
Verifiable Self-Certifying Autonomous Systems

Michael Fisher, Emily C. Collins, Louise A. Dennis, Matt Luckcuck, Matt Webster
Computer Science Department, University of Liverpool, UK contact email: M.Webster@liverpool.ac.uk

Mike Jump, Vincent Page, Charles Patchett, Fateme Dinmohammadi, David Flynn, Valentin Robu, Xingyu Zhao
Engineering School, University of Liverpool, UK Engineering School, Heriot-Watt University, UK

Abstract—Autonomous systems are increasingly being used in
safety- and mission-critical domains, including aviation, manufac-
turing, healthcare and the automotive industry. Systems for such
domains are often verified with respect to essential requirements
set by a regulator, as part of a process called certification. In
principle, autonomous systems can be deployed if they can be
certified for use. However, certification is especially challenging
as the condition of both the system and its environment will
surely change, limiting the effective use of the system. In this
paper we discuss the technological and regulatory background
for such systems, and introduce an architectural framework
that supports verifiably-correct dynamic self-certification by the
system, potentially allowing deployed systems to operate more
safely and effectively.

Index Terms—autonomy, verification, certification, software

I. INTRODUCTION

Autonomous systems can be broadly defined as computer
systems that decide for themselves what to do [51]. Such
systems are increasingly being used, and proposed for use, in
safety- and mission-critical domains, including aviation [45],
automotive [22], manufacturing [29] and healthcare [9], [34].
Systems for such domains are often verified with respect
to essential requirements set by a regulator, as part of a
process called certification [15], [22]. Although routes to the
certification of autonomous systems are being developed [13],
[15], [22], [27], [28], this only covers part of the problem.
Once we have certified our robot, driverless car, unmanned
aircraft, etc., then we can deploy it [29]. However, we know
that a key aspect of both these autonomous systems, and
the environments in which they are deployed, is that the
system/environment will undoubtedly change beyond the con-
ditions at the time of certification. Consequently, assumptions
and assessments made at the time of deployment will likely
now be different.

So, elements of both the system itself and its assumptions
about the environment will certainly change. As this is outside
the behavioural envelope anticipated when certifying the sys-
tem, what do we do? In some cases it might be necessary recall
the system and re-certify for the new situation, but it might
also be that the changes do not affect the safety/reliability of
the system and so it could, if allowed, continue working.

But how should the system decide whether to continue or
stop (because re-certification is needed)? It is here that an

Authors acknowledge funding for this work in the UK by EPSRC through
the ORCA [EP/R026173] Robotics and Artificial Intelligence Hub.

autonomous system can carry out self-certification in order
to decide between these options. In using the term ‘self-
certification’ we are neither referring to system security in
self-certifying file systems nor to physical health in human
self-assessment. However, our use of the term is much closer
to the second of these.

Once we have some autonomous system, such as a vehicle
or a robot, that has been certified for use then we have some
human-controlled process/documentation (such as assurance
arguments supported by safety cases) capturing why the system
has been certified. Consequently, once the certification process
has been completed (and approved by the regulator) we have
some idea of the limits within which the system can reliably
(and safely) operate. Thus, our use of ‘self-certification’ cap-
tures

techniques and procedures to assess whether the system
remains within the bounds under which it was certified.

Note that, at this stage, we are not considering how to move
the system back in to a ‘certified’ mode if something has
failed [16] but just to ensure we can assess and detect when
the system either leaves, or is in danger of leaving, certified
bounds. While we do not expect the system to be able to re-
certify itself, it should be able to detect when it is in danger of
leaving certified bounds and undertake some remedial activity
to ensure that the problems do not get any worse.

Clearly, if a system is to be able to undertake this form of
self-certification, it needs at least an up-to-date description of
its own workings and a precise description of what constitutes
the certified (or safe) boundaries of system behaviour. As we
will see in this paper, these two aspects are provided by a ‘self
model’ and a ‘safety model’, respectively. We here describe
a software architecture for autonomous systems that supports
self-certification whereby the system can decide whether it
should/can keep going.

II. BACKGROUND

A. Autonomous Systems

We define Autonomy here to be the ability of a system to
make its own decisions and to act on its own, and
to do both without direct human intervention.

However, even within this, there are many variations con-
cerning where (and how) decisions are made and actions are
invoked. We can identify some of these variations as follows.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Heriot Watt Pure

https://core.ac.uk/display/287501938?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1) Automatic: involves a number of fixed, and prescribed,
activities; there may be options, but these are generally fixed
in advance and follow a rigid cycle.

2) Adaptive: improves system performance/activity based
on feedback from the environment — typically developed us-
ing tight continuous control and optimisation, e.g. a feedback
control system. Usually very efficient, but driven fundamen-
tally by environmental interactions.

3) Autonomous: decisions are made based on system’s
(view of its) current situation at the time of decision —
the environment still taken into account, but internal moti-
vations/beliefs are crucial. This moves much closer to human-
level decisions as, based on its current views about the environ-
ment and itself, the system here decides whether to continue
with adaptive processes, or to step away from the environment
(perhaps because its sensors are deemed inaccurate) and take
a different decision.

