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Abstract
The spatial modes of photons are one realization of a QuDit, a quantum system that is described in
aD-dimensional Hilbert space. In order to perform quantum information tasks with QuDits, a
general class ofD-dimensional unitary transformations is needed. Among these, cyclic transforma-
tions are an important special case required inmany high-dimensional quantum communication
protocols. In this paper, we experimentally demonstrate a cyclic transformation in the high-
dimensional space of photonic orbital angularmomentum (OAM). Using simple linear optical
components, we show a successful four-fold cyclic transformation of OAMmodes. Interestingly,
our experimental setup was found by a computer algorithm. In addition to the four-cyclic
transformation, the algorithm also found extensions to higher-dimensional cycles in a hybrid space
of OAM and polarization. Besides being useful for quantum cryptography withQuDits, cyclic
transformations are key for the experimental production of high-dimensionalmaximally entangled
Bell-states.

Introduction

The polarization of photons is awell-studied and reliable degree-of-freedom for the transmission of
information. Using simple optical components such as half and quarter wave-plates, one can perform any
unitary operation for polarization.However, photon polarization resides in a two-dimensional space, where the
maximal information content of a single photon is limited to one bit. Having access tomore than one bit per
photon is not only conceptually interesting, but allows the implementation of novel advanced quantum
communication and computation problems [1, 2]. For example,moving to a larger alphabet in quantumkey
distribution not only increases the key generation rate, but also provides improved resistance against noise and
advanced eavesdropping attacks [3–5].

There are several options for exploring discrete high-dimensional photonic degrees-of-freedom. For
example, one can send a photon into one out ofmany possible paths [6, 7]. In such a ‘path-encoding,’ it is also
knownhow to perform arbitrary unitary transformations [8]. However, path-encoding is not well suited for the
purpose of communication due to very strict alignment and stability requirements. Amore suitable degree-of-
freedom is the spatial structure of photons, which involvesHermite–Gauss [9], Ince–Gauss [10, 11] or Laguerre–
Gaussmodes [12, 13] in the paraxial approximation. In particular, photonswith a Laguerre–Gaussianmode
structure can carry integer valuesℓ of orbital angularmomentum (OAM)with a helical phase front which goes
from0 to pℓ2 . As theOAM is theoretically unbounded, it gives access to a large state space. For this reason, it has
been used inmany classical [14–16] and quantum communication experiments [17–19], as well as in the
investigation of quantum entanglement in largeHilbert spaces [20–22].

The ability to perform arbitrary unitary transformations directly in theOAMdegree-of-freedomwould
greatly expand its use in quantum information. An indirect approach to carrying out such transformations is to
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transfer the information encoded inOAM to the path degree-of-freedom [23–25], perform the transformation
in the path-encoding and transfer the information back intoOAM [26, 27].While thismethod is theoretically
possible, it is technically difficult and suffers from the limitations imposed by the optical transformations
involved. The question then arises whether there exist simpler andmore direct ways for performing certain
transformations ofOAMmodes. Unitary transformations that are useful for quantum information schemes
often involve transformations between states inmutually unbiased bases (MUBs). For example, quantum
cryptographywith polarization requires transformations between states in the right/left-circular (R/L) and
horizontal/vertical (H/V) bases. To go from the R/L to theH/Vbasis, one can perform aMUB transformation
by using a quarter wave-plate and then perform a cyclic operation in theH/Vbasis (using a half-wave plate) to
access both states. Similarly, transformations in the higher dimensional space ofOAMcan be broken down into
transformations between high-dimensionalMUBs and cyclic operations within those bases [2]. Interestingly, an
n-fold cyclic transformations is an nth-root-of-unity transformation (as it fulfills the property =ˆ P

n
, where 

is the identity), which performs a rotation in an n-dimensional space.
Here we present an experimental implementation of a four-dimensional cyclic transformation ofmodes

