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1. Cladding waveguides are fabricated in Yb,Na:CaF2 by femtosecond laser 

inscription. 

2. Low propagation losses and single-mode waveguides are obtained.  

3. Modification mechanism is revealed by investigating the confocal μ-Raman 

properties. 

4. Visible cooperative up-conversion emissions are achieved in the waveguides.  
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Abstract: Cladding waveguides are fabricated in Yb,Na:CaF2 crystal by applying 

femtosecond laser inscription. Waveguide properties are investigated in terms of 

guiding behaviors and confocal micro-Raman characterizations. In addition, under 

946 nm excitation, visible cooperative up-conversion emissions at 478 nm induced by 

Yb
3+ 

ion pairs are observed while other visible bands are detected owing to the 

impurities of Er
3+

 and Tm
3+

 ions. 

Keywords: Femtosecond laser inscription, Cladding waveguides, Cooperative 

up-conversion, Yb,Na:CaF2 crystal. 

 

1. Introduction 

Femtosecond laser inscription (FLI) has been proved to be an effective 

technology for optical waveguide fabrication in numerous optical materials [1-4]. 

Waveguide structure with a tubular cladding morphology, a central unexposed 

waveguide core surrounded by laser induced low-index tracks, have attracted 

increasing attention mainly because such structures can be tailored according to 

demand and the properties of the host materials can be preserved well in the guiding 

regions [5-7]. Compact lab-on-chip devices based on cladding waveguide structures 

have been achieved including beam couplers or splitters, novel waveguide lasers and 

frequency converters [8-13]. 

CaF2 crystal shows unique advantages when compared with other fluoride 

materials. It has wide transmission band ranging from deep ultraviolet to mid-infrared; 

*Manuscript
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it also has low refractive index and nonlinear coefficient, which can reduce the 

nonlinear effect of high-intensity laser pumping; It exhibits lower phonon energy that 

can improve the quantum efficiency of fluorescence and result in relatively low lasing 

threshold. It also possesses a high laser damage threshold [12-18]. All these properties 

make CaF2 crystal an important doping substrate for various optical applications. The 

Yb
3+

 ion shows a very simple electronic level structure with the ground state (
2
F7/2) 

and an excited state (
2
F5/2), leading to puny shielded 4f electrons, which makes Yb

3+
 

ions easy to interact with the lattice and neighbor ions. In consequence, so called 

cooperative up-conversion in visible blue regions, produced by two nearby-located 

Yb
3+

 ions, can be observed in Yb-doped materials [19-31]. Therefore, Yb:CaF2 crystal 

is considered to be an excellent candidate for visible luminescence generation. 

However, it has been demonstrated that the advantages of Yb:CaF2 are often mitigated 

by the formation of Yb
2+

-ions and the ion clusters. An effective solution is to 

introduce non-active ions (such as Na
+
) into rare-earth doped CaF2 crystal [12,32]. 

Visible luminescence devices based on cladding waveguides in Yb,Na:CaF2 crystal, 

which combine the compact geometries of guiding structures while maintaining the 

advantages of the substrate material, show promising potential for applications in 

information technology, color display, biomedical diagnostics and underwater optical 

communication [33-36]. In this work, we demonstrate the formation and 

up-conversion of cladding waveguides in Yb,Na:CaF2 crystal by using FLI. The 

guiding performance of the waveguides are observed to be excellent. By observing 

the micro-Raman characterizations, the mechanism of the waveguides formation is 

revealed. More importantly, visible blue up-conversion of Yb
3+

 ions at 478 nm based 

on cooperative transition in the guiding regions are reported. Extra fluorescence bands 

in the violet, blue, green and red regions are also detected which are due to Er
3+

 and 

Tm
3+

 ion impurities.  

 

2. Experimental Procedures 

The 2.0 at% Yb
3+

-ions and 5.0 at% Na
+
-ions are incorporated into CaF2 cubic 

crystal which is cut into a size of 2 mm × 10 mm × 10 mm and then optically polished. 

The tubular cladding structures are fabricated in the prepared Yb,Na:CaF2 crystal by 

applying FLI. During the fabrication process, an ultrafast Yb-doped fiber 

master-oscillator power amplifier laser (IMRA FCPA μ-Jewel D400) is used as laser 

source, delivering 360 fs pulses with a repetition rate of 500 KHz and a center 
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wavelength of 1047 nm. The laser beam with circular polarization is focused by a 

microscope objective (NA=0.4) into the substrate beneath one of the 10 × 10 mm
2
 

surfaces. The sample is translated through the focused laser at a speed of 20 mm/s. 