A simplistic example highlighting the differences might be
as follows. If we keep seeing the same situation time and
time again, an adaptive system will make the same decisions
every time, perhaps just learning to recognise the situation
much more efficiently. An autonomous system, however, could
choose to take a different, divergent, decision after having seen
the same situation a number of times.

B. Semi-Autonomous Systems

Within a truly autonomous system we can envisage a
distinct software component, let us call it an ‘agent’ [51],
that makes all the high-level decisions that a human opera-
tor/driver/pilot used to make:

Autonomous Robotic System

Agent

(In this diagram and the two that follow, arrows x → y
indicate that x is in overall control.) At the other extreme
we have a remote-controlled system wherein a human opera-
tor/pilot/driver makes all the key decisions:

Robotic System

In practice, however, autonomous systems rarely fall clearly
into these extremes. It is much more common for the human
and the system to jointly be responsible for system behaviours.
This leads us on to more nuanced and sophisticated issues
concerning shared autonomy and, if these responsibilities can
change over time, then further to issues of variable autonomy:

Semi-Autonomous Robotic System

Agent
Shared/Variable

Autonomy

Not surprisingly there are many ways to categorise these,
potentially dynamic, levels of autonomy. One, called ‘PACT’,
is widely used in aerospace systems [7] and categorises levels
of autonomy from 0 (no autonomy) to 5 (full autonomy):

0: ‘No Autonomy’
→ Whole task done by human except for actual operation

1: ‘Advice only if requested’
→ Human asks system to suggest options and human
selects

2: ‘Advice’ → System suggests options to human
3: ‘Advice, and if authorised, action’

→ System suggests options and proposes one of them
4: ‘Action unless revoked’

4a: System chooses action and performs it if human
approves (‘consent’)

4b: System chooses action and performs it unless human
disapproves (‘exception’)

5: ‘Full Autonomy’
5a: System chooses action, performs it and informs hu-

man
5b: System does everything autonomously

We are primarily concerned with the higher-levels of autonomy
where there will likely be no human operator able to quickly
and directly make decisions.

C. Verification and Validation

Increasingly, the key problem in autonomous systems is not
just to construct an autonomous system, be it vehicle or robot,
but to construct it in such a way that it is (verifiably) safe,
reliable, and hence trustworthy.

1) Verification: The aim of Verification is to ensure that
our system matches its requirements. These requirements may
be informal, in which case it is hard to assess if, or how, our
system does indeed correspond to them, or the requirements
may be explicitly formal. The formal variety is often given
in a clear, precise language with unambiguous semantics.
Formal Verification takes this further, not only having precise
formal requirements in a mathematical form, but carrying out a
comprehensive mathematical analysis of the system to ‘prove’
whether it corresponds to the formal specification of these
requirements [15]. Formal verification is particularly used for
systems that are safety, business, or mission critical, and where
errors can have severe consequences.

There are many varieties of formal verification, the most
popular being model checking [4], [14], whereby the formal
specification is checked (usually automatically) against all
possible executions of the system. Verification, via model
checking, is widely used especially for the analysis of crit-
ical systems. However, its use in autonomous software is



relatively recent [8], [42], while application to the verifi-
cation of practical autonomous systems is still at a very
early stage [25]. Though these approaches are typically used
before deployment, related techniques provide the basis for
run-time monitoring and compliance testing. Such run-time
verification [23], [43] is important in assessing how complex
systems evolve, and ensuring that unacceptable behaviours are
detected and mitigated.

2) Validation: Validation is the process of confirming that
the final system has the intended behaviour once it is active in
its target environment, and is often concerned with satisfying
external stake-holders. For example, does our system match
safety standards or legal rules set by regulators [10], [41]?
Does our system perform acceptably from a customer point
of view, and how well do users feel that it works [34]? The
are many approaches to carrying out validation, incorporating
diverse aspects, but typically involving the assessment of
accuracy, repeatability, usability, resilience, etc.

In our context, Verification and Validation (V&V) necessitates
a range of techniques [13], from formal safety verification,
through testing, to in-situ evaluation and monitoring, and it
is often difficult to delineate these phases. For example, since
autonomous systems typically interact with the ‘real world’,
we must ensure that verification is extended to this interaction.
Yet it is impossible to accurately model the real-world, with
its uncertain and continuous dynamics, in a finite way and so
exploration of all possibilities via techniques such as model-
checking is infeasible [21]. This leads to several options. We
can try to abstract from the complexity of the real world and
provide a finite description of this abstraction that we can
then use in formal verification; this abstraction is likely to be
incorrect in some way and will need refinement [1]. A practical
alternative is to use sophisticated testing methods, appealing
to Monte-Carlo techniques and dynamic test refinement in
order to systematically ‘cover’ a wide range of practical
situations [3], [27], [28]. Such requirements-based testing is
regularly used in systems design. A further option is to monitor
the system as it runs, detecting if it ever performs unacceptable
behaviours. A key issue in V&V is maintaining consistency
between these various models [49], which remains an open
question.

