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Abstract

We consider the numerical approximation of the general second order semilinear parabolic
stochastic partial differential equations (SPDEs) driven by additive space-time noise. Our
goal is to build two numerical algorithms with strong convergence rates higher than that
of the standard semi-implicit scheme. In contrast to the standard time stepping methods
which use basic increments of the noise, we introduce two schemes based on the exponential
integrators, designed for finite element, finite volume or finite difference space discretisations.
We prove the convergence in the root mean square L2 norm for a general advection diffusion
reaction equation and a family of new Lipschitz nonlinearities. We observe from both the
analysis and numerics that the proposed schemes have better convergence properties than
the current standard semi-implicit scheme.
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1. Introduction

Stochastic Partial Differential Equations (SPDEs) model numerous phenomena in engineer-
ing and biological sciences (eg. [4, 31, 6]). As analytical solutions are not available, the study
of numerical solutions of SPDEs is therefore an active research area and there is an extensive
literature on numerical methods for SPDEs (see [14, 13, 15] and references therein).

In this work, our goal is to build two numerical algoritms with high strong convergence rates
1 of the following SPDEs in Ω ⊂ Rd, d = {1, 2, 3}

dX(t, x) = (∇ · (D∇X(t, x))− q(x) · ∇X(t, x) + f(x,X(t, x),∇X(t, x))) dt+ dW (t, x), (1)

x ∈ Ω, t ∈ [0, T ] where f : Ω×R×Rd → R is globally Lipschitz continuous function, W is a
Q-Wiener process and q ∈ (L∞(Ω))d. The initial data X(0) = X0 is given. In the abstract
setting, the linear operator considered is given by

A = ∇ ·D∇(.) =
d∑

i,j=1

∂

∂xi

(
ai,j

∂

∂xj

)
, (2)

where D = (ai,j)1≤i,j≤d, is symmetric and satisfies the following ellipticity condition

d∑
i,j=1

ai,j(x)ξiξj ≥ c1|ξ|2, ∀ξ ∈ Rd, x ∈ Ω, c1 > 0, (3)

and the nonlinear function is defined by F (u)(x) = f(x, u(x),∇u(x)) − q(x) · ∇u(x). This
is in contrast of the work in [26, 37] where the linear operator is non-self-adjoint as the
advection term 2 is also included in the operator A. In our abstract setting, (1) is equivalent
to

dX = (AX + F (X))dt+ dW, (4)

in the Hilbert space H = L2(Ω). Under the ellipticity condition (3), it is well known that the
linear operatorA is self adjoint, positive definite and is the generator of an analytic semigroup
S(t) := etA, t ≥ 0 with eigenfunctions ei and eigenvalues λi, i ∈ Nd. The Q-Wiener process
W is white in time and defined on a filtered probability space (D,F ,P, {Ft}t≥0). The noise
can be represented as

W (x, t) =
∑
i∈Nd

√
qiei(x)βi(t), (5)

1Indeed for stochastic diffusion (q = 0 in (1)), high orders schemes have been obtained in [14, 13, 15].
Our goal is to update such schemes for q 6= 0.

2The term with q in (1).
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where qi ≥ 0, i ∈ Nd are the eigenvalues of the covariance operator Q and βi are independent
and identically distributed standard Brownian motions. Here, we assume that the linear
operator A and Q have the same eigenfunctions3. The time stepping methods in this paper
are based on the mild solution of (4). Precise assumptions on F , Q, X0 and A will be
given in the next section to ensure the existence of the unique mild solution X of (4) in the
form

X(t) = S(t)X0 +

∫ t

0

S(t− s)F (X(s))ds+O(t), t ∈ (0, T ] (6)

where O is the stochastic process given by the stochastic convolution

O(t) =

∫ t

0

S(t− s)dW (s). (7)

We build our numerical algorithms on recent works by Jentzen and co-workers [14, 13, 15,
16] that use Taylor expansion and linear functionals of the noise for a spectral Galerkin
discretisation of (4). We now briefly describe these schemes. Let PN , N ∈ N be the spectral
projection defined for u ∈ L2(Ω) by

PNu =
∑
i∈IN

(ei, u)ei, IN = {1, 2, ..., N}d , (8)

where (·, ·) is the standard inner product on H. Assume that F is independent of ∇X. The
spectral Galerkin discretisation of (4) yields the following semi-discrete form

dXN = (ANX
N + FN(XN))dt+ dWN , (9)

with AN = PNA, FN = PNF and WN = PNW . Note that (9) is a diagonal system to be
solved in each Fourier mode. Jentzen and co-workers [15, 16] examine the following two
high order time stepping schemes which overcome the order barrier (see [15]) of numerical
schemes approximating (4)

XN
m+1 = e∆tANXN

m + ∆tϕ1(∆tAN)FN(XN
m ) + PNOm (10)

and
Y N
m+1 = ϕ0(∆tAN)

(
Y N
m + ∆tFN(Y N

m )
)

+ PNOm, (11)

where the standard ϕ−functions are defined by

ϕ0(∆tAN) = e∆tAN , ϕ1(∆tAN) = (∆t AN)−1
(
e∆tAN − I

)
=

1

∆t

∫ ∆t

0

e(∆t−s)ANds.

