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Abstract: The paper deals with the reconfiguration analysis of the single-loop variable
degree-of-freedom (DOF) RRRRS mechanism composed of five links connected by four revolute (R)
joints and one spherical (S) joint. The mechanism may show two modes of motion: one-DOF and
two-DOF motion. In the paper, a classical vector procedure is used to obtain the quartic motion
equation (QME) that allows one to inspect the nature of the motion. In general, the solutions of the
QME provide the one-DOF motion of the mechanism except when all the coefficients of the equation
vanish. In this case, the mechanism undergoes the two-DOF motion. The motion of the mechanism
built according to two specific architectures was analyzed by the numerical solutions of the QME
and with the help of the solid model of the mechanism. It is revealed for the first time that the
perpendicular architecture has one 2-DOF motion and two 1-DOF motion modes.

Keywords: reconfiguration analysis; single-loop mechanism; multi-mode mechanism

1. Introduction

The paper deals with the reconfiguration analysis of a variable-degree-of-freedom (DOF) single-loop
mechanism. Variable-DOF mechanisms (also kinematotropic mechanisms), are a class of reconfigurable
mechanisms and one type of multi-mode mechanisms. Research in reconfigurable mechanisms dated
back to 1996 when the first paper was published [1]. Since then, the researchers have been developing
several approaches both for the type synthesis of these mechanisms [2–8] and for their kinematic
analysis (a.k.a., reconfiguration analysis), [9–27]. Indeed, despite of the kinematic analysis of conventional
mechanisms, these mechanisms pose the new fundamental problem of finding all the possible motion
modes and to identify the transition configurations. In general, this requires solving a set of loop-vector
or constraint (polynomial) equations. The solutions can be obtained via traditional vector methods
but also with the help of algebraic, numerical algebraic geometry and computer algebra. For example,
focusing only on single-loop mechanisms, in [11] the algorithm for the inverse kinematics of the serial 6R
mechanism using the Study’s kinematic mapping was adopted to deal with the kinematic analysis of
single-loop reconfigurable 7R mechanism with multiple operation modes. In [12], the analytical inverse
kinematic solution of a 4R2P open chain is adopted to analyze the 5R2P linkage for a given driving
joint angle. From the analysis, three operation modes were obtained. In [13], a different approach
was followed. The reconfigurability property of the Bennett plano-spherical linkage (closed-loop 6R
linkage) has been revealed by the variation of the order of the motion-screw system without writing
down a set of polynomial equations. Very recently, the reconfiguration analysis of a novel 7R single-loop
variable-DOF mechanism, obtained from a general variable-DOF single-loop 7R spatial mechanism
and a plane symmetric Bennett joint 6R mechanism for circular translation, has been carried out in the
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configuration space by solving a set of kinematic loop equations based on dual quaternions and the
natural exponential function substitution using tools from algebraic geometry. The analysis shows that
the mechanism has five motion modes [27]. That paper continues the work presented in [26] where the
set of six polynomial kinematic loop equations were obtained and solved in a similar manner for a 7R
multimode spatial mechanism.

In this paper the reconfiguration analysis of a single-loop, variable-DOF RRRRS mechanism is carried
out. The mechanism can be considered a special class of the spatial single-loop 7R mechanism with
three of the seven revolute joints collapsed into the spherical joint. This mechanism was firstly proposed
in [11] using a construction approach and then also found in [7] by the method of intersection of surfaces
generated by kinematic dyads, then providing a general theoretical proof of the local mobility by the
geometrical algebra method. The motivation of this work is to carry out the reconfiguration analysis of
this mechanism that was not previously presented. The main idea of the analysis is to use the inverse
kinematic procedure of the serial chain 3R in order to find the quartic motion equation (QME). Solutions
of the QME were investigated numerically and with the help of the solid model of the mechanism built
according to two specific architectures. The paper is organized as follows. In Section 2 the description of
the mechanism is given and the reference systems are set according to the Denavit-Hartenberg standard
convention. In Section 3 the QME is obtained from the loop-vector equation of the mechanism. The QME
is a polynomial equation written in terms of one joint angle with its coefficients depending on an other
joint angle and on the links parameters of the mechanism. In Section 4 the inspection of the QME was
carried out for two specific architectures of the mechanism. Finally, in Section 5 the conclusions of the
work are drawn.