D. Certification

We begin with Regulations:
rules, policies and laws set out by some acknowledged
authority to ensure the safe design and operation of
systems.

Once we have these, then Certification can be defined as
the determination by an independent body that checks
whether the systems are in conformity or compliant with
the above regulations.

It is important to note that certification represents a legal,
rather than scientific, assessment and usually involves external
review, typically by some Regulator. Certification processes,

and regulators, usually (though not exclusively) appeal to
Standards:

documents (usually produced by a panel of experts)
providing guidance on the proving of compliance.

There are very many standards for different types of systems,
for example

• ISO 61508: General safety standard
• ISO 10218: Safety requirements for industrial robots
• ISO 15066: Collaborative robots
• ISO 26262: Automotive
• RTCA DO-178B/C: Aerospace/UAVs . . . etc. . .

However standards, and regulators, generally ignore the issue
of autonomy. There are a few exceptions with some standards
addressing autonomy, for example [11]

BS 8611 Guide to the Ethical Design and Applica-
tion of Robots and Robotic Systems

and new standards, such as the IEEE ethically aligned design
standards (P7000, P7001, P7002, etc.), are being developed in
this direction.

1) Problems with Autonomy: It is important to note that,
when a system is certified, it does not guarantee it is safe
— it just guarantees that, legally, it can be considered ‘safe
enough’ and that the risk in deployment is acceptable.

A general problem is that current certification approaches often
assume that

• there is a finite set of hazards/failures that the system will
encounter,

• these can be identified beforehand,
• this finite set will not change over the life of the system,
• . . . and so a risk/mitigation based approach can be used,

many of which may not be true for complex autonomous
systems. For example, [38] highlights the problems with
certified designs:

• The full consequences may be dependent on the situation
the system finds itself in. These situations may be close
to infinite and the consequent safety case analysis is
invariably in-exhaustive.

• If the system is being applied in a manner that is
unanticipated by the designer, the safety analysis is likely
to break down completely.

• For safety critical systems, the probability of occurrence
may have to be very low — for catastrophic failures
typically less than 10−9 per flight hour in aviation.
Probability of occurrence may be difficult to quantify,
particularly over the lifetime of the system. So, how does
one prove a level of assurance in such a case?

Crucially, standards/regulations have little to say about intel-
ligent software making complex decisions about safety, and
even ethics [2], [11], [18], [30], [37], [50] — yet this is a
fundamental part of (semi) autonomous robotic systems. This
leads us to the view that greater autonomy requires much
stronger V&V techniques, particularly formal verification.



E. Broader Issues with Autonomy

Once the key decision-making process is taken away from
humans, how can we be sure what autonomous systems will
do? Do we know that they are safe? Can we trust them? These
questions are currently impossible to answer. Yet, without
these answers, increased autonomy will not be accepted by
engineers, allowed by regulators, or trusted by the public. This
is especially the case as robots, autonomous vehicles, etc., are
increasingly being deployed in safety-critical situations. The
key aspect is not just that the system makes decisions, but that
it makes the right decisions and has good reasons for making
them [6], [44]. Once this decision-making is explicit, then we
can use V&V techniques to try to ensure that our autonomous
system will indeed make the decisions that the stake-holders
consider to be safe, legal, and ethical.

Autonomous Robotic System

Safety 
Model

Self 
Model

Task
Model

Interaction
Model

Agent

Fig. 1. Key Architectural Components within an Autonomous System

III. ARCHITECTURE

Our approach is that these autonomous systems contain an
agent for autonomous decision-making, together with a range
of models capturing key aspects, see Fig. 1.

A. Agents

Identifying the core ‘agent’ in the system, wherein key
decisions are made, is an important first step [25]. However,
more complex issues concerning the dynamic nature of respon-
sibility moving between human and machine (and back again)
— variable autonomy — will later need to be addressed.

We are particularly keen to identify a rational agent [25],
[52] as the focus of autonomous decision-making since this
not only makes decisions and invokes actions but must be
able to explain why it chooses one option over another. This
not only supports explainability [53] and scrutability [12] but,
by being able to formally verify these rational agents [19], we
can prove that the correct, even safe and ethical [18], decisions
will always be taken [17], [48].

B. The Role of Models

Within our system there are several models. Many of the
agent’s decisions will involve assessing these models, and
many of the sub-processes will be driven by information from
the models. These models can become quite complicated but,
in their simplest form, contain elements described in Fig. 2.
We now describe activities involving these models in more
detail.

Autonomous Robotic System

Safety 
Model

Self 
Model

Task
Model

Interaction
Model

HRI, Remote 
Control, Situation 
Awareness, etc

Run Time
Safety 

Monitors
Autonomous Systems 

Architecture
Robot Tasks,
Risk Analysis, 

Schedule, etc….

Agent

Fig. 2. Key Processes Utilising Models within the Architecture

C. Interaction Model

The Interaction Model describes the form of, and require-
ments for, interaction with operators, humans, and other ex-
ternal entities (e.g., inspectors). This encompasses not only
how to interact but what information to provide, for example
in order to explain the robot’s decisions or actions. There is a
variety of mechanisms for this, ranging from a simple menu of
straightforward interactions, through trust/expectation models,
up to full mental models. So, our interaction model contains a
model of Human-Robot Interaction (HRI) in order to explain
decisions made by the system beyond the agent. A recognition
of the impact that the human has on the system, which is not
only person dependent, but crucially environment dependent.