The process

Om =

∫ tm+1

tm

e(tm+1−s)AdW, (12)

3See [25] for a case where the eigenfunctions are different
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has the exact variance in each Fourier mode as an Ornstein–Uhlenbeck process. More
precisely, by assuming that the linear operator A and the covariance operator Q have the
same eigenbasis, applying the Itô isometry in each mode yields

(ei, Om) =

(
qi

2λi

(
1− e−2λi∆t

))1/2

Ri,m, (13)

i ∈ IN = {1, 2, 3, ..., N}d, m = 0, 1, 2...,M − 1 and Ri,m are independent, standard normally
distributed random variables with means 0 and variance 1. In (13), the noise is said to be
computed using its linear functionals. Note that the equality (13) is understood in the sense
of probability law. The optimal strong orders for scheme (10) have been obtained in [38]
under more relaxed assumptions on the nonlinear function F . Although schemes (10)-(11)
are high orders in time, they are limited in real practical applications. Our aim is a first step
to address this issue. For complex domains, advection problems or problems with mixed
boundary conditions, the spectral Galerkin approach is not feasible and preference is usually
given to finite element (mostly its mixed form), finite difference or finite volume methods
even though the diagonalization of the linear operator is destroyed. We analyse here a finite
element discretisation, examine its implementation and in addition illustrate a finite volume
implementation. Our main motivation is flow and transport in heterogeneous porous media.
More precisely our new schemes solve 4the equation

dX = (D∆X −∇ · (qX) + f(X)) dt+ dW, (14)

without requiring information on the eigenvalues and eigenfunctions of the corresponding lin-
ear operator D∆ with homogeneous mixed boundary conditions, which can be expensive to
compute. Note that the Dirichlet boundary condition is applied on Γ and the homogeneous
Neumann boundary on ∂Ω \ Γ. Indeed the operator D∆ with mixed Neumann-Dirichlet
boundary conditions is decomposed as a sum of two operators, one linear unbounded oper-
ator in H with homogeneous Neumann boundary conditions and an operator related to the
trace operator. More precisely, using the trace operator (see [18]) in Green’s theorem yields
the following decomposition

dX = (AX + F1(X) + T(X))dt+ dW, (15)

where for v ∈ H1(Ω)

(Au, v) = −
∫

Ω

D∇u∇v dx,

and

(Tu, v) =

∫
Γ

∂u

∂ν
γ0v dσ, γ0v = v |∂Ω, v ∈ H1(Ω).

In this abstract setting (4), the linear operator is A = D∆ with homogeneous Neumann
boundary conditions, the nonlinear term is then F = F1+T . If the noise W and the operator

4Numerically and in some cases both numerically and rigorously
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A have the same eigenfunctions, our schemes can then be used for (15). The velocity q in
(14) is obtained from the following steady state mass convervation equation and Darcy’s
law

∇ · q = qin, q = −k

µ
∇p, (16)

where k is the heterogeneous permeability tensor, p is the pressure, µ is the dynamic viscosity
of the fluid [2] and qin the fluid injection rate. In (14), f is the reaction function which can
be the Langmuir adsorption function, and D > 0 is the diffusion coefficient. Typically, the
deterministic case (14)-(16) are solved using either a finite element (mostly its mixed form)
or finite volume discretisation in space due to the heterogeneous nature of the permeability
as a spectral Galerkin approach is not feasible in such applications.

In this paper, we introduce and analyse the convergence of two new schemes by combining
the finite element discretisation with the exponential time stepping and linear functionals of
the noise. We prove convergence in the root mean square L2 norm for the general advection
diffusion reaction equation and a new family of Lipschitz nonlinear functions (see Assump-
tion 2.1). Our approach, based on the projection of the noise onto a standard finite element
grid, allows practitioners to simply adapt existing codes to examine the effects of stochas-
tic forcing. In [25], the use of linear functionals of the noise is extended to finite–element
discretisations with a semi-implicit Euler–Maruyama method. In contrast to [25], we con-
sider here two exponential based methods for time-stepping as in [26, 37, 23, 24, 15, 16, 17]
where the discrete semi-group is no longer approximated by a rational function. Our new
schemes in this work solve more general second order semilinear parabolic stochastic partial
differential equations with additive noise (1), which is part of [26], but in general, the eigen-
functions of the self adjoint operator (or a related operator 5) should be known in contrast
to the schemes in [26]. The reward is that the new schemes are more accurate than schemes
in [26] as the strong orders of convergence in time have double. The new schemes are also
more accurate than the scheme in [26], this accuracy comes from the fact that we need to
compute the exponential of a non–diagonal matrix, which is a notoriously hard problem
in numerical analysis [28]. However, new developments for both Léja points and Krylov
subspace techniques [12, 30, 36, 3, 1] have led to efficient methods to compute the matrix
exponential functions.