2. Description of the RRRRS Variable-DOF Mechanism

The mechanism under study is a single-loop formed by five links with four revolute (R) joints
and a spherical (S) joint. The mechanism is shown in Figure 1. All the links can move according to
the constraints except the link (0) that has to be considered as fixed. Figure 1 shows the reference
systems attached to the links according to the Denavit-Hartenberg (D-H) standard convention. Briefly,
the convention is here for the sake of clearity. The Zi-axis is along the axis of joint (i + 1). The Xi-axis is
along the common perpendicular between Zi−1- and Zi-axes. Oi is the intersection of Xi- and Zi-axes
whilst Hi−1 is the intersection of Zi−1- and Xi-axes. The link parameters of link i are: θi: the angle
between Xi−1- and Xi-axes measured from Xi−1-axis to Xi-axis about Zi−1-axis; di: the distance
between Oi−1 and Hi−1 measured from Xi−1-axis to Xi-axis along Zi-axis; αi: the twist angle between
Zi−1- and Zi-axes measured from Zi−1-axis to Zi-axis about Zi−1-axis; ai: the distance between Hi−1
and Oi measured from Zi−1-axis to Zi-axis along Xi-axis.
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Figure 1. The RRRRS single-loop mechanism.
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3. Kinematic Analysis

Consider the single-loop mechanism in Figure 1. We may write the vector loop equation as:

o0,1 + o1,2 + o2,3 + o3,4 + o4,0 = 0 (1)

where oi−1,i =
−−−−→
Oi−1Oi. Equation (1) can be re-written as:

(o0,4 − o0,1)− o1,2 = o2,3 + o3,4 (2)

where (o0,4 − o0,1) = o1,4. Then, vectors in Equation (2) can be expressed in the reference system
attached to the link 2 such that:

l =

 l1
l2
l3

 = (2o1,4 − 2o1,2) = (2o2,3 +
2o3,4) = r =

 r1

r2

r3

 . (3)

Vectors in Equation (3) are:

2o1,4 = 0RT
2 (o1,4) =

1RT
2

 x̃
ỹ
z̃

 , 2o1,2 =

 a2

q2d2

p2d2

 , 2o2,3 =

 a3cθ3

a3sθ3

d3

 , 2o3,4 = 2R3

 a4cθ4

a4sθ4

d4

 .

In the foregoing equations i−1Ri is the orientation matrix of the reference system i with respect to
the reference system i− 1, pi = cαi , qi = sαi and cθi = cos (θi), sθi = sin (θi), (i = 1, · · · , 4). x̃, ỹ, z̃ are
the coordinates of the spherical joint (O4) with respect to O1 and are expressed in the reference system
attached to the link 1. We have:

1o1,4 =

 x̃
ỹ
z̃

 = RT
1 (o0,4 − o0,1) =

 cθ1 sθ1 0
−p1sθ1 p1cθ1 q1

q1sθ1 −q1cθ1 p1


 x− a1cθ1

y− a1sθ1

z− d1

 ,

where x, y, z are the coordinates of the spherical joint (O4) with respect to O0 and are expressed in the
fixed reference system attached to the link 0. The foregoing equation leads to:

x̃ = xcθ1 + ysθ1 − a1;

ỹ = (−xsθ1 + ycθ1)p1 + (z− d1)q1; (4)

z̃ = (xsθ1 − ycθ1)q1 + (z− d1)p1.

To obtain the quartic motion equation of the mechanism we use the following two equations
(without loss of generality Figure 1 shows the mechanism with a2 = 0.):

l3 = r3, lTl = rTr. (5)

It can be noticed that Equation (5) are the same of the equations used to solve the inverse position
problem of a serial 3R mechanism [28].

For the sake of brevity we can show only the first equation of Equation (5):

q2sθ2 x̃− q2cθ2 ỹ + p2(z̃− d2) = d3 + d4 p3 + a4q3sθ4

and to obtain the final form by multiplying by a3 as:

A′ = a3a4q3sθ4 = a3(q2sθ2 x̃− q2cθ2 ỹ + A) (6)
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with

A = p2(z̃− d2)− d3 − d4 p3.