Within this framework the human-interaction component
can be understood as an agent–agent interaction paradigm.
Where the autonomous system ‘agent’ is capable of making
high-level decisions much as a human-agent is, and is in turn
able to engage with the a human user of the system in order
to adjust its decisions. The introduction of a human-agent
into an autonomous agent loop poses many issues for the
essential need for that loop to be verifiably safe, reliable and
trustworthy.

A system does not work in isolation, and whether au-
tonomous or semi-autonomous will be impacted by its human
user. In the case of a semi-autonomous system the human
decisions must be taken into account when considering what
a system will do (e.g., non-human agents may be verifiable
outside of machine learning algorithms, but human-agents are
not). In autonomous systems it is important to consider the
broader issues that go beyond a semi-autonomous system with
a human in the loop, such as those addressed earlier. A fully
autonomous system must be explicit with its decision making,
and must be trusted.

D. Safety Model

The Safety Model is derived from the system certification
process which, through techniques such as safety cases and
fault identification, identifies safety aspects. For example, in
aerospace, the certification process requires that a rigorous
safety assessment is applied during the build process. There are
several methods of safety analysis and these are documented
in ARP 4761 [5]. This Safety Model describes issues which
might affect the (certified) safety of the system. In particular,



any safety case for the system will highlight the assumptions,
expectations, and mitigations, relevant to ensuring acceptable
system safety. We can extract these into a model that captures
all these elements and that the autonomous system can inter-
rogate to assess if a particular situation violates safety bounds.

The safety model in particular is required to cover how
the system is operating, what are the safety requirements
of the operational environment it is encountering and what
responses is the system either proposing or conducting. To
do this requires a considerable awareness of the operational
environment (assuming it is complex) and an awareness of the
consequences of its actions in how that affects the environment
and other possible entities in that environment. Thus, it is
required to understand when to take appropriate action if the
environment (including other entities) has changed affecting
safety, and to assess the impact of its actions regarding safety,
both now and for the future to understand any impact of
inaction.

E. Self Model

The Self Model describes the components, architecture, and
effectiveness of the system itself. This will comprise the
architecture for the system, together with a clear description
(ideally formal) of the expected behaviour of the compo-
nents within [17], [20]. This provides a strong form of self-
awareness useful for health management and reconfigurability
but, here, is especially useful for self-certification (in combina-
tion with the Safety Model). Here, prognostic techniques [32],
[39] will be important in updating and maintaining this Self
Model.

For example, a Self Model for a robotic system might
include the central agent, robot arms, sensors, control sys-
tems, actuators, process tooling, power supplies, or planning
systems. For each one of these subsystems there would be a
formal description of the expected behaviour that the agent
can use to monitor the various subsystems. For example, the
agent might know that a particular sensor should monitor the
environment and provide an update 20 times each second.
If this rate drops to 10 times per second, for example, the
agent could determine that this sensor has malfunctioned. The
agent might then take the necessary steps to remedy this,
including notifying the human operator, adjusting the mission
parameters, disregarding the sensor’s output or relying on
other sensor systems in future. A related, but often harder,
problem is when the updates are provided at the required rate
but the data is incorrect (for example because the sensor has
decalibrated). If the agent has a representation of the form
of data expected within its Self Model, then it might again
recognise the problem and undertake remedial action.

Principles from prognostics [20] will be essential for the
agent in determining the ongoing health status of the various
robot subsystems. For example, to successfully perform a
task, the robot system needs to deliver the position and
orientation accuracy of the robot’s tools, the trajectory of the
arm, the correct speed, force, and torque. Robot subsystems
will degrade over time (due to wear-and-tear and use in harsh

conditions [40]) and this can lead to a decrease in inspection
quality and efficiency. One of the objectives of prognostics
systems in robotic inspection is to predict the remaining useful
life (RUL) of the robot system or its individual components
as they degrade from an initial state to a failure state.

F. Task Model

The Task Model describes the goals, tasks, and schedules
for the robotic system’s activities. It is useful for planning,
typically in combination with the Safety and Self models.
For example, within the ORCA project1 which is concerned
with the autonomous inspection of offshore assets (oil rigs,
wind turbines, pipelines, etc.) the Task Model will incorporate
inspections that must be carried out, prognostic procedures
that can be employed, etc., and will be used as the basis
for planning the asset inspection tasks while maintaining the
safety of the vehicle (and, indeed, asset). Typically, such plan-
ning/scheduling activities take into account the Task Model
(what must be done), the Safety Model (what boundaries there
are), and the Self Model (how capable the autonomous system
is in carry out these tasks).

Autonomous Robotic System

Safety 
Model

Self 
Model

Task
Model

Interaction
Model

HRI, Remote 
Control, Situation 
Awareness, etc

Runtime
Safety 

Monitors
Autonomous Systems 

Architecture
Robot Tasks,
Risk Analysis, 

Schedule, etc….