within theOAMbasis. Our experimental scheme is able to perfectly (in a losslessmanner) cycle through the
four-dimensional alphabet. Furthermore, it only uses simple optical elements thatmanipulate the spatialmode
of a light beam. An important building block of the experiment is an interferometer that was designed to sort
photons based on theirOAMcontent [28]. Here we use it as a two-input, two-outputOAM-parity beamsplitter
(BS), as implemented in a recent experiment [29]. Interestingly, the experimental configuration for this cyclic
transformationwas found by a computer algorithmdesigned by some of the authors of this paper [30]. The
algorithmuses a toolbox of experimentally available components, fromwhich it creates experimental
configurations. The property of the resulting states and transformations are then calculated and compared to a
list of selection criteria. For the experiment presented here, the lossless performance of cyclic rotation in a high-
dimensional state spacewas used as the criterion. If the experiment fulfills the criterion, it is automatically
simplified and reported. Surprisingly, even though the final experiment consists of only a small number of
components, the authors were not able tofind an implementation by themselves. As a result, this setup is thefirst
computer-designed quantum experiment that has been successfully implemented in the laboratory.

Orbital angularmomentumbeamsplitter
An essential building block of our setup is anOAM-BS, which consists of aMach–Zehnder interferometer (MZI)
with an additional Dove prism in each arm (see figure 1). In 2002, Leach et al [28] developed this interferometer
to sort individual photons based on the parity of theirOAMmode, in an analogousway to how a polarizing
beamsplitter (PBS) sorts individual photons based on their polarization.Many such interferometers could then
be cascaded to distinguish between arbitrarilymanyOAMmodes with a theoretical efficiency of 100%.When an

Figure 1.Orbital angularmomentumbeamsplitter (OAM-BS): (A) comparison between a non-polarizing beamsplitter (BS), a
polarizing beamsplitter (PBS) and anOAM-BS. (B)TheOAM-BS is aMach–Zehnder interferometer with twoDove prisms, one in
each path, oriented at an angle of p 2 relative to each other. This interferometer has the ability to sort even and odd values ofOAM
into its two output paths. One of themirrors is piezo-controlled for fine adjustment.
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OAMmodewith an azimuthal phase structure fℓei is rotated by an angleα, it acquires an additional phase given
by aℓei . Notice that the phase acquired is proportional to both, the angle of rotationα, as well as theOAM
quantumnumberℓ of themode [31].

TheDove prisms in theMZI are rotated by an angle a 2 with respect to each other.When a p= the
relative phase difference between the two arms is pℓ , which only depends on theℓ value of the incoming
photons. As a result, photons entering theMZI from the incoming pathAin with odd values ofℓ undergo
constructive interference in armAout and destructive interference in armBout. For photons fromAin that carry
an even value ofℓ the opposite happens. They go only into armBout (with an additional signflip) and never into
pathAout due to constructive and destructive interference, respectively. If the incoming pathBin is used, the same
happens (seefigure 1 for a graphical representation).

Four-fold cyclic transformation forOAM

The cyclic transformation introduced here is a unitary transformation thatmaps a particularOAMmodewithin
an orthonormal set ofmodes to the next one in afixed cycle. The fourOAMmodes that we use in our
experiment are given byℓ=- -2, 1, 0, and+1. Tofind an experimental implementation, we applied the
computer algorithmMELVINdiscussed in [30] to search for high-dimensional cyclic rotations using only
experimentally accessible linear optics components. One of the resulting configuration of a four-fold cycle
requires one spiral phase hologramwith = +ℓ 1, twoOAM-BS and a reflection in one of the possible paths
between them (seefigure 2). In this setup, only the upper input arm (Ain) of thefirst OAM-BS is used and only
the upper output armof the secondOAM-BS (Aout)will be needed.However, both paths between the two
OAM-BSs are important for the cyclic transformation.