The inscription power of laser beam is varied from 100 mW to 160 mW with a step of 

20 mW, corresponding to pulse energys varied from 200 nJ to 320 nJ with a step of 40 

nJ. Under these conditions, arrays of parallel tracks are inscribed below the top 

surface following the designed geometries so as to form claddings waveguides with 

diameters ranging from 20 μm to 35 μm. The central depths of these cladding 

structures are positioned around 100 μm below the sample surface. In order to 

enhance the refractive index (RI) contrast of waveguiding core compared with 

laser-induced tracks, the scanning process is repeated with different numbers of 

overlapping scans (3 scans or 10 scans) for each track. Consequently, 32 cladding 

waveguides (numbered as WG1-WG32) are fabricated. 

By using a linearly-polarized diode laser at 633 nm and end-face coupling, 

experiments are carried out to illustrate the guiding characteristics of the waveguides. 

A half-wave plate is employed to control the polarizations of the incident laser. Modal 

profiles of these structures are detected. The RI contrast ∆n is calculated roughly by 

the formula [37]: 

   
      

   
                            (1) 

in which θm is the maximum permitted incident angle. Propagation losses are 

estimated by detecting the incident and output power while taking Fresnel reflection 

of the end facets and the coupling efficiency into account. The propagation loss α can 

be estimated with the following equation [38]: 

                                          (2) 

where R is the Fresnel reflection coefficient, which is calculated to be 0.0318. L 

stands for the length of the waveguide. T is related to the mismatch between the pump 

beam mode and waveguide mode which, for single-mode waveguides, can be 

expressed as [38]:  

   
     

  
    

 
 
 

                          (3) 

where ω1 and ω2 are the mode width of waveguide and pump beam，respectively. 

Presuming single-mode guidance for all waveguides, the values of T are estimated to 

be 0.934, 0.988, 0.995 and 0.917 for the waveguides with diameters of 35 μm, 30 μm, 
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25 μm and 20 μm, respectively. It should be pointed out that, for multi-mode 

waveguides, the values of parameters related to the mode mismatch are larger than the 

calculated results of T due to the mode transition. Thus, the propagation losses of 

multi-mode waveguides should be smaller than the calculated values. 

The confocal Raman properties of the cladding waveguide WG1 are further 

investigated with a fiber-coupled confocal microscope (alpha300 R, WITec GmBH). 

The excitation laser is a diode-pumped solid-state laser (532 nm, cobalt Laser). The 

continuous wave laser is focused via a 50× objective (NA = 0.55). The lateral and 

axial resolutions of the confocal system are 500 nm and 1 um, respectively. The 

Raman scattered light are dispersed by a 600 mm focal length spectrometer with 1800 

grooves/mm grating (UHTS 600). The signals are eventually detected using a 

charge-coupled-device (CCD) thermoelectrically cooled to -60 °C. In order to obtain 

the in-depth variation of the Raman spectra, the excitation spot is scanned 

continuously over the cross section of WG1 with the emission line at 321 cm
-1

. Two 

dimensional (2D) mappings including the emitted intensity, peak position of the 

emission line and emission bandwidth are obtained. Meanwhile, for easy visualization 

and comparison, 1D profiles of micro-Raman are also detected. 

Additionally, based on the end-face coupling system, the experiment for 

up-conversion emission is actualized by using a 946 nm diode-pumped solide-state 

laser as excitation laser. The linearly polarized beam is focused and coupled into the 

waveguide in combination with a dielectric mirror which has high transmittance at 

around 946 nm in order to increase the pump power incident into the waveguide. A 

half-wave plate is used so as to investigate fluorescence properties in both of the two 

polarizations. After being separated from the residual pump with a 900 nm short pass 

filter, the up-conversion emissions from the waveguides and, for comparison, from 

the bulk are detected. 

 

3. Results and Discussion 

The fabricating parameters of 32 WGs are shown in Table 1, where the 

experimentally obtained mode profile patterns at wavelength of 633 nm are also 

depicted. These waveguides are capable of supporting both TE and TM polarizations, 

and the mode distributions did not exhibit significant difference, which underlines the 

advantage of polarization independence of the cladding structures owing to their 

symmetric morphologies. Strong optical confinements are obtained from all 
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waveguides and the mode distributions of WG1-WG4 have been reported elsewhere 

[39]. Single-mode guidance is obtained from structures with a diameter of 20 μm, 

revealing that mode numbers are reduced along with the reduction of the waveguide 

diameters. Furthermore, some waveguides (WG14, WG15, WG27, WG30 and WG31), 

although possessing larger diameter, are also single-mode which is related to the 

smaller RI contrasts induced by relatively low inscription powers with compare to 

those produced with high laser powers. Furthermore, the single-mode performance of 

cladding waveguide WG27 indicates lower RI contrast of waveguides fabricated with 

3 scans than those fabricated with 10 scans. Such a result is also numerically proved 

by calculating the values of RI contrast of these waveguides (see below).  