Verifiable
HRI

Verifiable
Safeguards

Verifiable &
Reconfigurable
 Architecture

Verifiable
Planning & 

Activity

Agent

Fig. 3. Verifiability of Processes based on Internal Models

IV. SELF-CERTIFICATION

From a regulatory point of view, self-certification refers
to the ability of a manufacturer to certify that their product
conforms with regulations [47]. We extend this term naturally
to cover autonomous systems, which can monitor themselves
to ensure their continuing adherence to regulatory standards.
Note that ‘self-’ here refers to both the autonomous system and
the manufacturer, as such systems will effectively perform the
act of self-certification on behalf of the manufacturer.

Within our architecture, we bring together
1) the Safety Model, providing a description of when safe

behaviour might be threatened; and
2) the Self Model, providing a description of current system

competencies.
3) the Task Model, providing a description of the tasks to

be completed by the system.
4) the Interaction Model, providing a description of the way

in which the system can interact with its user(s).

1https://orcahub.org



All of these are under the control of the ‘agent’ at the heart of
the autonomous system. This provides mechanisms for self-
certification as systems will have:

1) a clear view of current system capabilities/health;
2) a well-defined set of tasks for the system to achieve;
3) a set of requirements for the way the system must

interact with the user;
4) a set of system monitors recognising if/when original

certification may be violated; and
5) an agent able to assess (1) and (2) and decide on

appropriate actions.

A. Example

Let us consider the case of a simple autonomous unmanned
aircraft system (UAS). The UAS’s Interaction Model demands
that it should relay its current flight status to the user (via a
ground control station) at least once per second, formulated as
the following formula in a bounded linear temporal logic [46]:

�♦≤1send(flightStatus, user) (1)

This formula states that it is always the case (�) that within
one second (♦≤1) the UAS should send its flight status to the
user (‘send(flightStatus, user)’). Within the Self Model there
is a logical description of the abilities of each subsystem,
including the antenna. For example, the Self model might
contain the following logical formula:

working(antenna) ⇐⇒ (send(x, user) ∧ receive(y, user))

This simply states that the antenna is working if, and only if
(⇐⇒) the system can send information to, and (∧) receive
information from, the user. Suppose that the UAS’s health
monitoring systems indicate that the radio antenna used to
transmit information has been damaged. This information is
used to update the Self Model so that the rational agent
in charge of the UAS becomes aware of the malfunction.
The rational agent updates its belief base with the belief
B¬working(antenna). A runtime monitor associated with the
Safety Model then determines that ¬working(antenna) in
fact implies that ¬send(x, user) which in turn means that
requirement 1 can never hold and has therefore been violated.
The runtime monitor responds by sending a message to the
rational agent to inform it that there has been a safety-critical
communication failure.

The rational agent can then assess the severity of the failure,
in terms of safety violations. For example, it may be that
the antenna’s failure is actually only in terms of receiving
information and that by only using the send functionality,
the safety constraint can actually be satisfied. Alternatively
the rational agent, through its Self Model, might be able to
examine its other capabilities and so find another way to safely
continue the mission by compensating for the malfunction.
This might involve some software reconfiguration to rectify
these failures [16]. In the worst case, for example in the case
of an irreparable and unrecoverable failure, the only available
course of action might be to conduct an emergency landing.
In all these cases, the agent will use the Interaction Model

to designate the levels and modes of interaction with human
agents.

B. Generating Certification Monitors

A key aspect of this self-certification is having a set of
runtime monitors that capture safety requirements and assump-
tions [36]. These are generated from the initial system certi-
fication and the constraints captured in the Safety Model. Our
initial approach will be to generate such monitors ‘by hand’,
since automatically extracting these from large, informal doc-
uments such as safety cases will likely be extremely complex.
In extraction these monitors the Engineering challenge is to
faithfully capture all the key safety constraints whilst ensuring
that the monitors do not place a large computational burden
on the system.

V. VERIFICATION

Verification, of various forms, is important for all the
different types of model shown in Fig. 3.

A. Validating the Interaction Model

For the Interaction Model we cannot feasibly carry out any
formal verification activities, but might carry out some testing
and, more importantly, user validation activities. To validate
the interaction model an understanding of the user and the
specific environment in which the semi/autonomous system
is to be deployed needs to be provided. Depending on the
complexity and detail of the Interaction Model, a wide range
of potential HCI/HRI validation techniques might be applied,
e.g [9], [31].

B. Verifying Safety Monitors

A runtime safety monitor is a software component that
consumes events from the system, compares them to the
system’s expected behaviour, and then takes some action if
the events differ. The action can be to log the deviating event,
flag the event to the user, or initiate mitigating behaviour.
Monitoring the system’s runtime behaviour can mitigate the
problems of the reality gap — the difference between the
behaviour of a simulated system and how it behaves when
deployed on a real robot.

