack, the boundary 

layer separates from the blade surface leading to a loss of lift 

and increased drag. When this occurs the turbine is classified 

as stalling. The pneumatic to mechanical power conversion 

efficiency is also dependent on the relative angle of attack and 

the stall effect limits the upper level of pneumatic to 

mechanical power transfer. When the turbine is stalling high 

levels of vibration and noise occurs, which has both 

significant: accelerated mechanical fatigue and environmental 

impact, implications.  

To extend the operational sea-state range of the plant, a 

large slow moving sluice gate, acting as a pressure relief valve, 

is installed in parallel to the turbine, on the roof of the 

chamber as shown in Fig.1. The aperture of the relief valve 

when fully opened measures 1.3m by 1.3m. It is actuated by a 

hydraulic ram and takes approximately 26 seconds to move its 

full range. This can be partially or fully closed to regulate the 

pneumatic power exposed to the turbine, and to vent over 

pressure from the chamber when the plant is not operational. 

This allows the machine to operate in a much broader range of 

sea states without the frequency and intensity of stalls 

becoming unacceptably high. Without the relief valve the 

operational range would be quite limited. 

 

Fig. 1 Cross shore schematic of the OWC plant and near-shore sensor system 

(air-chamber). The location of the relief valve is shown along with a picture 

of the actual valve.  

Previously the relief valve aperture control was done in an 

essentially static way and was only adjusted when the sea state 



changed significantly. The stall effect was a frequent 

occurrence, but only for the peak flow of the exhale 

(compression) part of compression/expansion cycle. Besides 

selecting different power take off curves, operational control 

was limited to either: setting a smaller relief valve aperture 

which would deliver more pneumatic power to the turbine 

with greater levels of power production generally being 

achieved, but incurring more frequent stalls of the turbine, or 

with a greater valve aperture wasting more pneumatic to the 

atmosphere but incurring less frequent stall events. 

 Two types of control strategies have been identified to 

maximise power generation and/or minimising turbine stall 

frequency: 1.) control the electromagnetic torque applied to 

the turbine and 2.) control chamber pressure with a relief 

valve. These control strategies may be used independently or 

simultaneously.  

As discussed extensively in [2] and [3] the electromagnetic 

torque imposed on the turbine by the generator can be 

controlled to better match the turbine speed to the available 

wave energy in order to enhance the power production and/or 

reduce the frequency of turbine stalls. Active electromagnetic 

torque control could be used on a wave by wave basis using 

short term forecasting to provide sufficient time for the 

adjustment of the turbines angular velocity. Alternatively 

different angular velocity dependent power take off curves can 

be defined for different sea states which aim to keep the 

turbines rotation speed in a range that is most receptive to the 

greatest proportion of waves for the that particular sea state. 

Regulating the chamber pressure with relief valve control is 

theoretically considered in [4]. A series of hypothetical fast 

acting relief valves (around 0.07s for full aperture change) 

which actuate based on real-time pressure readings in chamber 

with a small delay (which is varied and assessed in the study). 

The combined total aperture of the series of relief valves was 

   . The control system is simulated numerically with the 

relevant physical, operational, and wave climate, parameters 

of the Pico OWC. In [4] the potential increase in annual power 

production from this hypocritical relief valve configuration 

and control strategy is assessed and found to be around 25%. 

In this study we concentrate on the developing a control 

strategy to regulate the pneumatic power exposed to the 

turbine by adjusting the relief aperture in real-time. This relief 

valve control strategy necessarily differs significantly from 

the hypothetical control strategy and relief valve configuration 

presented in [4]. This is because the actual relief valve 

installed at the Pico OWC has a slow aperture adjustment rate. 

As such rapid response of the valve to the evolving pressure 

measured in real time in the chamber is not possible and 

forecasting of the hydrodynamics in the chamber is required 

to provide enough time to sufficiently adjust the relief valve 

aperture. Control with electromagnetic torque is not 

considered. 

In the literature two main options exist for short-term wave 

forecasting for wave by wave control of a WEC. The first is to 

forecast the hydrodynamics at the WEC using past 

measurements also made at the WEC. In [5] the ability of a 

number of forecast models to predict the surface elevation at a 

wave buoy from previous data is assessed. The best results 

were achieved with an autoregressive model giving good 

accuracy within a prediction horizon of up to 2 wave periods 

in advance.  In [6] adaptive filters are used for short-term 

wave prediction and are implemented into a programmable 

logical controller to assess the actual functionality in real-time. 

The prediction horizon for an accurate surface elevation 

forecast was much shorter than in [5] which was only a couple 

of seconds, although wave period was forecasted well at 

longer prediction horizons. The second option for short-term 

wave forecasting is the prediction of the incident wave 

parameters at the WEC from measurements made up wave of 

the WEC. This is considered in [7], [8] using filtering methods 

and in [9] using wave propagation modelling. 

In this study we opted to use a neural network to forecast 

the chamber hydrodynamics from measurements made 

approximately 60m up-wave of the chamber front wall. The 

forecast model and control algorithm is discussed in more 

detail in the following methods section. 