The paper is organized as follows. In Section 2, some properties of the mild solution and
assumptions on SPDE (4) are provided. In Section 3, we present the two numerical schemes
based on the exponential integrators and linear functionals of the noise. We also present
and comment on our convergence results. In Section 4, we present some simulations, and
also show that equipped with the well known eigenvalues and eigenfunctions of the operator
∆ with Neumann or Dirichlet boundary conditions, we can apply the new schemes with
mixed boundary conditions for the operator A = D∆ as indicated in (14)-(16). The proofs

5In (14), the linear operator is D∆ with mixed Neumann-Dirichlet boundary conditions. It is related to
the operator ∆ with homogeneous Neumann boundary conditions where the eigenfunctions are well known.
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of our convergence theorems (SETD1 and SETD0 schemes) are presented in Section 5. We
conclude by summarizing our findings in Section 6.

2. Assumptions and properties of the mild solution

We start by presenting briefly the notation for the main function spaces and norms that we
will use in this paper. We denote by ‖ · ‖ the norm associated to the inner product (·, ·)
of a separable Hilbert space H. For a Banach space V , we denote by ‖.‖V the norm of V ,
L(V) the set of bounded linear mapping from V to V and by L2(D,V) the Hilbert space of
all equivalence classes of square integrable V−valued random variables. Note that D is the
sample space.

Throughout the paper, we assume that Ω is bounded and has a smooth boundary or is
a convex polygon of Rd, d = {1, 2, 3}. Although in our practical implementation we will
restrict to the operator A = D∆, D > 0 in a rectangular domain Ω 6, our analysis
will focus on the general second order semi–linear parabolic stochastic partial differential
equation given in (1)

Let H ⊂ V ⊂ H = L2(Ω) be a space that depends on the choice of the boundary conditions.
For Dirichlet boundary conditions, we set

V = H = H1
0 (Ω) = {v ∈ H1(Ω) : v = 0 on ∂Ω}.

For Robin boundary conditions (Neumann conditions being a particular case), we set V =
H1(Ω) and

H =
{
v ∈ H2(Ω) : ∂v/∂νA + σv = 0 on ∂Ω

}
, σ ∈ R.

Note that ∂v/∂νA is the normal derivative of v and νA is the exterior pointing normal
n = (ni) to the boundary of Ω given by

∂v/∂νA =
d∑

i,j=1

ni(x)ai,j(x)
∂v

∂xj
. (17)

The corresponding bilinear form of −A is given by

a(u, v) =

∫
Ω

(
d∑

i,j=1

ai,j
∂u

∂xj

∂v

∂xi

)
dx u, v ∈ V (18)

for Dirichlet and Neumann boundary conditions, and by

a(u, v) =

∫
Ω

(
d∑

i,j=1

ai,j
∂u

∂xj

∂v

∂xi

)
dx+

∫
∂Ω

σu v dx, u, v ∈ V, (19)

6Since the eigenfunctions are well known for Dirichlet and Neumann boundary conditions.
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for Robin boundary conditions. For r ∈ {1, 2}, with the space H in hand, we can characterize
the domain of the operator (−A)r/2, denoted by D((−A)r/2) and have the following norm
equivalence results [9, 7], which will be used in our convergence proofs

‖v‖Hr(Ω) ≡ ‖(−A)r/2v‖ =: ‖v‖r ∀v ∈ D((−A)r/2),

D((−A)r/2) = H ∩Hr(Ω) (Dirichlet boundary conditions),

D(−A) = H, D((−A)1/2) = H1(Ω) (Robin boundary conditions).

In the Banach space D((−A)α/2), α ∈ R, we use the notation ‖.‖α := ‖(−A)α/2.‖.

Under condition (3), it is well known (see [9]) that the linear operator A generates an analytic
semigroup S(t) ≡ etA.

As we can observe in (13), our schemes use in their implementation the eigenvalues of the
linear operator A. The following example shows that the linear operator D∆ can be of
interest in realistic applications.