The monitored properties can be extracted from the Safety
Model (which may include safety concerns from safety cases)
and formalised. A runtime monitor for these properties can
then be built that is amenable to formal verification [35]. This
process provides confidence that the monitor checks for the
correct properties and behaves as expected. Using verifiable
monitors like this can often be easier to verify than the
entire system, because they are simpler. Despite this, they can
be effective in enforcing claims in a safety case, checking
assumptions and context of safety cases or certification at
runtime, and improving traceability of the system’s safety
requirements to the monitor. This approach can also be used
for runtime ‘health’ monitoring of the system’s physical com-
ponents, which can then suggest or initiate mitigating action.

There are several challenges involved in using this approach.
Firstly, it must be amenable to whatever certification processes



are required by regulators. Secondly, the organisation of the
Safety Model (or safety cases, etc.) must be clear enough so
that the properties can be easily extracted. The key questions
being: will there be enough detail, and will the information
always be located in the same place? Finally, for automation
of this approach, there are questions about the safety case
or Safety Model that contains the properties that we want
to model. Key questions here include: what notation, what
(electronic) format, and what tools are being used?

C. Formal Description of Self Model

In order to assess a robot’s Self Model we need to be able
to formally describe its architecture. The specification of each
software component can then be verified with respect to the
system’s requirements. When a component is changed, due to
repairs or reconfiguration for example, the system can be re-
verified including the specification of the new component. A
challenge here is linking the specification and verification of
the system in the abstract with the contents of the components.

A related challenge is ensuring that the deployment of
the system’s architecture is correct. Robotic systems often
use a middleware framework to interface with the hardware
(for example, ROS or GenoM) but these are usually only
assumed to be correct. These middlewares (including ROS)
often use a node-based, publisher–subscriber model; which we
can take advantage of to develop a high-level (meta) model
that captures a wide range of middlewares. This can be used to
verify the deployment of the robotic system onto a middleware
framework. Further, specifically with ROS, this work can
start to provide a formal description of how ROS works,
independently of either of the two supported implementations.

D. Verifying the Task Model

For the Task Model we can formally verify the planning pro-
cess such that any plan produced balances the risk/capabilities
(from Safety and Self models) with its goals, such as asset
inspection. This may be based on standard plan description
languages, such as PDDL [26], and mechanisms for verifying
(sometimes formally) planning processes [33].

E. Verifying the Whole System

In Section IV-A we showed how an autonomous system
for a UAS might handle an antenna failure using runtime
monitors and the Interaction, Self, Task and Safety models.
In this particular case, our system identified the problem
and identified a safe course of action. However, we may
formally verify that the autonomous system will always handle
subsystem failures safely by creating an environment model
in which different subsystems may fail at any given time.
This environment model stimulates a model of the autonomous
system to explore various ways in which the system might fail.
Combining these models with a model checker [24] allows us
to analyse every state in this system to determine that the
autonomous system will always maintain safe operations.

F. Simulation and Testing

As the system must inhabit the real-world, we need to
extensively test it’s behaviour, in all the above aspects, in more
realistic environments. Real physical testing is often difficult
and expensive, and therefore comprehensive simulation-based
testing is vital and will be needed as evidence within certifi-
cation processes [48].

VI. CONCLUDING REMARKS

We have proposed an architecture for autonomous systems
comprising a core agent ‘decision-maker’ together with a
range of models. Key processes invoked by the agent will
utilise and update these models, assessing the safety and reli-
ability of the system as it proceeds. The continuous updating
of the models, for example through prognostic techniques,
will allow for flexible deployment in complex and evolving
environments. Furthermore, the insistence of transparency and,
crucially, verifiability for all/most of these processes will
provide strong evidence for the trustworthiness of the self-
certification aspects.

Of course, as regulations concerning autonomous systems
are currently under-developed, there still remains the question
of exactly what constitutes a ‘certified’ autonomous sys-
tem/vehicle. However, our framework is general enough that
this should not adversely impact either the form of our models
or the verifiability of the requirements. This remains separate
work and we continue to engage with standards bodies and
regulators to develop effective routes to certification for sys-
tems with this new aspect of ‘autonomy’.

In future work we aim to develop and deploy such sys-
tems, particularly where robots/vehicles replace humans in
hazardous environments. This is surely not completed work,
but sets out a framework for the development of systems,
the evolution of regulations, and the increased reliability of
autonomous robotic systems.

REFERENCES

[1] R. Alur, T. Dang, and F. Ivančić. Counterexample-Guided Predicate Ab-
straction of Hybrid Systems. Theoretical Computer Science, 354(2):250–
271, 2006.

[2] M. Anderson and S. L. Anderson. Machine Ethics. Cambridge
University Press, 2011.

[3] D. Araiza-Illan, D. Western, A. G. Pipe, and K. Eder. Coverage-Driven
Verification — An Approach to Verify Code for Robots that Directly
Interact with Humans. In Proc. 11th International Haifa Verification
Conference (HVC), volume 9434 of LNCS, pages 69–84. Springer, 2015.

[4] P. J. Armstrong, M. Goldsmith, G. Lowe, J. Ouaknine, H. Palikareva,
A. W. Roscoe, and J. Worrell. Recent Developments in FDR. In Proc.
International Conference on Computer-Aided Verification(CAV), volume
7358 of LNCS, pages 699–704, 2012.