II. METHODOLOGY AND RESULTS 

Originally an “Aquadopp” combined hydrostatic pressure 

sensor and ADCM (acoustic Doppler current meter) unit was 

used to measure and record the hydrodynamics approximately 

60m up wave of the chamber front wall. Due to the extremely 

harsh wave climate the data cable providing the live data was 

severed almost immediately by boulder movement. The 

Aquadopp was repeatedly re-deployed to record data 

internally but the live data was not available. Due to the 

expense of the cable and the likelihood of repeat damage an 

alternative system to measure the incident wave 

hydrodynamics was developed and deployed at the same 

location as the ADCM in spring 2012. The system is a 

hydrostatic wave pressure sensor. A small steel box with an 

open bottom edge is periodically filled with air from a 

compressor inside the plant via a pneumatic hose supported by 

a steel cable. A basic schematic of the setup is given in Fig. 1. 

The pressure of this trapped air pocket is then measured in the 

plant with a pneumatic pressure transducer via the same 

pneumatic hose. The water surface elevation is then estimated 

by; 

          (1) 

where   is the hydrostatic water pressure approximately 60m 

in front of the chamber wall,    is the density of sea water,   

is the acceleration of gravity. It is an estimate of vertical 

surface velocity because some hydrodynamic or pneumatic 

losses might occur. From here forward we will refer to any 



measurements made at the pneumatic or Aquadopp sensors, 

which are both located approximately 60 meters in front of the 

chamber wall, as “near-shore” measurements. 

The near-shore sensor provides measurements of the incident 

wave hydrodynamics, which after: electrical, media 

conversation and computational processing delays, gives 

approximately 7 seconds before the same part of the wave 

cycle occurs in the chamber. The relief valve aperture can be 

adjusted by approximately 30% of its full range in 7 seconds 

which allowed real-time active control of the relief valve to be 

considered for the first time. A simple algorithm was deployed 

to control the relief valve using the estimated vertical water 

surface velocity  ̇   measured at the near-shore sensor as an 

indicator of the subsequent hydrodynamics in the chamber and 

the potential for this to result in a turbine stall. It relied on a 

few basic logical commands and recorded the response which 

it used to self-adapt its operational parameters. Its self-

adaptation objective was to find an optimal equilibrium state, 

where the mean relief valve aperture was as small as possible 

whilst the frequency of turbine stalls and relief valve actuation 

cycles did not exceed the number defined by the operator. 

This equilibrium state was constantly being evaluated and 

would change with the changing sea state. The function of the 

control system was to evaluate each incident wave and to open 

the relief valve aperture on the detection of substantially 

larger waves to exhaust excessive pressure. A more closed 

relief valve aperture would be set for the lulls between periods 

of strong wave action.  

Despite the simplicity of the system, turbine stalls were 

reduced to a very low frequency. This first active relief valve 

control system was only operational in its final form for a total 

of 4 days before the Pico plant entered an extended non-

operational period. Therefore, it is not possible to make 

rigorous quantifications of the changes in power production. 

However, during this short period a 15 minute mean power 

production of      was achieved surpassing the old record 

of      . This initial indication of enhanced power 

production is supported when we assess the power matrices 

with and without the control algorithm as shown in Fig. 2. The 

data points of Fig. 2 show the maximum mean production 

achieved in any 15 minute period for (a) all available data 

preceding the relief valve control system deployment and (b) 

the 4 days with the relief valve control system functioning. 

The average enhancement of power production over all sea 

sates is seen to be 5% when using the relief valve control 

system. The data pool for relief valve control is low and the 

result is not conclusive. However, the comparison is 

considered to be as harsh as possible in evaluating any 

potential improvements in power production from relief valve 

control. This is because we are comparing the maximum 

production values over a 2 year period (without relief valve 

control) against 4 days (with relief valve control). 

The original relief valve control system has much room for 

improvement because it did not factor many of the variables 

that are theoretically important in forecasting the transmission 

of incident wave hydrodynamics from the near-shore to the 

chamber, and the resultant pneumatic power delivered to the 

turbine.  

 

Fig. 2 Comparison of the power matrices for maximum mean power in any 15 

minute period for different permutations of significant wave height    and 

peak period    using all available data, for: (a) without relief valve control, (b) 

with relief valve control and (c) the difference between no relief valve control 

and relief valve control as a percentage of the corresponding no relief valve 
control maximum power value. 

The objective of this research is to develop a new algorithm 

to actively control the relief valve aperture so that the peak 

pneumatic power of each wave cycle approaches but does not 

breach the turbine stall threshold, thus providing the 

maximum pneumatic power possible, considering the 

limitations of the actual relief valve installed at Pico, without 

the turbine stalling. Adjustment of the relief valve is slow so 

short-term forecasting of the hydrodynamic transfer from the 

near-shore to the chamber and the resultant pneumatic 

behaviour is required to allow sufficient time to set the relief 

valve aperture, before the incident wave reaches the chamber.  