Example 2.1. When dealing with heat transfer in geothermal subsurface, for a low enthalpy
reservoir, where the rock and fluid heat capacities are almost constant, we can set

D =
λgI

(ρc)g
, q(x) =

(ρc)f
(ρc)g

(
−k

µ
∇p
)
. (20)

Equation (1) models the heat transfer with deterministic known sink/source f and random
sink/source dW. Note that the subscripts f and g denote fluid and bulk properties, respec-
tively, ρ (Kg · m−3) is the density, c (J · kg−1 · K−1) is the specific heat capacity and λ
(W ·m−1 ·K−1) is the thermal conductivity. Note also that the unknown X is the stochastic
temperature distribution. The range of documented hydraulic conductivity K = ρgk/µ 7

values of clastic sedimentary rocks is typically between 10−3m · s−1 and 10−12m · s−1. K is
therefore an extremely multiscale parameter compared to the associated thermal conductiv-
ities, which are normally between 0.5W · m−1 · K−1 and 4.5W · m−1 · K−1 (see [29]). Since
the thermal conductivity does not vary so much, in some low enthalpy reservoirs it is some-
times assumed to be constant, while the permeabilities remain multiscale. In such cases, the
diffusion part of (1) is just D∆ with D = λg/(ρc)g.

We recall some basic properties of the semigroup S(t) generated by the linear operator
A.

Proposition 2.1. [Smoothing properties of the semigroup ([11])]
Let α > 0, β ≥ 0 and 0 ≤ γ ≤ 1, then there exists C > 0 such that

‖(−A)βS(t)‖L(H) ≤ Ct−β for t > 0

‖(−A)−γ(I− S(t))‖L(H) ≤ Ctγ for t ≥ 0.

7Note that g is the gravity.
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In addition,

(−A)βS(t) = S(t)(−A)β on D((−A)β)

If β ≥ γ then D((−A)β) ⊂ D((−A)γ),

‖Dl
tS(t)v‖β ≤ Ct−l−(β−α)/2 ‖v‖α, t > 0, v ∈ D((−A)α/2) l = 0, 1, β ≥ α

where Dl
t :=

dl

dtl
.

We investigate our convergence proofs with the following new assumptions .

Assumption 2.1. [Nonlinearity] We assume that there exists a positive constant L > 0
such that F satisfies one of the following.

(a) The nonlinear function F satisfies the following globally Lipschitz condition

‖F (Z)− F (Y )‖−1 ≤ L‖Z − Y ‖ ∀Z, Y ∈ L2(Ω).

(b) F is Lipschitz, twice continuously differentiable and satisfies

‖F (Z)− F (Y )‖−1 ≤ L‖Z − Y ‖,
‖F ′(Z)(X)‖−1 ≤ L‖X‖,

‖(−A)−η/2F ′′(Z)(X, Y )‖ ≤ L‖X‖‖Y ‖ for some η ∈ [1, 2), ∀Z, Y ∈ L2(Ω).

Remark 2.1. In the abstract setting (4), if the nonlinear function F is expressed as F (u)(x) =
f(x, u(x))− q(x) · ∇u(x) where f : Ω× R→ R is twice continuously differentiable function
with the bounded partial derivatives and q ∈ L∞(Ω), given by (16), then Assumption 2.1 is
satisfied as we have

‖F (Z)− F (Y )‖ ≤ L‖Z − Y ‖H1(Ω) ∀Z, Y ∈ L2(Ω). (21)

Note that for

F (u)(x) = f(x, u(x))− q(x) · ∇u(x) =: G(u)(x)− q(x) · ∇u(x), (22)

if the nonlinear function G satisfying for X, Y , Z ∈ H

‖G(X)‖ ≤ L(1 + ‖X‖), (23)

‖G′(Z)(X)‖ ≤ L‖X‖ (24)

‖(−A)−η/2G′′(Z)(X, Y )‖ ≤ L‖X‖‖Y ‖ for some η ∈ [1, 2), (25)

then F satisfies Assumption 2.1(b). Details on functions G satisfying (23)-(25) can be found
in [42, Example 3.2].
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We now turn our attention to the noise. We introduce the spaces and notation we need for
the Q-Wiener process W . An operator l ∈ L(H) is Hilbert-Schmidt if

‖l‖2
HS :=

∑
i∈Nd
‖lei‖2 <∞,

where (ei) is an orthonormal basis in H. The sum in ‖.‖2
HS is independent of the choice of the

orthonormal basis in H. We denote by L0
2 := HS(Q1/2(H), H), the space of Hilbert–Schmidt

operators from Q1/2(H) to H with the corresponding norm ‖.‖L0
2

defined by

‖l ‖L0
2

:= ‖lQ1/2‖HS =

(∑
i∈Nd
‖lQ1/2ei‖2

)1/2

, l ∈ L0
2.

Let ϕ : [0, T ]× D→ L0
2 be a L0

2−valued predictable stochastic process with∫ t

0

E‖ϕQ1/2‖2
HSds <∞.