[5] ARP 4761, Guidelines and Methods for Conducting the Safety Assess-
ment Process on Civil Airborne Systems and Equipment.

[6] M. Boden et al. EPSRC Policy Statement: Principles of Robotics.
http://www.epsrc.ac.uk/research/ourportfolio/themes/engineering/
activities/principlesofrobotics, 2011.

[7] M. C. Bonner, R. M. Taylor, and C. A. Miller. Tasking Interface
Manager: Affording Pilot Control of Adaptive Automation and Aiding.
In Contemporary Ergonomics 2000, pages 70–74. CRC Press, 2004.

[8] R. H. Bordini, M. Fisher, W. Visser, and M. Wooldridge. Verifying
Multi-Agent Programs by Model Checking. J. Autonomous Agents and
Multi-Agent Systems, 12(2):239–256, 2006.



[9] C. Breazeal, K. Dautenhahn, and T. Kanda. Social Robotics. In Springer
Handbook of Robotics, pages 1935–1972. 2016.

[10] British Standards Institution (BSI). BS EN ISO 10218-2: Robots and
Robotic Devices — Safety Requirements for Industrial Robots. http:
//www.bsigroup.com, 2014.

[11] British Standards Institution (BSI). BS 8611 Robots and Robotic
Devices — Guide to the ethical design and application. http://www.
bsigroup.com, 2016.

[12] M. W. Caminada, R. Kutlak, N. Oren, and W. W. Vasconcelos. Scrutable
Plan Enactment via Argumentation and Natural Language Generation. In
Proc. International Conference on Autonomous Agents and Multi-agent
Systems, pages 1625–1626. International Foundation for Autonomous
Agents and Multiagent Systems, 2014.

[13] C. Cârlan, B. Gallina, S. Kacianka, and R. Breu. Arguing on software-
level verification techniques appropriateness. In S. Tonetta, E. Schoitsch,
and F. Bitsch, editors, Computer Safety, Reliability, and Security, pages
39–54, Cham, 2017. Springer International Publishing.

[14] E. M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press,
1999.

[15] D. Cofer and S. Miller. DO-333 certification case studies. In J. M.
Badger and K. Y. Rozier, editors, NASA Formal Methods, pages 1–15,
Cham, 2014. Springer International Publishing.

[16] L. A. Dennis, M. Fisher, J. M. Aitken, S. M. Veres, Y. Gao, A. Shaukat,
and G. Burroughes. Reconfigurable Autonomy. KI - Künstliche
Intelligenz, 28(3):199–207, 2014.

[17] L. A. Dennis, M. Fisher, N. K. Lincoln, A. Lisitsa, and S. M. Veres.
Practical Verification of Decision-Making in Agent-Based Autonomous
Systems. Automated Software Engineering, 23(3):305–359, 2016.

[18] L. A. Dennis, M. Fisher, M. Slavkovik, and M. P. Webster. Formal
Verification of Ethical Choices in Autonomous Systems. Robotics and
Autonomous Systems, 77:1–14, 2016.

[19] L. A. Dennis, M. Fisher, M. Webster, and R. H. Bordini. Model Check-
ing Agent Programming Languages. Automated Software Engineering,
19(1):5–63, 2012.

[20] F. Dinmohammadi, M. Fisher, D. Flynn, M. Jump, V. Page, C. Patchett,
V. Robu, W. Tang, and M. Webster. Certification of Safe and Trusted
Robotic Inspection of Assets. In Proceedings of the 2018 Prognostics
and System Health Management Conference, 2018.

[21] B. Edmonds and J. Bryson. The Insufficiency of Formal Design
Methods: Necessity of an Experimental Approach for the Understanding
and Control of Complex MAS. In Proc. AAMAS, pages 938–945, 2004.

[22] F. Falcini and G. Lami. Challenges in certification of autonomous driving
systems. In 2017 IEEE International Symposium on Software Reliability
Engineering Workshops (ISSREW), pages 286–293, Oct 2017.

[23] Y. Falcone, K. Havelund, and G. Reger. A Tutorial on Runtime
Verification. In Engineering Dependable Software Systems, pages 141–
175. IOS Press, 2013.

[24] M. Fisher. An Introduction to Practical Formal Methods Using Temporal
Logic. John Wiley & Sons, 2011.

[25] M. Fisher, L. A. Dennis, and M. Webster. Verifying Autonomous
Systems. CACM, 56(9):84–93, 2013.

[26] M. Fox and D. Long. PDDL2.1: An Extension to PDDL for Expressing
Temporal Planning Domains. J. Artif. Intell. Res., 20:61–124, 2003.

[27] B. Gallina and A. Andrews. Deriving verification-related means of
compliance for a model-based testing process. In 2016 IEEE/AIAA 35th
Digital Avionics Systems Conference (DASC), pages 1–6, Sept 2016.

[28] A. Gannous, A. Andrews, and B. Gallina. Bridging the gap between
testing and safety certification. In 2018 IEEE Aerospace Conference,
pages 1–18, March 2018.