Forecasting the optimal relief valve aperture from incident 

near-shore wave measurement was achieved in three distinct 

steps: 1.) Forecast the hydrodynamics in the chamber from the 

measured hydrodynamics at the near–shore sensor. 2.) 

Determine the threshold angular velocity dependent maximum 

air-velocity that the turbine can be exposed to without a stall 

occurring. 3.) Predict the optimum relief valve aperture that 

delivers the maximum air velocity to the turbine without 

breaching the angular velocity dependent stall threshold (step 

2), from the forecasted chamber hydrodynamics (step 1). 



As we are in the rare position of having operational data at 

our disposal, we opted to derive the forecast stages from the 

data instead of from theory. The main motivation for this is 

that the basic theory for hydrodynamic transfer, hydrodynamic 

to pneumatic transfer and mechanical response, might not 

factor in the specifics of the Pico plant. These include but are 

not limited to: hydrodynamic and pneumatic losses in the 

chamber and duct system due to the large holes that have 

developed, the specific shape of the coastline and its effect on 

wave reflections effecting the near-shore wave measurements, 

the exact location, type, limitations and noise in the sensor and 

data acquisition systems used. It should be noted at this point 

that as the control algorithm will ultimately operate with 

sensor data in real-time the forecast stages were derived from 

existing data that was only filtered in a way that can be 

replicated in real-time i.e. box car averages etc. All forecast 

stages are deterministic. 

A. Forecast step 1 – The vertical water surface velocity in the 

chamber 

In order to forecast the pneumatic power exposed to the 

turbine we first need to forecast the vertical water surface 

velocity  ̇  (time derivative of surface elevation) in the 

chamber, as this controls the rate of air compression. For 

convenience we will sometimes refer to the vertical water 

surface velocity in the chamber   ̇ , normalised by the vertical 

water surface velocity at the near-shore sensor  ̇  . The ratio 

 ̇   ̇   is similar to the amplification factor or RAO (response 

amplitude operator) parameter commonly used in the 

literature which refers to the normalised surface elevation. 

As discussed earlier the forecast stages and control 

algorithm were developed using operational data. To achieve 

forecast step. 1 we used an Artificial Neural Networks (ANN), 

because of its ability to finding complex relationships in data 

involving a large number of variables. For the ANN to find 

patterns between known input data and target data, and 

therefore be effective in forecasting an unknown output from 

future input data, it must be provided with the relevant 

physical parameters that influences the output. Therefore, 

even though we will not use theoretical relationships directly 

to construct our forecast system, it is still important to review 

the literature to identify which variables could be important, 

and ensure this data, where possible, is available to train the 

ANN. In the literature we see that  ̇   ̇   is theoretically 

dependent on a number of variables which are identified in the 

following. 

The water mass oscillating in the chamber will have a 

natural frequency. The resonant wave period    is given in [10] 

as  

     √    (2) 

where   is the water column draft in the chamber and   is 

gravitational acceleration constant. This is modified in [11], to 

account for water columns of large horizontal cross-sectional 

area  ; 

     √               (3) 

Both the incident wave period and tide position (which 

effects the water column draft  ) will theoretically affect 

 ̇   ̇   because of resonant amplification and should be 

included in the training of the ANN. The maximum tidal 

range at the Pico plant is 1.8m. 

As shown experimentally in [12] and numerically in [13],  

when the hydrodynamic flow rate at the chamber lip, from the 

volume flux of water entering the chamber from wave action, 

is high enough, separation of flow occurs. Under these 

conditions vortices are formed that dissipate energy and 

reduce the hydrodynamic transfer efficiency. By continuity 

the hydrodynamic flow rate at the chamber lip is dependent on 

the vertical velocity of the water surface in the chamber  ̇ . As 

 ̇  is a function of the amplitude of the incident wave and also 

the wave period, both because of amplification through 

resonance (equation 2) and simply because of the angular 

velocity, both incident wave amplitude and wave period 

(already identified) will theoretically affect the hydrodynamic 

efficiency and consequently  ̇   ̇   and should be both 

included in the training of the ANN. 

The chamber lip is further investigated in [14] who show 

experimentally that when the gap between the sea floor and 

the chamber lip is shorter, the hydrodynamic flow rate into the 

chamber must be greater for continuity. Therefore separation 

of flow occurs for smaller  ̇  with associated reduction in 

hydrodynamic efficiency. However this effect was found to be 

negligible past a certain threshold of  ̇  because separation of 

flow appears to approach an upper limit so that the 

hydrodynamic losses are somewhat limiting. They also 

confirm the relationship in equation 2, that the resonant period 

is shifted to a larger value when the draft of the front wall is 

greater because the increased mass confined in the chamber 

changes the natural frequency. The chamber horizontal cross 

sectional area is 12m x 12m, the thickness of the front wall is 

1.8m and has a draft of 2.5m from mean water level and has a 

semi-circular lip. 

As shown in [15], using a boundary element model, the 

length of the chamber also effects the amplification of 

incident waves in the chamber and the resonant period. 