Wewill nowdiscuss in detail how the experimental implementationworks. If the upper incoming beam
(Ain) possessesOAMofℓ=−2, it becomesℓ=−1 after adding anOAMquantumof+1with a spiral phase
hologram. Thefirst OAM-BS sorts this (odd)mode into the upper arm, fromwhere it is input into the second
OAM-BS.Once again, theOAM-BS sorts this oddmode into the upper output arm (Aout). The transformation
fromℓ=−2 toℓ=−1 is then complete (seefigure 3)

In general, the experimental setup transforms the inputℓin into the outputℓout according to

=
+

- +
ℓ ℓ ℓ

ℓ ℓ( )
⎧⎨⎩

1 ... even
1 ... odd.out

in

in

According to this equation, higher-order four-fold cycles are realizable with the same setup. The general
transformation behavior for higher-ordermode sets is visualized infigure 4, where the set ofmodeswe
experimentally investigate here ( = - - +ℓ 2, 1, 0, 1) forms the lowest-order cycle.

It is important to distinguish between the transformation that involves addingOAMquanta to a particular
mode, and the cyclic transformation discussed here. A single spiral phase plate or a spatial lightmodulator (SLM)
can perform the transformation fromℓin=−2 toℓout=- ℓ1, in=−1 to aGaussian beamwithℓout=0, or

Figure 2.Conceptual sketch of the experimental setup. The photons enter inputAin and propagate to a spiral phase hologram (solid
black rectangle) that adds oneOAMquantum (+1) to the inputmode. They then enter thefirst orbital angularmomentum
beamsplitter (OAM-BS) through the upper input arm (the lower input arm is not used). The first OAM-BS sorts even and odd values
ofOAM into different paths.Modes coming out in the lower path undergo a sign change of theOAMvalue via one reflection on a
mirror. The secondOAM-BS sorts themodes againwith only the upper output path returning the transformedmodes in all cases (odd
and even). The experiment is depicted four times in different colors for each possible inputmode.
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from theGaussian inputℓin=0 toℓout=+1.However, a single component does not complywith a cycle as
can be seen in the final step: the input ofℓin=+1 is naturallymapped ontoℓout=+2 andnot onto the desired
ℓout=−2, as the loop property requires. These components only realize linear transformations and not cyclic
ones. It is important to note that even though thin holograms (such as SLMs or spiral phase plates) can impart
arbitrary phase shifts on the spatialmode, they cannot perform an arbitrarymode transformation if the
impingingmode is unknown.

Experimental details

A schematic of the experimental setup can be seen infigure 5. The laser is an externally grating-stabilized laser
diode centered at around 809 nm.We use a single-mode fiber to spatially filter the laser beam, allowing us to
send a collimatedGaussianmode (ℓ=0) into the experimental setup. A half-wave plate is used to ensure the
photons are horizontally polarized. This is necessary for propermodulation by a computer-controlled phase-
only SLM (Holoeye-Pluto) that is used for generating the inputOAMmodes [25, 32, 33]. After the SLM, a 2f–2f
imaging system is used tofilter out themodulated first diffraction order with a pinhole in the Fourier plane.
Lenseswith =f 300 mm1 and =f 150 mm2 demagnify the beam to half its size such that itfits through the
etched hologram (holo+1)with a size of ´4 4 mm2.

OneOAM-BS consists of two 50:50 BSs, twoDove prisms rotated p 2 with respect to each other, and two
mirrors. Onemirror ismounted on a piezo-controlled stage in order to adjust the path length on a nanometer
scale (see figure 1). Dependent on the parity of theOAMvalue of the incoming beam, one output armof the first

Figure 3.Visualization of the four-fold ofOAMmodes betweenℓ=−2 andℓ=1. False color images are recordedwith aCCD
camera in our experimental setup and the insets show their theoretically calculated phase front.

Figure 4. Four-fold transformations possible with the current setup. Each closed loop of arrows shows the set of fourOAMmodes that
can be cycled throughwith our experimental setup. In this paper the blue inner cycle is realized. However, in principlemore four-fold
cycles are accessible as can be seen in the outer arcs of red and green.
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OAM-BS is occupied. An even input for instance, goes into the longer armbetween the twoOAM-BSs, where a
4f-systemwith plano-convex lenses ( =f 250 mm3 ) is implemented to avoid propagation effects fromhaving a
detrimental effect on the beamquality. Threemirrorsflip the sign of theOAMmode. The shorter armhas a 4f-
systemof lenses L4with =f 100 mm4 . The two 4f-systems also ensure that the inputs toOAM-BS 2 are
conjugate (image planes) to the outputs ofOAM-BS 1. The secondOAM-BS is identical to thefirst one.
However, both of its inputs are used,making its alignmentmore challenging.

