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ABSTRACT

The estimation of the hemodynamic response function (HRF)
in function magnetic resonance imaging (fMRI) is critical to
deconvolve a time-resolved neural activity and get insights
on the underlying cognitive processes. Existing methods pro-
pose to estimate the HRF using the experimental paradigm
(EP) in task fMRI as a surrogate of the neural activity. These
approaches induce a bias as they do not account for latencies
in the cognitive responses compared to EP and cannot be ap-
plied to resting-state data as no EP is available. In this work,
we formulate the joint estimation of the HRF and neural ac-
tivation signal as a blind deconvolution problem. Its solution
can be approximated using an efficient alternate minimization
algorithm. The proposed approach is applied to task fMRI
data for validation purpose and compared to a state-of-the-art
HRF estimation technique. Numerical experiments suggest
that our approach is competitive with others while not requir-
ing EP information.

Index Terms— BOLD signal, Hemodynamic response func-
tion (HRF), non-convex optimization.

1. INTRODUCTION

Context. Functional magnetic resonance imaging (fMRI)
records non-invasively brain activity by dynamically measur-
ing the blood oxygenation level-dependent (BOLD) contrast.
The latter reflects the local changes in the deoxyhemoglobin
concentration in the brain [1] and thus indirectly measures
neural activity through the neurovascular coupling. This cou-
pling is usually characterised as a linear and time-invariant
system and thus summarized by its impulse response, the so
called hemodynamic response function (HRF) [2, 3]. Its es-
timation links the observed signal to the underlying neural
activity, which can in turn be used to understand cognitive
processes in the healthy brain or to predict neurological dis-
eases.
Related works. Several methods have been designed
to estimate this evoked response in the case of task-related
fMRI (tfMRI) [4–8]. In this setup, the participant is engaged
in an experimental paradigm (EP) during the imaging ses-
sion, which alternates between one or multiple tasks and rest

periods [5, 8–10]. Commonly, supervised HRF estimation
methods fit a model to explain the observed BOLD signal
from the EP [4–8, 10]. A limitation of these approaches is
that the EP is used as a surrogate for the neural activity.
Therefore they do not account for possible latencies in the
subject’s responses compared to the task onsets, thus yielding
a biased HRF estimate. Moreover, these methods cannot be
used on resting-state fMRI data (rfMRI), where the partici-
pant is laying still in the MRI scanner. In this context, no EP
is available to serve as neural activity surrogate. Some recent
work proposes to estimate such a surrogate by estimating a
bloc signal using a fixed HRF [11]. In doing so, the recovered
neural activity signal is used to define functional network in
which the population of neurons have been activated together
at the same time. However, as the HRF is not allowed to
vary across brain regions, this method potentially produces a
biased estimate of the deconvolved neural activity signal.
Goals and contributions. Following the ideas devel-
oped in the dictionary learning literature [12], we propose
to jointly estimate the neural activation signal and the HRF
with properly selected constraints for each voxel. The result-
ing optimization problem is non-convex but an approximated
solution can be computed using alternate minimization with
an efficient procedure to be performed at each step. This
algorithm aims to reduce the bias introduced by allowing the
HRF to adapt itself to each voxel while permitting the neural
activity signal to fluctuate and depart from the EP. To make
the inversion well-posed, some sparsity prior constraints are
introduced on the neural activity signature and the HRF is
parameterized by a single unknow scalar. On real tfMRI HCP
datasets, we show that we are able to recover similar effects
to state-of-the-art HRF estimation approaches without the
knowledge of the EP.
In the following, Section 2 introduces our model for the
BOLD signal and our algorithm to estimate the HRF. Then,
our technique is evaluated against state-of-the-art algorithm
in Section 3. Conclusions and future work are discussed in
Section 4.
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2. HRF ESTIMATION WITH NEURAL ACTIVATION
SPARSE MODEL

In this section, we present our modeling of the BOLD signal
and derive an efficient algorithm to estimate its parameters.
Notation. A scalar signal is denoted x(t) and a vector in
R is denoted with a bold case letter x. D ∈ Rn×n refers to
the modified first-order differences operator and L ∈ Rn×n
to the discrete integration operator:
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2.1. Linear and time-invariant modeling