However in the case of the Pico OWC the chamber length is 

constant so data specific to this cannot be given to the ANN to 

construct the forecast matrix for forecasting  ̇ , but this effect 

will be included indirectly in the result. 

The consideration of the compressibility of air in the 

chamber and damping is shown in [16] to shift the optimum 

performance period to a lower value than described by just the 

dimensions of the plant and the oscillating water column mass 

(when air is considered incompressible). Therefore, air 

compressibility can either amplify or dampen the oscillation 

of the water column in the chamber depending on the incident 

wave period. They assess the effect of the non-dimensional air 

compliance parameter,    , on the power capture; 
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where   is the effective height of the air chamber (air-

chamber volume / water surface area),   is the incident wave 

period,    is the density of water and   is the specific heat 

capacity of air, and    the density of air at atmospheric 

pressure. They find that the air compressibility acts to 

decrease the device’s power capture performance when 

     . The peak performance maxima is found at a point 

when      , which exceeds that of when air 

compressibility is not considered. 

In [16] the compressibility of air is also seen to affect the 

power capture and this is a function of the volume of the air 

chamber which again is a function of the tidal position. 

The mass flow rate of air leaving from the relief valve will 

affect the pressure evolution in the chamber and hence the 

radiation wave damping effect, on the hydrodynamic 

efficiency, which is potentially significant as shown in [13]. 

The mass air flow rate from the relief valve (for an ideal gas 

with flow being an isentropic process) is given in [17] as;  

 ̇                     
   

   
 
 |    |      

(5) 

where    is the valve aperture (0 for closed and 1 for open), 

   the aperture area,    the discharge coefficient, and   the 

isentropic expansion factor.  

As shown in [17] the mass flow rate of air  ̇ passing the 

turbine is dependent on the angular velocity  ;  

 ̇       
         (6) 

where   is the turbine diameter,    is the atmospheric 

pressure,        , where    is the chamber pressure and 

        which is the dimensionless turbine characteristic, 

with         
    being the pressure coefficient and 

         ̇ , the flow coefficient. As the angular velocity 

of the turbine regulates the rate at which air can escape the 

chamber it will also influence the damping effect from the 

compressed air in the chamber, as discussed previously. 

Therefore. the turbine angular velocity should also be 

provided in the construction of the ANN which is used to 

form the forecast matrix. However, this will likely be eclipsed 

by the effect of the relief valve position which could not be 

included in the formation of ANN at this point in time due to 

insufficient data. 

Unfortunately the acquisition of data for the relief valve 

position only commenced a short while before the Pico plant 

last operated and operational data with the relief valve 

position recorded is too limited to be included in the 

construction of the ANN. To factor in the effect of chamber 

pressure on wave radiation and the effect this has on damping 

oscillation and hence the forecast   ̇   ̇    we would also need 

to be able to forecast the chamber pressure associated with the 

incident wave measured at the near-shore sensor. Measuring it 

in real-time, of course, would be too late to be factored in to 

the relief valve control. As the effect of the relief valve 

position will have such a large effect on the evolution of the 

chamber pressure, it does not seem appropriate to attempt to 

forecast chamber pressure and include this forecasted variable 

in the training data for the ANN, without first having 

information on the relief valve position. Addressing this issue 

will hopefully further enhance the forecast in the future when 

sufficient data becomes available.  

Finally, as the control algorithm will rely heavily on the 

incident wave parameters measured at the near-shore sensor, 

interference from wave reflections is a major consideration 

and potentially a limiting factor. Depending on the amplitude 

and period of the preceding wave (reflected from the plant), 

and incident wave constructive or destructive interference will 

occur to some extent modifying the measurement of the true 

incident wave parameters at the near-shore sensor. Therefore, 

we provide the ANN with information regarding the preceding 

wave from both the near-sensor and the chamber.  So that any 

relationship between preceding waves (reflected from the 

plant) and the subsequent modification of the incident wave’s 

parameters due to interference, will be factored into the 

forecast.  

To construct the ANN for forecasting the vertical water 

surface velocity inside the chamber, the following parameters 

as identified in the above to theoretically influence the  ̇   ̇  , 

and that would be available in real-time to the final control 

algorithm, were provided in the training of the ANN;  

1. The zero up crossing wave period measured 60m in front 

of the plant     

2. The preceding zero up crossing wave period measured 

60m in front of the plant       

3. The preceding zero up crossing wave period measured in 

the chamber      

4. Peak water surface vertical velocity measured 60m in 

front of chamber  ̇   

5. Preceding Peak water surface vertical velocity measured 

60m in front of chamber  ̇     

6. Preceding peak water surface vertical velocity measured 

in chamber  ̇    

7. Tidal displacement from mean water level 

8. Turbine angular velocity    

Because the relief valve is slow moving, synchronisation of 

the relief valve aperture to the full cycle of   ̇, is not possible. 