Similarly, the second equation of Equation (5) is multiplied by q3 to lead to:

B′ = a3a4q3cθ4 = q3[B− sθ2(a2ỹ + d3q2 x̃) + cθ2(d3q2ỹ− a2 x̃)] (7)

with

B = (x̃2 + ỹ2 + z̃2 + a2
2 + d2

2 + d2
3 − a2

4 − a2
3 − d2

4)/2− z̃d2 − z̃d3 p2 + d2d3 p2.

Finally, by squaring and summing Equations (6) and (7) we obtain:

A′2 + B′2 − α2 = 0 (8)

with α = (a3a4q3).
Equation (8) is an equation in terms of cθ2 and sθ2 as follows:

β0s2
θ2
+ β1c2

θ2
+ β2cθ2 sθ2 + β3sθ2 + β4cθ2 + ζ = 0. (9)

The coefficients are function of the link parameters and of θ1:

ζ = Ã2 + B̃2 − α2;

β0 = E2
0 + L2

0, β1 = E2
1 + L2

1, β2 = 2(E0E1 + L0L1);

β3 = 2(E0 Ã + L0B̃), β4 = 2(E1 Ã + L1B̃).

with:

E0 = a3 x̃q2, E1 = −a3ỹq2, L0 = −q3(ỹa2 + d3 x̃q2), L1 = q3(−x̃a2 + d3ỹq2), Ã = a3 A, B̃ = q3B.

The final step to obtain the polynomial quartic motion equation is to use the half-tangent

substitution such that cθ2 = (1−T2)
(1+T2)

and sθ2 = 2T
(1+T2)

with T = tan( θ2
2 ):

φ4T4 + φ3T3 + φ2T2 + φ1T + φ0 = 0, (10)

with the following coefficients:

φ0 = ζ + β1 + β4; φ1 = 2(β2 + β3); φ2 = 2(ζ + 2β0 − β1); φ3 = 2(β3 − β2); φ4 = ζ + β1 − β4.

4. Operation Modes

Equation (10) is the QME (a.k.a. characteristic equation) of the mechanism with T as unknown.
The coefficients depend on θ1 and on the link parameters. In a general case Equation (10) provides four
values for T and consequently values for θ2 and then for the remaining joint angles. In other words,
given θ1 we can calculate the other joint angles and thus the complete kinematics of the mechanism.
Under these conditions the mechanism has 1 DOF.

Conversely, when all the coefficients vanish then any value of T, and thus of θ2, satisfies the
equation. Under these conditions the mechanism undergoes a 2 DOF motion.

The goal here is to analyze the motion of the mechanism built according two specific architectures.
These architectures are selected since links with parallel or perpendicular joint axes are often used in
commercial robots. The analysis is carried out by solving the QME numerically and investigating the
motion by the solid model of the mechanism.



Robotics 2018, 7, 51 5 of 11

4.1. Perpendicular Architecture

The perpendicular architecture of the mechanism is shown in Figure 2.
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Figure 2. Perpendicular architecture: 1 DOF configuration.

In this case we have the D-H link parameters shown in Table 1.

Table 1. D-H link parameters in the perpendicular architecture.

αi ai di

−π/2 r/
√

2 0
π/2 0 −r/

√
2

π/2 r/
√

2 r/
√

2
π/2 −r 0

According to Table 1, the spherical joint has the coordinates x = r, y = z = 0 and x̃ = r(cθ1 −
1/
√

2), ỹ = 0 and z̃ = −rsθ1 , where r is the reference parameter of the mechanism link lengths.
Figure 3 shows the values taken by the QME coefficients φi’s versus the input angle θ1. In the plot
each coefficent is normalized to its maximum such that Ri = φi/[max(φi)]. It can be seen that all the
coefficients vanish for θ1 = ±π/4. In these configurations the mechanism has 2 DOF.

Figure 4 shows the variation of θ2 with the input angle θ1.
As it may be seen the plot can be divided into two branches:

• θ1 ∈ [−3/4π, π/4).