A common model for the voxelwise BOLD signal y(t) is the
linear and time-invariant model (LTI) [3], where the signal is
considered as the result of the convolution of a neural activa-
tion signal, denoted z(t), with an HRF, here denoted h(t):

y(t) = h(t) ? z(t) + ε(t) , (1)

where ε(t) is an additive noise term. Typically, the HRF h(t)
has a restricted support in time and quantifies the neurovas-
cular coupling in a specific region of the brain. The activa-
tion signal z(t) captures the periods during which this partic-
ular region is involved in task performance. In practice fMRI
data are collected at a discrete sampling rate, called the time
of repetition (TR), which typically varies between 1 and 2 s.
Vector y ∈ Rn thus refers to the BOLD signal measured in
each voxel of the brain along n consecutive scans. The dis-
cretized LTI model reads: y = h ? z + ε with z, ε ∈ Rn and
h ∈ Rm, m being the number of time-points for the HRF,
typically smaller than n.
In task fMRI data, the activation signal is usually represented
by the piecewise constant time course associated with the ex-
perimental design. A common way to enforce such structure
in z is to consider its first derivative u =Dz to be sparse. To
make the computations easier, we inject this prior information
in the LTI model and re-parameterize it using u and z = Lu:

y = h ?Lu+ ε . (2)

To constrain h to be physiologically plausible, we chose to
restrict our model to parametric HRF shapes hα. A classical
choice is to select hα as a the linear combination of d atoms∑d
i=1 αibi, where (bi)i∈[1..d] are some well define HRF

atoms [8, 10]. Here instead, we propose to use a reference
HRF denoted href and dilate the time such as hα is the dis-
cretization of hα(t) = href(αt). The main advantage of this
choice is to vary the full width at half-maximum (FWHM) of
the HRF and its time-to-peak(TP) with only one parameter.
The model Eq. (2) has an ambiguity in magnitude, as if h
is multiplied by β and z is scaled down by the same factor,

Algorithm 1: Blind deconvolution scheme of the
BOLD signal.

Input: BOLD signal y, stopping rule ν
1 initialization: α(0), u(0) = z(0) = 0, k = 1 ;
2 repeat
3 Deconvolution of the BOLD signal for hα(k−1) :

u(k) = argmin
u∈Rn

1

2
‖hα(k−1) ?Lu− y‖22 + λ‖u‖1

4 Estimate the HRF parameter with fixed u(k):

α(k) = argmin
α∈R

1

2

∥∥∥hα ?Lu(k) − y
∥∥∥2
2

subject to αmin 6 α 6 αmax

5 until ‖α(k) −α(k−1)‖2/‖α(k)‖2 < ν;

our model is the same. To fix this scale ambiguity, we set
‖href‖∞ = 1.

2.2. Blind-deconvolution as a joint optimization problem

If the additive noise in Eq. (2) is considered to be Gaussian,
the parameter of the HRF α and the derivative of the neural
activation signal u can be jointly estimated by solving

argmin
α∈R,u∈Rn

1

2
‖hα ?Lu− y‖22 + λ‖u‖1 ,

subject to αmin 6 α 6 αmax .

(3)

This optimization problem is not-jointly convex in α and u.
For a fixed α, it is convex inu and and for a fixedu, convexity
in α is not guaranteed as it depends on the analytical model of
href . However, this 1-dimensional optimization problem can
be solved easily as α is constrained to lie in [αmin, αmin]. We
minimize Eq. (3) using a block-coordinate descent approach,
where we alternate the minimization between u and α. Algo-
rithm 1 details these two steps.
For the estimation of u with fixed α, the accelerated proximal
gradient descent algorithm [13] was used as it provides fast
convergence to the optimal solution. Other algorithms such
as coordinate descent methods [14, 15], can also be consid-
ered. However they do not improve the results as the prob-
lem is convex and can only speed up the convergence. For
updating α, we resorted to the limited memory BFGS algo-
rithm [16] implemented in [17]. We early-stopped the main
loop and each sub-problem too once the iterate stabilized it-
self. In practice less than 50 iterations of the main loop were
needed to converge.
Owing to the global non-convexity, this approach converges
to a local minimizer of Eq. (3), which may be suboptimal for
our blind deconvolution objective. To limit the impact of the
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Fig. 1: Evolution with respect to the SNR of the `2 relative
error defined as the mean across voxels of ‖ẑ − z∗‖2/‖z∗‖
for the neural activation signal and as ‖hα̂−h∗‖2/‖h∗‖2 for
the HRF.