Then Itô’s isometry (see e.g. [5, Step 2 in Section 2.3.2]) gives

E‖
∫ t

0

ϕdW‖2 =

∫ t

0

E‖ϕ‖2
L0
2
ds =

∫ t

0

E‖ϕQ1/2‖2
HSds, t ∈ [0, T ].

For the noise, we use the following assumption

Assumption 2.2. We assume that the covariance operator Q satisfies

‖(−A)(r−1)/2Q1/2‖HS <∞, for some 1 ≤ r ≤ 2. (26)

As a consequence

O(t) ∈ L2(D,D((−A)r/2)), 0 ≤ t ≤ T, for some 1 ≤ r ≤ 2.

Remark 2.2. By using [38, Lemma 2.3], we can easily check that if (26) is satisfied, we
therefore have

E‖O(t)‖2
r =

∫ t

0

‖(−A)r/2S(t− s)‖2
L0
2
ds ≤ C‖(−A)

r−1
2 Q

1
2‖HS <∞. (27)

Finally we make the following assumption for the initial data.

Assumption 2.3. [Initial data X0]
Let r be the noise’s parameter given in (26), we assume that the initial data satisfies
E‖(−A)r/2X0‖2 <∞, 1 ≤ r ≤ 2.
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Theorem 2.1. [Existence and uniqueness]
Let Assumption 2.1, Assumption 2.2 and Assumption 2.3 be fulfilled. Then there exists a
unique mild solution X : [0, T ]× D→ D((−A)r/2) of (4) in the form (6) such that:

sup
0≤t≤T

E[‖(−A)r/2X(t)‖2] <∞, 1 ≤ r < 2.

The parameter r being defined in (26).

Proof. The proof can be found in [21, Theorem 2.27]. Note that this proof uses the following
condition

‖F (Z)‖−2+r ≤ C(1 + ‖Z‖r−1), Z ∈ D((−A)r−1), 1 ≤ r < 2. (28)

which is obviously satisfied. Indeed from Assumption 2.1 (a) and (21), the condition (28) is
satisfied for r = 1 and r = 2 respectively. By interpolation, the condition (28) is therefore
satisfied.

3. Numerical schemes and main results

3.1. Numerical schemes

We consider the discretisation of the spatial domain by a finite element triangulation. Let
Th be a set of disjoint intervals of Ω (for d = 1), a triangulation of Ω (for d = 2) or a set of
tetrahedra (for d = 3) satisfying the standard regularity assumptions (see [9]). Let Vh ⊂ V
denotes the space of continuous functions that are piecewise linear over the triangulation
Th. To discretise in space, we use two projections. The first projection operator PN (8)
projects onto a finite dimensional spectral set. The second projection operator Ph is the
L2(Ω) projection onto the finite element space Vh defined for u ∈ L2(Ω) by

(Phu, χ) = (u, χ) ∀ χ ∈ Vh. (29)

Then Ah : Vh → Vh is the discrete analogue of A defined by

(Ahϕ, χ) = −a(ϕ, χ) ϕ, χ ∈ Vh, (30)

where a( , ) is the corresponding bilinear form associated to the operator A. We denote by
Sh the semigroup generated by the operator Ah.

The semi–discrete version of the problem (4) is to find the process Xh(t) = Xh(., t) ∈ Vh
such that for t ∈ [0, T ],

dXh = (AhXh + PhF (Xh))dt+ PhPNdW, Xh(0) = PhX0. (31)

The mild solution of (31) is given by

Xh(t) = Sh(t)Xh(0) +

∫ t

0

Sh(t− s)F (Xh(s))ds+

∫ t

0

Sh(t− s)PhPNdW.
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Given the mild solution at time tm, we construct the corresponding solution at tm+1 by

Xh(tm+1) = Sh(∆t)X
h(tm) +

∫ ∆t

0

Sh(∆t− s)PhF (Xh(s+ tm))ds

+

∫ tm+1

tm

Sh(tm+1 − s)PhPNdW (s). (32)

Let Om
h,N and Oh,N

m be two Vh-valued stochastic convolutions defined by

Om
h,N =

∫ tm+1

tm

Sh(tm+1 − s)PhPNdW (33)

Oh,N
m = PhPN Om, where Om =

∫ tm+1

tm

S(tm+1 − s)dW. (34)

To build our schemes, we use the following approximation for the noise Om
h,N ≈ Oh,N

m . For
our first numerical scheme SETD1, we use the following approximations

F (Xh(tm + s)) ≈ F (Xh(tm)) s ∈ [0, ∆t].

Then, we approximate Xh
m of X(m∆t) by

Xh
m+1 = e∆tAhXh

m + ∆tϕ1(∆tAh)PhF (Xh
m) +Oh,N

m . (35)

For efficiency, to avoid computing two matrix exponential functions, we rewrite (35) as

Xh
m+1 = Xh

m + ∆tϕ1(∆tAh)
(
AhX

h
m + PhF (Xh

m)
)

+Oh,N
m .