Therefore, our relief valve control strategy is limited to a 

single relief valve aperture size per wave cycle. As the 

primary goal of this research was to maximise pneumatic 

power delivery to the turbine, whilst eliminating stalls, this 

target aperture size will be such that the peak positive value of 

  ̇ of the wave cycle delivers a level of pneumatic power to 

the turbine that is close to but does not breech the threshold 

for stall. As such the peak value of   ̇  is the ANN forecast 

target, and a full time-series prediction of   ̇  is of little use. If 

in the future a faster acting relief valve is installed that could 



keep pace with the change in   ̇, throughout the entire wave 

cycle, a forecast of the full time-series of the water surface 

vertical velocity in the chamber would be desirable. This 

would result in an ideal situation where the maximum 

tolerable and available, pneumatic power is delivered to the 

turbine throughout the full wave cycle and not just at the peak 

of the exhale part of the cycle. A forecast of the full time-

series of   ̇would require the application of a dynamic neural 

network due to the time lags in dynamics of the system.  

For our purposes, a simple feed forward ANN is sufficient 

for generalisation between the input data vector (containing 

the relevant parameters of a full wave cycle) and the output 

peak   ̇. The network was constructed with one hidden layer 

containing 10 neurons as this was found to give marginally 

greater accuracy than with other numbers of neurons that we 

tested. The network was trained using the Lavenberg-

Marquardt back-propagation learning algorithm. 52000 

independent data vectors, each representing one completed 

wave cycle (as defined by the zero up-crossing at the near-

shore sensor) were used to: train, validate and test the network. 

being randomly divided into the following proportions: 70%, 

15% and 15%, respectively. 

Although we do not instruct the ANN on the dependency 

strength of the output on each input variable, it is still 

interesting to analyse the dependency of the target   ̇ on the 

different individual input variables. This is most easily 

interpreted when   ̇  is normalised by    ̇ . As   ̇    ̇  is 

dependent on many factors simultaneously and because of 

noise and fluctuations in the data quality, the data points of 

  ̇    ̇  with respect to a single variable are distributed broadly. 

In order to identify any underlying trends we must apply some 

sort of fitting curve. A polynomial of degree 5 was chosen to 

show the best fit trend line for each variable and these are seen 

in Fig. 3. Three data periods corresponding to three complete 

deployments and data retrieval of the Aquadopp hydrostatic 

pressure sensor were used to assess the relationships between 

  ̇    ̇  and the different variables considered. The data from 

the three periods are kept separate in order to confirm that any 

trend lines fitted with the polynomial are consistent in both 

scale and shape throughout the data. 

There are a number of interesting points to note from the 

subplots of Fig. 3. Fig. 3a shows that the profile  ̇   ̇   with 

respect to    is skewed compared to what we expect from the 

theory in [18] for example. The natural period appears to be 

15s which is significantly higher than the dominant wave 

period for this geographic location that the plant’s dimensions 

where designed for, which is in the region of 11s. Also there 

appears to be a second resonant peak at very short wave 

periods.  

 

Fig. 3  Polynomial fitted curves of order 5, fitted to raw data corresponding to 
three Aquadopp deployment periods 1.) blue - 08/11/2010 – 21/11/2010, 2.) 

red - 21/11/2010 – 22/02/2011 and .3) green - 21/02/2012-22/03/2012, 

showing the relationship   ̇    ̇  when the plant is both operational and non-
operational for the following parameters; (a) zero-up crossing wave period 
(near-shore), (b) water surface vertical velocity (near-shore), (c) preceding 

zero-up crossing wave period (near-shore), (d) preceding water surface 

vertical velocity (near-shore), (e) preceding zero-up crossing wave period 
(chamber), (f) preceding water surface vertical velocity  (chamber), (g) 

turbine angular velocity, (g) tide position from mean. 

The wave period spectral distribution, given in Fig. 4a, 

shows a significantly higher number of shorter period waves 

recorded at the near-shore sensor compared with to those 

recorded at the chamber. This strongly suggests that waves 

reflected from the plant structure and surrounding coastline 

interfere with incident waves at the near-shore sensor, causing 

artificial zero crossings to be registered so that a longer period 

wave is registered as becomes two short period waves.. This is 

affirmed by examining the difference in wave period of each 

wave as it is measured at the near-shore sensor and 

subsequently in the chamber as shown in Fig. 4b. A greater 

proportion of waves have a shorter wave period measured at 

the near-shore sensor than in the chamber showing that in 

terms of zero crossings and wave period measurements, 

destructive interference dominants the shift in wave period 

distribution. Constructive interference is also present as seen 

by the proportion of waves that have their wave period 

extended. The artificial down crossing from destructive 

interference will result in waves which appear to have very 

short wave periods but that also have the amplification of 

longer waves (in the chamber). This would explain the 

apparent resonant peak seen for short wave periods in Fig 3a, 

that does not agree with the theory. 



 

Fig. 4 (a) Comparison of wave period spectral distribution of wave periods as 

measured in the chamber with the wave period measured at the near-shore 
sensor. (b) The difference in wave period measured at the near-shore sensor 

and the wave period measured for the same wave in the chamber. Plots are 

histograms are shown as percentages of the total the sample size which is 
52000 completed wave cycles. 