Figure 1(a) shows the cross-sections of WG1 and WG17 where it can be clearly 

seen that the laser-induced damage only occurs at the modified areas, forming distinct 

waveguide boundaries deeply embedded inside the sample, while the core regions and 

the bulk outside the claddings are without any obvious damages. The propagation 

losses of cladding waveguides (10 scans) obtained under TM and TE polarization are 

plotted in Fig. 1(b). The minimum value is estimated to be around 0.5 dB/cm for 

WG1. It can be seen clearly that, at fixed inscription power, reduced propagation 

losses are obtained when the guiding cores are enlarged. Meanwhile, for waveguides 

with the same diameter, the propagation losses decrease monotonously when the 

irradiated-laser power increasing from 100 mW to 160 mW. Fig. 1(c) shows the RI 

contrast of waveguides with 10 scans. It can be obtained that, the waveguides 

fabricated with 100 mW laser power possess minimum RI contrast around 1.0×10
-3

 

and the waveguides inscribed with 120 mW, 140 mW and 160 mW have similar RI 

contrast (from 1.3×10
-3

 to 1.4×10
-3

). For waveguides with 3 scans, very similar 

variation trends of propagation losses and RI contrasts are observed. Meanwhile, 

higher guiding losses related to lower RI contrast of waveguides with 3 scans are 

obtained when compared with corresponding waveguides of 10 scans. The lowest 

guiding loss is realized in WG17 with a value of approximately 0.6 dB/cm and the 

maximum RI variation of around 1.2×10
-3

 is obtained. It can be clearly observed that 

negligible differences are observed for TE and TM polarizations. 

Figure 2(a) illustrates the micro-Raman emission lines obtained from the 

waveguide area (point A as indicated in Fig. 2(b)) and a laser-induced track (point B) 

of WG1. As can be seen, the micro-Raman intensity inside the track suffers from a 

strong quenching. In order to get complete knowledge on the spatial distributions of 
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the changes in the micro-Raman spectra, and hence on the corresponding 

microstructural changes over the whole waveguide cross-section, the spatial 

distribution of the intensity, spectral shift and bandwidth of the emission line are 

measured in 2D (as shown in Figs. 2(b)-2(d)) and 1D (Figs. 2(e)-2(g)) forms. 1D 

profiles are measured along the green lines crossing the waveguide indicated in Figs. 

2(b)-2(d). As can be seen from these figures, obvious reductions in Raman intensity, 

blue shifts and broadening of the emission line are spatially located at the modified 

volumes. These phenomena, in general, can be attributed to the creation of lattice 

defects and damages in these regions, which are responsible for the RI reduction in 

the cladding areas. Furthermore, Figs. 2(b)-2(g) also demonstrate that in the active 

volume of the waveguide similar Raman intensity, peak position and band width are 

obtained in respect to bulk, which, in general, means that the lattice structures in the 

guiding areas are well preserved during the FLI procedure so that good optical 

properties of substrate material can be expected in the waveguide cores. 

Figure 3(a) depicts the up-conversion emission spectra collected from the 

cladding waveguides (WG1-WG17) and the bulk, which are realized under 946 nm at 

room temperature with fixed excitation power. As can be seen from Fig. 3(a), the 

up-conversion performance improved obviously when the inscription power is 

increased and the guiding core is enlarged due to the reduction of propagation losses. 

The best performance is observed in WG1. For 3 scans, the best up-conversion 

emission is realized in WG17 as shown in Fig. 3(a), and the intensity of the emission 

is much lower than that obtained in WG1. Meanwhile, in comparison with the bulk, 

the emission intensities are strengthened in the waveguides, which reveals the strong 

optical confinement of the fluorescence emission in the guiding volumes, making 

these waveguides promising for integrated fluorescence devices. Further evidence can 

be found from the photographs of visible up-conversion emissions observed in WG1 

and bulk area, as exhibited in Figs. 3(b) and (c), from which a clear intensity 

quenching in the bulk is observed. 