The throughput of the device is calculated as follows. The+1 blazed hologram ismeasured to have a
diffraction efficiency of 98±2%. The twoOAM-BS have an estimated efficiency of 83±2%each, which
includes reflection losses at the beam splitters and dove prisms, and imperfect alignment of the interferometers.
The lenses used are AR coated and do not add appreciable loss. Putting this together, we conclude that the system
has a throughput of approximately 0.98*0.83*0.83=0.68±0.04. By construction, the setup cannot shift a
photon out of the four-mode space that we start with. Hence, we estimate the loss to higher ordermodes to be
very small.

Wemeasure theOAMcontent of themode after each step of the the cyclic transformation via a projective
measurement [13]. A hologramdisplayed on the SLMcan be used to ‘flatten’ the phase of a specific incident
OAMmode, which then couples efficiently to a single-mode fiber. Using a powermeter, we canmeasure how
much powerwas carried by themodewe are projecting into. Thus, the hologram and the singlemode fiber
together act as amodefilter. Since the display of our SLM is large enough tofit two different holograms, we use
the left side formode preparation and the right side formeasurement.

Experimental results and discussion

The experimental setup is tested by sending all fourOAMmodes in our set ( = - - +ℓ 2, 1, 0, 1), one after the
other. For each inputmode, themode content of the output ismeasured by performing projective

Figure 5. Schematic of the experimental setup. The source is a grating-stabilized laser (l » 809 nm). A singlemode fiber (SMF)
provides aGaussianmode that is horizontally polarized by a half-wave plate (HWP) and incident on a diffractive hologramdisplayed
on a spatial lightmodulator (SLM). A 2f–2f imaging system (L1 and L2) is used to demagnify the beam size and filter out the first
diffraction order via a pinhole. After this preparation, the beam ismodulated by an etched hologramof = +ℓ 1and fed into thefirst
orbital angularmomentumbeamsplitter (OAM-BS 1). Even inputOAMmodes are sorted by theOAM-BS into the longer pathwith a
4f-systemof lenses (L3). Odd inputmodes are sent into the shorter pathwith another 4f-systemof lenses (L4). Both of these arms are
inputs ofOAM-BS 2. After theOAM-BS 2, the cyclic transformation is complete. Tomeasure the content of cycledmodeswe
redirected the beam to the unused half of the SLM,where a hologram in combinationwith an SMF acts as anOAMmode filter. The
power in the desiredmode ismeasuredwith a powermeter.
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measurements. If our cyclic transformationworks, each inputmode should be shifted to the adjacentmode in
the cyclic set. Themeasured data showing the power in each outputmode as a function of inputmode number is
plotted infigure 6.

The four-fold cyclic transformation operation of our experimental setup is confirmed by the distinct peaks
that appear in the correct outputmode values, as shown infigure 6. The efficiency E of receiving the correct
modes after the cyclic transformation of a given inputmode are calculated in table 1.

From this data, it is clear thatwhile our cyclic transformationworkswell, its operation is not uniform across
the set ofmodes. Higher-ordermodes seem to be transformedwith a lower probability than lower-ordermodes.
This can be attributed to the larger diameter of higher-ordermodes that are clipped at certain optical elements—
in particular at the 4×4 mm2hologram. This problem can easily corrected by using smaller beams or larger
optical elements. Additionally, higher-ordermodes are known to have a lower coupling efficiency in a phase-
flatteningmeasurement than lower-ordermodes [34]. The use of amode-dependent lens on the SLMcould be
used to correct this behavior.