Fig. 3b again shows the effect of destructive interference, 

as there is a relatively large value of  ̇   ̇   when  ̇   is small. 

But again this is likely an artefact as in actuality the incident 

wave has been destructively interfered with at the near-shore 

sensor location rather than being amplified to such large 

extents by resonance in the chamber. It may however be 

enhanced by the low viscous losses associated with low 

hydrodynamic flow rates for smaller waves. There is also a 

steady decline in  ̇   ̇   with increased  ̇   which could be 

explained by increased hydrodynamic viscous losses and/or 

from radiation damping from the increase in chamber pressure 

assorted with larger waves. Fig 3c shows the preceding wave 

amplification curve which is more in line with what we would 

expect Fig. 3a to look like from the theory (if there were no 

reflected waves) with a clear natural period peak. Fig. 3d 

shows there is no clear relationship between the preceding 

wave’s vertical surface velocity at the near-shore sensor and 

 ̇   ̇  . This is likely to be because some preceding waves are 

smaller and some larger and overall they cancel each other out 

when the polynomial curve is fitted, leaving a mean 

amplification factor of approximately 2.  

Fig. 3e shows the relationship between  ̇   ̇    and the 

preceding wave period as measured in the chamber. As the 

preceding wave is likely to have a wave period similar to the 

incident wave, the resonance curve takes the form of what we 

expect from the theory (see for example [18]). One residual 

difference from the theory is the grater amplification of very 

short period waves which again might be explained by 

destructive interference at the near-shore sensor. Fig. 3f shows 

that  ̇   ̇   is greater when  ̇    is greater, the only possible 

explanation we were able to make for this is that reflected 

preceding waves of greater  ̇  would interfere more strongly 

with the incident wave, which as show in Fig. 3b, is most 

likely to be in the destructive direction, resulting in a greater 

value of  ̇   ̇  .  

Fig. 3g shows that there is no clear relationship between 

 ̇   ̇   and the turbine angular velocity   . This is likely to 

be because the relief valve aperture is not considered and 

would likely eclipse the effect on the pressure evolution from 

the regulation of airflow by the turbines angular velocity 

(equation 6). From the theory we might expect to see a 

reduction in  ̇   ̇   with an increase in    as the chamber 

pressure is phase shifted due to the restriction of air flux by 

high turbine angular velocities which would have a damping 

effect on the chamber hydrodynamics. Fig. 3h shows that the 

effect of the tide on   ̇   ̇   is not clear. One might expect to 

see an increase in  ̇   ̇   when the tide position is such that 

the plant’s natural period matches the dominant wave period, 

but this is not seen clearly in the data. This relationship might 

only become clear when the incident wave period is 

considered simultaneously. It is also interesting to note that in 

almost all subplots of Fig. 3 there is an increase in  ̇   ̇   

when the plant is non-operational. This is likely to be due to 

the fact that when the plant is non-operational the relief valve 

is always fully open so that the air pressure in the chamber is 

typically less than when the plant is operational and 

subsequently the radiation damping effect on the 

hydrodynamic oscillation in the chamber is lower. 

 

Fig. 5  Polynomial fitted curves of order 5, fitted to raw data corresponding to 

three Aquadopp deployment periods 1.) blue - 08/11/2010 – 21/11/2010, 2.) 

red - 21/11/2010 – 22/02/2011 and .3) green - 21/02/2012-22/03/2012, 

showing the relationship between   ̇    ̇  when the plant is both operational 

and non-operational for the following parameters that could not be used to 
train the ANN because they are not known in advance of the event that is 

being forecasted.; (a) zero-up crossing wave period (chamber), (b) the water 

surface vertical velocity measured (chamber), (c) the max air pressure of the 
wave cycle in the chamber in units of mbar. 

Data from the incident wave parameters as measured in the 

chamber:  ̇ ,   , and    which is the chamber pressure, cannot 

be used in the forecast because they happen simultaneously or 

are indeed the parameter that we are forecasting. However, it 

is still interesting to exam the relationship with  ̇   ̇  . Fig. 

5a shows a similar profile to Fig. 3c and Fig, 3e and is 

somewhat in-line with the theory of the system’s natural 

frequency except for the larger amplification of very short 

period waves. Fig. 5b shows an increase in  ̇   ̇   with an 

increase in  ̇ . This does not appear to agree with the theory 

that suggests greater hydrodynamic losses occur with greater 



values  ̇ , and also greater damping from increased air 

pressure, and might be again an issue with reflected wave 

interference. This needs further investigation. Fig. 5c shows a 

decline in  ̇   ̇  with increasing chamber pressure which is 

in-line with theory that states that radiation damping of the 

hydrodynamic oscillations increases with air pressure. 