[29] J. Guiochet, M. Machin, and H. Waeselynck. Safety-critical advanced
robots: A survey. Robotics and Autonomous Systems, 94:43–52, 2017.

[30] IEEE Ethically Aligned Design. https://ethicsinaction.ieee.org.
[31] B. E. John and D. E. Kieras. The GOMS Family of User Interface

Analysis Techniques: Comparison and Contrast. ACM Trans. Comput.-
Hum. Interact., 3(4):320–351, 1996.

[32] K. Kapur and M. Pecht. Reliability engineering. John Wiley & Sons,
2014.

[33] B. Lacerda, D. Parker, and N. Hawes. Optimal Policy Generation for
Partially Satisfiable Co-Safe LTL Specifications. In Proceedings of the
Twenty-Fourth International Joint Conference on Artificial Intelligence,
IJCAI, pages 1587–1593. AAAI Press, 2015.

[34] H. Lehmann, D. S. Syrdal, K. Dautenhahn, G. Gelderblom, S. Bedaf,
and F. Amirabdollahian. What Should a Robot do for you? Evaluating
the Needs of the Elderly in the UK. In Proc. 6th Int. Conf. on Advances
in Computer-Human Interactions, pages 83–88, 2013.

[35] M. Machin, F. Dufossé, J. Blanquart, J. Guiochet, D. Powell, and
H. Waeselynck. Specifying Safety Monitors for Autonomous Systems
Using Model-Checking. In Proc. 33rd International Conference on
Computer Safety, Reliability, and Security (SAFECOMP), volume 8666
of Lecture Notes in Computer Science, pages 262–277. Springer, 2014.

[36] M. Machin, J. Guiochet, H. Waeselynck, J. Blanquart, M. Roy, and
L. Masson. SMOF: A Safety Monitoring Framework for Autonomous
Systems. IEEE Trans. Systems, Man, and Cybernetics: Systems,
48(5):702–715, 2018.

[37] J. Moor. The Nature, Importance, and Difficulty of Machine Ethics.
IEEE Int. Sys., 21(4):18–21, 2006.

[38] C. H. Patchett. Encyclopedia of Aerospace Engineering, chapter Re-
quirements: Levels of Safety, pages 1–10. Wiley, 2015.

[39] G. Qiao, C. Schlenoff, and B. Weiss. Quick Positional Health Assess-
ment for Industrial Robot Prognostics and Health Management (PHM).
In Proc. IEEE International Conference on Robotics and Automation,
2017.

[40] G. Qiao and B. Weiss. Accuracy degradation analysis for industrial
robot systems. In Proceedings of ASME International Manufacturing
Science and Engineering Conference, pages 1–9, 2017.

[41] Radio Technical Commission for Aeronautics (RTCA). DO-178B: Soft-
ware Considerations in Airborne Systems and Equipment Certification,
1992.

[42] F. Raimondi and A. Lomuscio. Automatic Verification of Multi-agent
Systems by Model Checking via Ordered Binary Decision Diagrams.
Journal of Applied Logic, 5(2):235–251, 2007.

[43] G. Rosu and K. Havelund. Rewriting-Based Techniques for Runtime
Verification. Automated Software Engineering, 12(2):151–197, 2005.

[44] Royal Academy of Engineering. Autonomous Systems: Social, Le-
gal & Ethical Issues. http://www.raeng.org.uk/publications/reports/
autonomous-systems-report, 2009.

[45] UK Civil Aviation Authority. CAP 722 — Unmanned Aircraft System
Operations in UK Airspace: Guidance. The Stationery Office, 4th
edition, 2010.

[46] C.-I. Vasile, D. Aksaray, and C. Belta. Time Window Temporal Logic.
Theoretical Computer Science, 691:27 – 54, 2017.

[47] C. Visvikis. Evolution in electric vehicle safety legislation and global
harmonisation activities. In 2013 World Electric Vehicle Symposium and
Exhibition (EVS27), pages 1–9, Nov 2013.

[48] M. Webster, N. Cameron, M. Fisher, and M. Jump. Generating Cer-
tification Evidence for Autonomous Unmanned Aircraft Using Model
Checking and Simulation. Journal of Aerospace Information Systems,
11(5):258–279, 2014.

[49] M. Webster, D. Western, D. Araiza-Illan, C. Dixon, K. Eder, M. Fisher,
and A. G. Pipe. A Corroborative Approach to Verification and Validation
of Human–Robot Teams. ArXiv e-prints, Aug. 2016. https://arxiv.org/
abs/1608.07403.

[50] A. F. T. Winfield, C. Blum, and W. Liu. Towards and Ethical
Robot: Internal Models, Consequences and Ethical Action Selection.
In Advances in Autonomous Robotics Systems, volume 8717 of LNCS,
pages 85–96. Springer, 2014.

[51] M. Wooldridge. An Introduction to MultiAgent Systems. John Wiley
and Sons, Ltd, 2002.

[52] M. Wooldridge and A. Rao, editors. Foundations of Rational Agency.
Applied Logic Series. Kluwer Academic Publishers, 1999.

[53] Explainable AI. https://www.darpa.mil/program/
explainable-artificial-intelligence.