initialization selection, we tested multiple random initializa-
tions. However, we found experimentally that initializing α
to αmax – i.e. initializing hα to the HRF with the tighter
FWHM – and z to 0 is enough to ensure the convergence to
reliable estimates. Multiple random initializations on α did
not improve the quality of the solution.

3. NUMERICAL EXPERIMENTS

In this section, we validated our approach both on simulated
and real tfMRI data. The collected during different task per-
formance in order to exhibit a learning effect on the HRF and
compare our method to a state-of-the-art approach. All exper-
iments were performed in Python and our implementation is
freely available online1. We also provide the code for experi-
mental validation2 in order to support reproducible research.

3.1. Results on synthetic data

Artificial time series. We randomly generated 100 neural
activation signals z∗ of 5 blocks, with an average duration
of 12 s and a standard deviation of 1 s. We chose a TR of
0.75s and a scan duration of 3 min to mimic the HCP protocol.
We defined a common HRF shape h∗ for all these artificial
voxels. Last, we investigated 6 different scenarios of noise
levels with signal-to-noise-ratio (SNR) ranging in [1.0, 3.0,
5.0, 10.0, 15.0, 20.0] dB.
Results. We tested our blind deconvolution approach to
recover in each time series the pair (α̂, û) and then deduce the
HRF hα̂ and the neural activation signal ẑ = Lû. As shown
in Fig. 1, in low SNR cases we did not perfectly recover both
signals. In contrast, as the SNR increases the error of our
estimator is significantly reduced by a factor 3 on the most
challenging problem (estimation of z). A visual inpection
of the different estimates confirms that our approach behaved
accurately according to our model.

1https://github.com/CherkaouiHamza/pybold
2https://github.com/CherkaouiHamza/validation
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Fig. 2: Voxel selection procedure for the validation of the
blind deconvolution method on HCP data. The voxels are
selected based on their correlation level with the EP.

3.2. Results on real data

HCP Data. Our validation was performed on the Hu-
man Connectom Project (HCP) dataset [18] which comprises
fMRI recordings of participants performing different motor
tasks. The tasks were adapted from the protocol developed
in [19]. We chose this dataset as it presented both a good
temporal and spatial resolution. A short time of repeti-
tion (TR=720 ms) was actually used to collect interleaved
simultaneous multislice echo-planar images with a Multi-
Band factor of 8 and a spatial resolution of 2x2x2mm. Each
fMRI run lasted 3min34s in total during which n = 284 scans
were acquired. The fMRI data were already preprocessed us-
ing a classical pipeline including realignment, coregistration,
spatial normalization and smoothing (5 mm isotropic). The
EP was divided in two sets of motor tasks, with 15 s fixation
blocks at the beginning, in the middle between the task sets
and at the end of the recording. Each task set was composed
of 5 blocks of 12 s each, preceded by a 3 s cue indicating
the task to be performed by the participant. The latter cor-
responded to moving the tongue, tapping the left or right
finger or squeezing the left or right toes. In what follows,
we only consider one participant even though our results are
reproducible across individuals.
Voxel Selection. Each fMRI run comprises a huge data
set consisting of 230,314 voxels (i.e. time series) recorded
along 359 time points. As our method is so far univariate,
it estimates an activation signal and HRF in each voxel in-
dependently. Hence, an important aspect in the validation
consisted in selecting activated voxels for which these esti-
mates are meaningful. Following the work in [8], we used a
General Linear Model (GLM) that also embeds a supervised
voxelwise HRF estimation to regress the convolution of the
known EP with the HRF estimate on the measured BOLD sig-
nal. From all voxel candidates, we extracted the 100 mostly
correlated which are associated with the highest coefficients
in the GLM. This process is illustrated in Fig. 2.
Results. Fig. 3 presents the neural activation signals z esti-
mated with our method for the left hand motor task in one par-
ticipant. The estimated neural activation signals retrieved the