When the ANN was trained with all the available data 

simultaneously the extremes of the peak   ̇  envelope, were 

under predicted. This is problematic because these are the 

waves that are most likely to cause the turbine to stall. This 

was dealt with by separating the data into sets based on the 

value of   ̇   with respect to the local mean  ̇  
̅̅ ̅̅  and standard 

deviation   ̇  
 of the preceding 1 hour of data. Data was 

divided in to the following sets: those less than the local mean 

 ̇    ̅̇  , those between the local mean and the local upper 

standard deviation  ̅̇    ̇    ̅̇     ̇  
 and finally those 

above the local standard deviation  ̅̇     ̇  
  ̇  . A 

separate ANN was trained for each of the three data sets. In 

operation the trained ANN that is used to forecast the peak  

 ̇    (forecasted peak vertical water surface velocity in the 

chamber) will be determined on a wave by wave basis and by 

the parameters  ̇  ,  ̇  
̅̅ ̅̅  and   ̇  

. 

 

Fig. 6 Example time series of measured target water surface vertical velocity 

in chamber  ̇  (blue), the peak water surface vertical velocity envelope at 

near-shore sensor (red) and the ANN forecasted peak water surface vertical 

velocity envelope in the chamber  ̇    (green). 

To try to quantify the accuracy of the ANN forecasted 

vertical water surface velocity  ̇    we evaluate the difference 

between  ̇    and the true  ̇ for every wave cycle of the whole 

of the most recent Aquadopp data collection period (period 3, 

21/02/2012 to 22/03/2012).  A short sample operational time 

series of the forecasted peak  ̇    wave envelope is shown in 

Fig. 6.  

To aid with the evaluation we define the statistical 

parameters: 

1.      - the difference between the unmodified vertical 

surface velocity at the near-shore sensor  ̇   and the 

chamber vertical surface velocity  ̇ , as a percentage of  ̇   
so that            ̇    ̇     ̇  

2.      - the difference between the ANN forecasted 

vertical surface velocity in the chamber  ̇    and the actual 

chamber vertical surface velocity  ̇ , as a percentage of  ̇   
so that            ̇     ̇    ̇  

TABLE I 

% IMPROVEMENTS IN FORECASTED VERTICAL WATER SURFACE VELOCITY 

( CHAMBER) USING ANN COMPARED TO THE RAW VERTICAL WATER SURFACE 

(NEAR-SHORE). 

  
 ̇   

    

 ̇   

      ̇     

      

All 

 ̇    ̅̇   
     40.0% 40.0% 40.0% 

     32.7% 29.4% 26.8% 

 ̅̇    ̇   

 ̇    ̅̇     ̇  
 

     45.9% 45.9% 45.9% 

     19.3% 15.4% 13.3% 

 ̅̇     ̇  
  ̇   

     50.7% 50.7% 50.7% 

     18.1% 14.5% 11.7% 

Table 1 shows that the ANN trained on all available 

variables, on average, for  each wave cycle of the whole of 

data collection period 3, predicts the value  ̇  to between 26.8% 

and 11.7% of the true value. The accuracy increased with the 

relative local increase of  ̇  , with the accuracy the ANN 

forecasted  ̇    value peaking for waves with  ̇   greater than 

one standard deviation greater than the mean. This is the range 

most relevant for stall reduction purposes. Table 1 also shows 

the accuracy of the ANN when trained on only the incident 

and preceding wave parameters measured at the near-shore 

sensor, and for just the incident wave parameters measured at 

the near-shore sensor. With the reduction in the number of 

variables there is a notable reduction in accuracy of  the ANN 

forecast. However, this might be justifiable from an operation 

perspective due to the reduction in the reliance of the accuracy 

of multiple data signals and hence a reduction in the potential 

for error. 

B. Forecast step 2 – Turbine angular velocity dependent air 

velocity stall threshold  

As mentioned before, from monitoring it was found that the 

onset of a turbine stall could typically, but not infallibly, be 

identified by a sharp increases in the vibrations of the turbine 

generator structure. So a threshold value of the time derivative 

of the vibrations  ̇, which was found from monitoring to be 

       , was used to identify when the turbine stalled in a 

wave cycle. In Fig. 7 it is seen that there is a large band that 

does not fit the trend of the rest of the data, and is clearly 

anomalous form the theory. This is because the 1
st
 harmonic 

of the generator turbine structure is within the operational 

turbine angular velocity range. In this region, due to the 

natural frequency of the generator turbine system, vibrations 

are already significant so additional vibration and the 

associated gradient is less prominent. 

Using the vibration gradient as an indicator for stall events 

and for determining the angular velocity dependent threshold 

air-velocity for stall, for use with the relief valve control 

algorithm, is less than ideal. For implementation into the 



algorithm we were forced to interpolate through this 1
st
 

harmonic region. A more accurate method of stall detection 

should be considered in due course to enhance the accuracy of 

this forecast step.  

 

Fig. 7 Matrix 2 for identifying the maximum forecasted air-velocity that will 
result in a vibration gradient below the stall threshold, at a specific turbine 

angular velocity. A local linear regression smoothing with a span of 25% is 

applied to smooth and identify the main data trends. 