To investigate the details of the guided up-conversion emission, the spectra of 

the fluorescence generated from WG1 is measured, as described in Fig. 4. As it can be 

seen, an overall increase in the intensity of all the emission lines is observed when the 

excitation power is increased. The emission spectra show broad band covering 

blue-violet, blue, green and red regions, which, in a first order approximation, can be 

attributed to the impurities of Er
3+

, Tm
3+

 or other rare earths in Yb
3+

 doped substrate 
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since it is hard to separate the Ln
3+

 ions due to their similar chemical properties. Such 

phenomena have been previously demonstrated in materials such as Yb:YAG 

waveguide [26] and Yb:Lu3Sc2Ga3O12 nano-garnets [22]. The peaks observed around 

408 nm and 545 nm are associated with the Er
3+

 ions transitions corresponding to 

(
2
H9/2,

4
S3/2)→

4
I15/2, respectively. The transitions 

4
F9/2→

4
I15/2 of Er

3+
 ions and 

1
G4→

3
F4 

of Tm
3+

 ions cause the red band with center of 657 nm [40-43]. It is found that, 

although the concentrations of Er
3+

, Tm
3+

 are low, the intensities of emission lines 

around 657 nm are quite strong. This is mainly because the up-conversion 

luminescence of the impurity ions are induced by energy transfer from the Yb
3+

 ions 

to Er
3+

 and Tm
3+

, which have been proved to possess very high efficiency [44]. 

Emission line centered at 478 nm is induced by up-conversion process of Yb
3+

 ions 

pairs and Tm
3+

 (
1
G4→

3
H6). However, the generation of this peak is dominated by 

cooperative up-conversion emission, which can be confirmed by several evidences. 

Firstly, cooperative emission has been reported previously in Yb
3+

 doped materials 

[22-31]. Such a phenomenon can be explained in terms of the radiative relaxation of 

the simultaneously excited Yb
3+

 ion pairs accompanied by the emission of a visible 

photon with the sum of energies, which can be expressed as 
2
F5/2 + 

2
F5/2 →2

2
F7/2 + hv. 

[45,46] Secondly, the cooperative emission shows fairly wide band which has never 

been observed in up-conversion luminescence of other rare earth ions [20,47]. Finally, 

it has been proved that, for the up-conversion of Tm
3+

,
 
the emission lines around 800 

nm (corresponding to the transition from 
3
H4 to 

3
H6) have much stronger intensity 

than that induced by transition of 
1
G4→

3
H6. However, in our work, the peak around 

800 nm is relatively low, which in turn, proves that the emission intensity of Tm
3+

 

from 
1
G4 to 

3
H6 is very weak [48,49]. Consequently, it can be concluded that the 

energy band corresponding to 478 nm is mainly attributed to cooperative 

up-conversion of Yb
3+

 pairs. 

 

4. Conclusion 

Cladding waveguides in Yb,Na:CaF2 crystal are fabricated by FLI with various 

parameters. With optimized inscription conditions, the fabricated structures show 

good guiding performance in terms of low propagation losses, single-mode guidance 

and polarization independence. The micro-Raman characterizations reveal that laser- 

induced lattice defects only occur on tracks while properties of the bulk are well 
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preserved in guiding volumes. Under 946 nm excitation, the visible cooperative 

up-conversion emissions of Yb
3+

 ion pairs at 478 nm are achieved in the waveguides 

while energy transfers from Yb
3+

 ions to Er
3+

 and Tm
3+ 

impurities are responsible for 

the other bands of emission spectra. These cladding waveguides show good potential 

for integrated optical circuits and miniature visible fluorescence waveguide devices. 
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Figure and Table captions 

Figure 1. (a) The end-face microscope images of Yb,Na:CaF2 cladding waveguides 

WG1 and WG17. (b) The propagation losses and (c) the refractive index contrast of 

waveguides with 10 scans obtained under TM and TE polarization.  

Figure 2. (a) Raman spectra obtained from the guiding area and a damage track of WG1. 

The spatial distributions and 1D profiles of Raman intensity ((b) and (e)), Raman shift 

((c) and (f)) and bandwidth ((d) and (g)) obtained from the cross-section of WG1. 1D 

profiles are detected along the green lines indicated in (b), (c) and (d). 

Figure 3. (a) Up-conversion emissions of waveguides (WG1-WG17) and the bulk. The 

photographs of the visible fluorescence generated in WG1 (b) and the bulk (c). 

Figure 4. Up-conversion spectra obtained from WG1 under the 946 nm excitation. 

Table 1. Mode profiles observed from the fabricated 32 waveguides (WG1-WG32); 

MM and SM represent multi-mode and single-mode, respectively. 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

  

 

 

Fig. 1. 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

  

 

 

Fig. 2. 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

  

 

 

Fig. 3. 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

  

 

 

Fig. 4. 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

  

 

 

 

 

 

Table. 1. 
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