We call this scheme (SETD1). Our second numerical method called SETD0 is similar to
the one in [23, 24, 17]. It is based on approximating the deterministic integral in (32) at
the left–hand endpoint of each partition. We can therefore define the approximation Y h

m of
X(m∆t) by

Y h
m+1 = ϕ0(∆tAh)

(
Y h
m + ∆tPhF (Y h

m)
)

+Oh,N
m . (36)

Note that the standard semi-implicit Euler-Maruyama scheme applied to the semi-discrete
problem (31) yields

Zh
m+1 = (I−∆t Ah)

−1
(
Zh
m + ∆t PhF (Zh

m) + Ph∆W
N
m

)
(37)

∆WN
m =

√
∆t
∑
i∈IN

√
qiRi,mei, IN = {1, 2, ..., N}d ,

where Ri,m are independent, standard normally distributed random variables with mean 0
and variance 1. In [25], it has been proved that this standard scheme is less accurate than
the modified implicit scheme developed in [25]. We will therefore compare our new schemes
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with the modified implicit scheme developed in [32, 25]. This modified implicit scheme is
given by

Kh
m+1 = (I−∆t Ah)

−1
(
Kh
m + ∆t PhF (Kh

m)− PhPNO(tm)
)

+ PhPNO(tm+1). (38)

We use the Monte Carlo method to approximate the discrete root mean square L2 norm of
the error on a regular mesh with size h at the final time T = M∆t(

E‖X(T )− ξhM‖2
)1/2

=
(
E‖X(., T )− ξhM(.)‖2

)1/2

≈

(
hd

K

K∑
`=1

Nh∑
i=1

(
X(ai, T )− ξhM(ai)

)2

)1/2

, (39)

where ξhM is either Xh
M , Y h

M , or Kh
M (the numerical solutions from the final step respectively

in (35), (36), (37) or (38) for each sample `), K is the number of sample solutions and X(T )
is the ’exact’ solution for the sample ` that we will specify in Section 4.

3.2. Main results

Throughout the paper we letN be the number of terms of truncated noise, IN = {1, 2, ..., N}d
and take tm = m∆t ∈ (0, T ], where T = M∆t for m,M ∈ N. We take C to be a constant
that may depend on T and other parameters but not on ∆t, N or h. The convergence results
of SETD1 and SETD0 are given by the following theorem. In particular this theorem cov-
ers the case of the advection-diffusion-reaction SPDEs arising in our examples from porous
media flow.

Theorem 3.1. Suppose that Assumption 2.1, Assumption 2.2 and Assumption 2.3 are sat-
isfied. Let X be the mild solution of equation (4) represented by equation (6)and ζhm be the
numerical approximations through scheme (35) or (36) ( ζhm = Xh

m for scheme SETD1 and
ζhm = Y h

m for scheme SETD0). Let r0 be defined as r0 = r if 1 ≤ r < 2 and r0 = 2 − ε, ε
small enough if r = 2. If Assumption 2.1(a) is satisfied, then

(E‖X(tm)− ζhm‖2)1/2 ≤ C

(
hr + ∆tβ +

(
inf

j∈Nd\IN
λj

)−r/2)
,

where β = min(1/2, r/2) and r is defined in Assumption 2.2 via (26).

If Assumption 2.1(b) is satisfied, then

(E‖X(tm)−Xh
m‖2)1/2 ≤ C

(
hr0 + ∆tr/2 +

(
inf

j∈Nd\IN
λj

)−r/2)
,

(E‖X(tm)− Y h
m‖2)1/2 ≤ C

(
hr0 + ∆tr/2 + ∆t| ln(∆t)|+

(
inf

j∈Nd\IN
λj

)−r/2)
.
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However if Assumption 2.1(b) is satisfied with

‖(−A)−
δ
2F ′(Z)(X)‖ ≤ L(1 + ‖Z‖min(r,1))‖X‖−min(r,1), (40)

X ∈ H,Z ∈ D((−A)
min(r,1)

2 ), δ ∈ [1, 2),

then

(E‖X(tm)−Xh
m‖2)1/2 ≤ C

(
hr0 + ∆t+

(
inf

j∈Nd\IN
λj

)−r/2)
, (41)

(E‖X(tm)− Y h
m‖2)1/2 ≤ C

(
hr0 + ∆t+ ∆t| ln(∆t)|+

(
inf

j∈Nd\IN
λj

)−r/2)
(42)

We remark that if we denote by Nh the number of vertices in the finite element mesh then
it is well known (see for example [10]) 8 that if N ≥ Nh then(

inf
j∈Nd\IN

λj

)−r/2
≤ Chr. (43)

As a consequence the estimates in Theorem 3.1 can be expressed as functions of h and ∆t
only, and the error from the finite element approximation is dominated. If N ≤ Nh then the
error from the projection PN of the noise onto a finite number of modes is dominated.