Now let us briefly analyze how the quality of the transformationwould influence one of the proposed
applications: with the transformation, a four-dimensional Bell state can be converted into a different four-
dimensional Bell state. Using themeasured values infigure 6, thefidelity of the newBell state would be 91.5%
(see appendix), which is above the limit of 75% for verifying four-dimensional entanglement [26].

Conclusion and outlook

Wehave experimentally demonstrated a four-fold cyclic transformation of opticalmodes carryingOAM.Modes
froma set ofOAMquantumnumbers = - - +ℓ 2, 1, 0, 1are shifted into the adjacentmode in the set in a
cyclicmanner. Our setup offers theoretically lossless near-unit transformation efficiency that is reduced to an
average efficiency of around 87%due to technical limitations. The experiment was performedwith
commercially available optical components andwithout active interferometric stabilization.We expect the
measured efficiency to approach the theoretical value with the specific improvements discussed above.

The four-dimensional cyclic transformation demonstrated here opens the door towards performing
arbitrarymode transformations between high-dimensionalMUBs—a capability considered key for realizing

Figure 6.Measured power in all fourmodes for every inputℓ value. Each colored row corresponds tomeasurements performed for
one particular inputOAMmode.

Table 1.Measured efficiencies: for a given inputmode, we show the probability that the correct
mode is identified. Ic is the intensity of the correctly identifiedmode, and = å =-

+I Il ltotal 2
1 is the

total intensity collected at the four outputmodes.

Inputmodeℓ −2 −1 0 +1

=E I Ic total (73.8 ± 1.0)% (97.0 ± 1.0)% (90.7 ± 1.5)% (87.0 ± 1.5)%
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quantum information systems in high dimensions. The experimental setupwas found by using a computer
algorithm (MELVIN) designed forfinding high-dimensional transformations of quantum states [30]. The
results serve as confirmation ofMELVIN’s ability tofind experimental configurations that achieve a desired
transformation.

While we have performed our experiment with a classical beamof light, it should be noted that the setup
operation is identical for single photons.However, for its use in quantum experiments, it is important that this
cyclic transformation alsoworks for photons carrying a superposition ofOAMmodes. In order to do so, the two
path lengths from the first OAM-BS to the secondmust bematched towithin the coherence length of the input
photon. The experiment would then consist of three cascadedMZIs andwould require additional
improvements in stability. Interestingly, this experiment can be extendedwith a little effort to an eight-
dimensional cyclic operation in a hybrid space ofOAMand polarization [30]. The cyclic transformation
demonstrated here shows great promise for applications in future quantum information systems andmay prove
invaluable in fundamental tests of quantummechanics [35, 36].
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Appendix

Bell statefidelity
By using the cyclic transformation in one of the photons of a four-dimensional two-photonBell state, one can
transform it to a different Bell state. If we start with

y ñ = - - ñ + - - ñ + ñ + ñ∣ (∣ ∣ ∣ ∣ ) ( )1

2
2, 2 1, 1 0, 0 1, 1 11

andwe apply the transformation T̂ as shown infigure 6, we find the state

r yñ = ñ = - ñ + - ñ + ñ + ñ
+ - ñ + - ñ + ñ + ñ
+ - - ñ + - - ñ + - ñ + - ñ
+ - - ñ + - - ñ + - ñ + - ñ

∣ ˆ∣ ( ∣ ∣ ∣ ∣
∣ ∣ ∣ ∣
∣ ∣ ∣ ∣
∣ ∣ ∣ ∣ ) ( )

T 0.42 1, 2 0.12 1, 1 0.09 1, 0 0.04 1, 1

0.06 0, 2 0.10 0, 1 0.08 0, 0 0.44 0, 1

0.10 1, 2 0.11 1, 1 0.51 1, 0 0.12 1, 1

0.11 2, 2 0.45 2, 1 0.17 2, 0 0.18 2, 1 . 2

1

With the following target state

y ñ = - ñ + ñ + - ñ + - ñ∣ (∣ ∣ ∣ ∣ ) ( )1

2
1, 2 0, 1 1, 0 2, 1 32

it would result in a fidelity of roughly 91.5%.
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