C. Forecast step 3 – Relief valve position 

The final forecast step required by the relief valve control 

algorithm for full functionality is the forecast of the relief 

valve aperture that will provide the airflow velocity   , to the 

turbine, without breaching the turbine’s angular velocity 

dependent threshold for stall, as described in forecast step 2, 

from the forecasted value of  ̇    from forecast step 1. 

Fortunately there is approximately two weeks’ of operational 

data where the relief valve position was recorded, and 

although this was insufficient to be included in the ANN 

forecast of  ̇   , it was sufficient to construct the matrix for 

forecasting the peak air flow velocity   from the peak  ̇  and 

the relief valve position, because the trends are so clear. This 

is shown in Fig. 8. 

 

Fig. 8 Matrix 3 for forecasting the relief valve position that will provide the 

maximum air velocity of exhale cycle (determined in matrix 2) from the 

maximum vertical water surface velocity of wave cycle in the chamber 
(forecasted by matrix 1). A local linear regression smoothing with a span of 

25% is applied to smooth and identify the main data trends. 

D. Control algorithm 

A simple description of the algorithm’s architecture is 

shown in Fig. 9. The algorithm will act immediately as  ̇    

(the last variable to be known in time) is measured. This is 

entered into a data vector containing the other 7 operational 

parameters that have been identified to be significant in 

determining  ̇   . The data vector is used to quarry one of the 

pre-trained ANNs, depending on its relative magnitude with 

respect to the local means and standard deviation as described 

in Table 1, to forecast the vertical water surface velocity in the 

chamber  ̇   . The algorithm will have information on the 

current turbine angular velocity and will use a look-up table to 

find the air-velocity threshold for stall     , as described in 

step 2. The forecasted values of  ̇   and       will then be 

entered into a final look-up table to forecast the relief valve 

position that will result in the target value of     , from the 

peak of the incident wave cycle. The algorithm will then 

actuate the relief valve and attempt to achieve this forecasted 

position. This will repeat when the next zero up crossing 

occurs at the near-shore sensor. 

 

Fig. 9 Flow chart showing the relief valve control algorithm process chain  

III. DISCUSSION 

The forecast chain relating near-shore hydrodynamics to 

optimum relief valve position was formed of three separate 

steps. This was necessary because the data from all the 

required parameters were not available simultaneously, due to 

the addition of different sensors at different times. If they 



were available simultaneously an ANN to forecast the whole 

chain in one step, might have been possible. This might reveal 

some other interdependencies between the forecast steps and 

will be assessed when data becomes available in the future. 

Comparing our results to the literature suggest that the 

limitations in the accuracy of the ANN’s forecast are likely to 

be the result of reflected waves interfering with incident wave 

data at the near-shore sensor. In addition the lack of data on 

the relief valve position (and its omission from the training of 

the ANN) will result in the ANN being, in part, “blind” to the 

effects of damping from the compression of air, and which 

may also limit the accuracy of the ANN. Deploying a sensor 

system that can extract the incident wave from the reflected 

wave, and by including the forecasted chamber pressures will 

likely improve the forecast accuracy of  ̇   . 

The forecast and control system developed here accounts 

for and is restricted by the limitations associated with the slow 

aperture adjustment rate of the actual relief valve installed at 

the Pico OWC. It is unlikely to achieve the enhancement to 

power production that might be achievable with a fast acting 

relief valve that can track the full pressure evolution of the 

complete wave cycle. This is because some pneumatic power 

from all but the peak portion of the cycle will be lost to the 

atmosphere. However, any significant success achieved with 

this system will strongly justify the investment required to 

install a faster acting relief valve.   

IV. CONCLUSIONS 

We disseminate for first time an existing system for real-

time relief valve control that has been used successful in real-

time operation at the Pico OWC. However, the main feature of 

this research is the subsequent advancement of this relief-

valve control system. This was achieved by considering many 

additional variables that theoretically influence the transfer of 

incident wave hydrodynamics to the eventual mechanical 

response. Forecast models were made directly from data and, 

in one case, with the assistance of artificial neural networks, to 

more accurately forecast the optimum relief valve position for 

the incident waves.  

The greatest accuracy in the forecasted chamber 

hydrodynamics was achieved when the ANN was provided 

with as many relevant operational, environmental, incident 

and preceding wave parameters as possible. Some reduction in 

accuracy in the forecast occurs when just the incident wave 

parameters and the preceding wave parameters at the near-

shore sensor are provided to the ANN. This reduction in 

accuracy might be justifiable in practical operation because of 

the reduction in the potential for error. 

Clear trends were seen in the data that agree somewhat with 

theory and the literature. In most instances departure of our 

results from theory can be explained by interference from 

reflected waves at the near-shore sensor. However, three 

points need further attention, these are: the absence of data on 

the relief valve position which could significantly affect the 

forecast due to the radiation damped effect from air 

compression in the chamber, the interference of measurements 

by the near-shore sensor due to wave reflections, the non-

definitive, vibration gradient method, used for stall detection. 
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