In this interval θ2 = −π/2. Indeed, the mechanism is in the folded configuration shown in
Figure 5 where the z0- and z3-axes coincide and they are perpendicular to the plane formed by the
z1- and z2-axes. The mechanism has 1 DOF being the rotation about the z0 (z3)-axis.
As mentioned, there are two exceptions due to the fact that the QME coefficients φi’s may all
vanish as soon as x̃ = 0. In these configurations the mechanism has 2 DOF, θ2 can take any value
whilst θ1 = ±π/4 as proved by the first equation of Equation (4). Furthermore, when θ1 = π/4
point O2 coincides with the sperichal joint S: z̃ = d2 (Figure 6).

• θ1 ∈ [π/4, 5/4π).

In this interval the solutions of the QME are real. The mechanism undergoes a smooth 1 DOF
motion, (Figure 2). If θ1 = π/4 then θ2 −→ π/2 reaching the 2 DOF configuration shown
in Figure 6.
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Figure 3. Perpendicular architecture: Ri vs θ1 plot.
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Figure 4. Perpendicular architecture: θ2 vs θ1 plot.
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Figure 5. Perpendicular architecture: folded configuration, 1 DOF.
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Figure 6. Perpendicular architecture: 2 DOF configuration.

In summary, the perpendicular architecture has one 2-DOF motion mode and two 1-DOF
motion modes.

4.2. Parallel Architecture

The parallel architecture of the mechanism is shown in Figure 7.

!

"!

#!

$!

Figure 7. Parallel architecture: 2 DOF configuration.
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In this case we have the D-H link parameters shown in Table 2.

Table 2. D-H link parameters in the parallel architecture.

αi ai di

−π/2 r/
√

2 0
π/2 0 −r/

√
2

0 r r
−π/2 −r −r

By inspection of the numerical simulation of the mechanism motion, it is straightforward to find
that the QME takes always the form φ2T2 = 0 from which θ2 = 2kπ, k ∈ Z+. In all these configurations
the mechanism undergoes a 1 DOF motion. There are two exceptions due to the fact that φ2 can vanish
as soon as x̃ = 0. In these configurations the mechanism has 2 DOF, θ2 can take any value whilst
θ1 = ±π/4 as proved by the first equation of Equation (4) and shown in Figure 8 where R2 = R2(θ1)

with R2 = φ2/[max(φ2)].

0 1 2 3 4 5 6
−0.2

0

0.2

0.4

0.6

0.8

1

θ1

R
2

Figure 8. Parallel architecture: R2 vs θ1 plot.

It can be noted from Figure 8 the symmetry of the polynomial and therefore of the mechanism
motion with respect to the configuration with θ1 = π. Figure 9 shows the variation of θ2 with the input
angle θ1.

Figures 10 and 11 show the mechanism in 1 DOF configuration when approaching the 2 DOF
configuration (θ1 −→ ±π/4) with θ2 = 0 and θ2 = π, respectively.
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Figure 9. Parallel architecture: θ2 vs θ1 plot.
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Figure 10. Parallel architecture: 1 DOF configuration with θ2 = 0.
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Figure 11. Parallel architecture: 1 DOF configuration with θ2 = π.

5. Conclusions

The reconfiguration analysis of a single-loop, variable-DOF RRRRS mechanism was carried out.
A vector procedure was followed to obtain the quartic motion equation in terms of the joint angle
θ2. The equation was written as a polynomial equation according to the half-tangent substitution.
The coefficients φi’s of the equation depend on the input joint angle θ1 and on the link parameters.
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The motion of two specific cases of the mechanism has been analyzed. In both cases the mechanism
has a 2 DOF motion when x̃ = ỹ = 0 and z̃ = ±r/

√
2. In other words when the origin O2 coincides

with the spherical joint. These configurations occur when the input angle θ1 = ±π/4. It was revealed
for the first time that the perpendicular architecture has one 2-DOF motion mode and two 1-DOF
motion modes. Despite of the parallel architecture which shows a symmetric θ2 = θ2(θ1) plot,
the same plot is unsymmetric in the perpendicular architecture because of the presence of the 1 DOF
folded configuration.
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