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The rare earth metals (scandium, yttrium, lanthanum and the subsequent 4f elements) and
actinides (actinium and the 5f elements) are vital components of our technology-dominated society.
Examples include the fluorescent-red europium ions used in euro banknotes to deter counterfeiting [1],
the radioactive americium used in smoke detectors [2] that save countless lives every year as well
as neodymium used in the strongest permanent magnets [3]. However, the rare earth and actinide
elements remain poorly recognised by non-scientists, and even by many undergraduates in chemistry.

The similar radii of the respective +3 cations (Figure 1) belies their individually unique spectral [4]
and magnetic [5] properties that contribute to their fascinating chemistry. In this Special Issue,
devoted to molecular rare earth and actinide complexes, work from Natrajan and co-workers [6]
has explored how fluorinated ligands improve the luminescence of 4f complexes, while Baker and
co-workers [7] investigated the optical properties, as well as structure, of a new class of uranyl
selenocyanate. Pointillart and co-workers’ article [8] bridges the areas of lanthanide optical and
magnetic properties—literally—by using bridging tetrathiafulvalene derivatives. The growing field
of Single Molecule Magnetism originates in the d-block, but recent interest in the f-elements has
been growing. Powell and co-workers [9] explore the use of dimeric dysprosium (which has a highly
anisotropic f-electron distribution) compounds with a “hula-hoop” geometry, defined by the ligand
that sits in an equatorial plane around both Dy atoms. The main current medical use for the lanthanides,
as Magnetic Resonance Imaging (MRI) contrast agents, also relies on the unique electronic properties
of the lanthanides. The article by Parac-Vogt and co-workers [10] demonstrates the combination of
gadolinium for MRI imaging (thanks to its seven unpaired electrons) connected to a luminescent
BODIPY fragment in order to explore combined MRI and optical imaging, addressing the drawbacks
of both techniques through their complementary properties.
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Figure 1. The ionic radii of the 6-coordinate M3+ cations of the rare earth and actinide metals (except 
for Th which is Th4+) [11–13]. 

Figure 1. The ionic radii of the 6-coordinate M3+ cations of the rare earth and actinide metals (except for
Th which is Th4+) [11–13].

Another growing application of molecular lanthanide complexes is in catalysis, and in this issue,
Kostakis and co-workers [14] report the use of lanthanide coordination polymers as catalysts in
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a domino reaction. As with the d-block, organometallic lanthanide chemistry has proven to be of
vital use in the development of homogeneous catalysis. This issue reflects this growing interest with
papers demonstrating the synthesis of organometallic lanthanide complexes using imide (Anwander
and co-workers) [15], amidinate (Edelman and co-workers) [16], reduced bipyridine (Mills and
co-workers) [17] and metallocene (Ce4+ complexes by Gordon and co-workers [18], the reactivity
of Sm2+ by Maron and co-workers [19] and U3+/U4+ bromides by Kiplinger and co-workers [20])
ligand frameworks. A review from Eisen and co-workers [21] is devoted to actinide catalysis and
an article from Visseaux and co-workers [22] details the extension of organometallic Nd catalysis
into the solid state demonstrating the numerous current applications of these interesting species.
The review by Turner [23] highlights N2 and P4 activation chemistry of the f-block, an area of great
future catalytic potential.

We hope you will enjoy the breadth of chemistry offered in this open access Special Issue that
highlights the many differences between complexes of the rare earths and actinides. However,
the similarity of ionic radii is inescapable for the +3 oxidation state, which gives rise to one of
the most challenging remaining problems for f-block chemists and the potential renaissance of nuclear
power (as well as tackling historical problems). The separation of highly radioactive and frustratingly
long-lived heavier actinides from shorter-lived radioactive isotopes of the lanthanides would greatly
aid planning for the long-term storage of nuclear waste. It is promising that the current resurgence of
interest in the fundamental chemistry of the f-block can feed into the goal of discriminating between
the actinides and lanthanides based on differences in bonding and reactivity thereby boosting efforts
in the area of nuclear waste separation and storage. In fact, the article by Beekmeyer and Kerridge
compares covalency in [CeCl6]n− and [UCl6]n− as a means of shedding light on this very problem [24].
We look forward to many more academic and practical advances in all of the above fields of research
in the near future.
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