Remark 3.1. From Theorem 3.1, we can observe that our new schemes are more accurate
than the schemes in [26] as the orders of strong convergence have double when F satisfies
Assumption 2.1 (b). We can also observe that the SETD1 scheme is more accurate than
SETD0 scheme as the error estimate in SETD0 depends on an infinitesimal factor ε. This
accuracy can also be observed in Figure 1.

4. Numerical simulations and applications

4.1. Implementation

The key step in our stochastic exponential schemes is the computation of the action of
matrix exponential functions on a vector. This will be done using either the real fast Léja
points (with a tol = 10−6) or Krylov subspace techniques with tol = 10−6 and 10 for the
dimension of the subspace. More details can be found in [3, 1, 12, 30, 36, 34, 35]. In our
graphs, we use the following notations

• ’SETD0 r = a’ and ’SETD1 r = a’, a ∈ {1, 2}, the errors graphs for our new schemes
SETD0 and SETD1 where r the noise’s parameter (see (48)).

8In one dimension see [39]
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• ’Modified Implicit r = a’ , a ∈ {1, 2} is used to denote the errors graphs of the modified
scheme (38). Once again r is a parameter used in the noise (see (48)).

The noise is projected onto a finite number of modes by PN and we take |IN | = Nh =

dim(Vh), then N ≥ N
1/d
h as suggested in [39, 20, 19] to avoid order reduction. As noted

in the introduction, to compute Oh,N
m = PhPNOm, the process PNOm is projected onto the

finite element space by Ph. If the noise is not smooth, then PhPNOm is evaluated following
the work in [39, Section 5] for PhW . Indeed, by setting PhPNOm =

∑Nh

i=1

α
1/2
i ϕi, as (ei, Om)

is known from (13), the coefficients αi are found by solving the linear system

Nh∑
i=1

(ei, Om))2(ei, ϕj)
2 =

Nh∑
i=1

αi(ϕi, ϕj)
2, j = 1, 2, ...., Nh, (44)

where (ϕi)1≤i≤Nh is the nodal basis with ϕi(aj) = δi,j. For problems without exact solutions,
”the exact solution” or ”reference solution” is the numerical solution with smaller time step
δt. The numerical solution with the time step ∆t = Rδt = tm+1 − tn, R ∈ N uses the
following decomposition of the convolution operator Om.

Om = O(tm) =

∫ tm+1

tm

e(tm+1−s)AdW =
R∑
j=1

∫ τj+1

τj

e(tm+1−s)AdW, (45)

where (τj) is such that τ1 = tm, τR+1 = tm+1 and δt = τj+1 − τj.

So, using the Itô’s isometry yields

(ei, Om) =
R∑
j=1

qi
2λi

[e−2λi(τj+1−tm+1) − e−2λi(τj−tm+1)]Rj
i,m (46)

=
R∑
j=1

qi
2λi

[e−2λi(j−1)δt − e−2λi(jδt)]Rj
i,m, (47)

where Rj
i,m are independent, standard normally distributed random variables with mean 0

and variance 1.

The covariance operator Q used for the noise has the same eigenfunctions as ∆ with homo-
geneous Neumann boundary conditions in the domain Ω = [0, 1]× [0, 1]. The eigenfunctions

{e(1)
i e

(2)
j }i,j≥0 of the operator ∆ with homogeneous Neumann boundary conditions are given

by

e
(l)
0 (x) = 1 e

(l)
i (x) =

√
2 cos(λ

(l)
i x), λ

(l)
0 = 0, λ

(l)
i = iπ

where l ∈ {1, 2} , x ∈ Ω and i ∈ Nd with the corresponding eigenvalues {λi,j}i,j≥0 given by

λi,j = (λ
(1)
i )2 + (λ

(2)
j )2.
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4.2. Stochastic advection diffusion reaction equations in heterogeneous porous media

As a more challenging example, we consider the stochastic advection diffusion reaction SPDE
(14) in the domain Ω = [0, 1]× [0, 1] with two types of boundary conditions:

• (a) Mixed Neumann-Dirichlet boundary condition. The Dirichlet boundary condition
is X = 1 at Γ = {(x, y) : x = 0} and we use the homogeneous Neumann boundary
conditions elsewhere.

• (b) Homogeneous Neumann boundary conditions in the entire boundary.