https://github.com/CherkaouiHamza/pybold
https://github.com/CherkaouiHamza/validation
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Fig. 3: Neural activity surrogates normalized by their `∞
norm. The standard deviation across voxels is encoded by
transparency around mean curves for the EP (green), the pre-
processed BOLD signals y (black) in the most correlated vox-
els, and the neural activation signals z (red) estimated with
our blind deconvolution approach for the same voxels.

two well defined blocks, suggesting that the model proposes
coherent blocks for the neural activation signals with a timing
close to that of the EP. Interestingly, one can observe that the
measured BOLD signals are postponed in time as compared
to the recovered neural activation signals, which is consistent
with the sluggishness of the hemodynamic response.
Fig. 4 displays the HRF estimates for two tasks performed
by the same participant using the method proposed in [8] and
ours in the blind deconvolution scheme. The HRF estimates
were averaged across the 100 selected voxels. For the visual
fixation task lasting 3x15 s, both methods recover a similar
HRF shape. This was expected as the BOLD signal in re-
sponse to the visual task elicits the strongest activity for both
methods. The HRF curve depart from the canonical HRF as
all the selected voxels did not confine to the primary visual
system but were instead spread between motor and visual re-
gions. For the left hand motor task lasting 24 s in total, the
HRF shaped recovered by the two approaches differ. The
early initial dip found by [8] is questionable as such deple-
tion may physiologically occur only in the 1s after stimula-
tion. The HRF estimates obtained through blind deconvolu-
tion appear more plausible even though the time-to-peak is
quite large too. This difference is explained by the capacity
of our model to cope with the latencies between the EP and
the neural activity signal.
Moreover, the HRF estimates obtained using [8] are close to
each other. In contrast, Fig. 4 shows that the HRF estimates
in response to the visual task differs significantly from the
ones in response to the left hand task. This suggests a task-
dependent shape for the HRF as previously demonstrated in
the literature [5]. Moreover, when we used other tasks avail-
able in the HCP dataset we still noticed this coherent task-
dependent or learning effect: for instance, the right and left
hand tasks provide similar HRFs to the right and left foot
tasks, respectively.

(a) visual fixation task
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(b) left hand motor task
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Fig. 4: HRF estimates computed for two different tasks in
one participant to the HCP protocol. In (green) the canonical
SPM HRF, in (blue) the reference HRF estimated using [8]
and in (red) the HRF estimated using the proposed blind de-
convolution technique.

4. CONCLUSIONS

In this work, we recovered coherent HRF estimates in voxels
correlated to a specific task without the explicit knowledge
of the experimental paradigm. To do so, we simultaneously
estimated a neural activation signal, which may depart to the
EP in terms of timing. We observed a clear dependence be-
tween the HRF shape and the different tasks involved in the
EP. For the first time in the fMRI literature, our approach per-
forms an optimization-driven voxelwise blind deconvolution
scheme of the BOLD signal. However, several limitations
remain. The `1 norm regularization parameter λ gathers the
statistical relevance of our model and is set by hand so far. Fu-
tur developement, such as a more robust deconvolution tech-
nique with a concomitant Lasso or the squared root Lasso
could be explored. The dependence on the reference HRF
should be investigated too. Moreover, the described method
remains purely univariate and could be advantageously ex-
tented to a multivariate framework by aggregating the data to
limit the number of unknown HRFs.This contribution clearly
opens new research avenues especially for inspecting func-
tional connectivity between distant brain regions by cross-
correlating pairs of neural activity signals instead of BOLD
signals and therefore better disentangling vascular from neu-
ronal effects.
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