The first goal is to prove that our theoretical results are in agreement with our numerical
results. Our second goal is to show that with the well known eigenvalues and eigenfunctions
of the operator ∆ with Neumann (or Dirichlet) boundary conditions, we can apply our
new schemes to mixed boundary conditions for the operator D∆ without explicitly having
eigenvalues and eigenfunctions9. In the decomposition (5), we have used

qi,j =
(
i2 + j2

)−(r+δ)
, r > 0 and δ > 0 small enough. (48)

We obviously have∑
(i,j)∈N2

λr−1
i,j qi,j < π2

∑
(i,j)∈N2

(
i2 + j2

)−(1+δ)
<∞ 0 ≤ r ≤ 2,

thus Assumption 2.2 is satisfied. Note that r is the noise’s parameter which influences the

order of convergence. Using in (14) the trace operator γ1 ≡
∂

∂ν
(see [18]) and Green’s

theorem yields

dX = (AX + F1(X) + T(X))dt+ dW, (49)

where

(Au, v) = −
∫

Ω

D∇u∇v dx, (Tu, v) =

∫
Γ

γ1uγ0v dσ, γ0v = v |∂Ω, v ∈ H1(Ω),

u ∈ {x ∈ H2(Ω) :
∂x

∂ν
= 0 in Γ1}, Γ1 = ∂Ω�Γ. (50)

In the abstract setting of (4), we take the linear operator to be A = D∆ using only homo-
geneous Neumann boundary. The explicit expression of T is unknown, however it may be
approximated numerically, (see for example[8, 33, 18] for finite volumes).

• For boundary condition (a), the nonlinear term is now F = F1 + T where

F1(u) = −∇ · (qu)− u

(|u|+ 1)
, u ∈ R+. (51)

9Rather we require the eigenfunctions of a related operator.
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Indeed here, the operator D∆ with mixed Neumann-Dirichlet boundary conditions
has been decomposed as a sum of two operators, one linear unbounded operator with
homogeneous Neumann boundary conditions A and T. Note that Assumption 2.1 (a)
is not satisfied since the domain of the operateur T is H2(Ω).

• For bounday condition (b), the nonlinear term is F = F1 as T = 0 for homogeneous
Neumann condition. Assumption 2.1 (a) is clearly satisfied as soon as qi ∈ L∞(Ω), q =
(qi).

We use a heterogeneous medium with three parallel high permeability streaks, 100 times
higher compared to the other part of the medium. This could represent, for example, a highly
idealized fracture pattern. We obtain the Darcy velocity field q by solving (16) with Dirichlet
boundary conditions Γ1

D = {0, 1}× [0, 1] and Neumann boundary Γ1
N = (0, 1)×{0, 1} such

that

p =

{
1 in {0} × [0, 1]
0 in {L1} × [0, 1]

− k∇p(x, t) · n = 0 in Γ1
N , qin = 0.

To deal with high Péclet flows we discretise in space using the finite volume method, viewed
as a finite element method (see [8, 33, 32]). We can write the semi-discrete finite volume
method as

dXh = (AhX
h + PhF1(Xh) + PhT(Xh)) + PhPNdW, (52)

where here Ah is the space discretisation of A and PhT(Xh) comes from the approximation
of diffusion flux on the Dirichlet boundary condition side (see [8, 32]). Remember that for
homogeneous Neumann condition, T = 0. Thus, we can form the noise as in Section 4.1
with the eigenvalues function of ∆ with full Neumann boundary conditions and (48).

In all our simulations in this section, the number of realizations used is 50 and ∆x = ∆y =
1/150. For boundary condition (a), the diffusion coefficient used is D = 0.1 in Figure 1(c),
while for the boundary condition (b), the diffusion coefficient is D = 10−2 in Figure 1(b)
and D = 1 in Figure 1(a). The ”reference solution” or ’exact solution” in each graph is
the numerical solution with the smaller time step δt = 1/15360. Note that the numerical
solution with time step ∆t = Rδt, R ∈ N is linked with the reference solution by (46).

From [42, Example 3.2], we can observe that Assumption 2.1(b) is satisfied for boundary
condition (b) in Figure 1 (a). For noise parameters, we used δ = 0.0001 10, r = 1 and r = 2
in our convergence graphs. According to Theorem 3.1, the orders of convergence expected
should be 0.5 for r = 1 and 1 for r = 2. In Figure 1 (a), we have observed for orders of
convergence 0.55 with SETD1, 0.56 with SETD0 and modified scheme for r = 1, and 0.95
with SETD1, 0.97 with SETD0, 1.05 modified scheme for r = 2, which are close to the
expected orders.

10This parameter should be small to provide the true order of convergence numerically
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In Figure 1 (b) where the boundary condition (b) is used with D = 10−2, we have observed
high orders of convergence in both r = 1 and r = 2. More precisely, we have observed
1.08 with SETD1, SETD0 and modified scheme for r = 1 and r = 2. It seems as the
extra condition (40) tends to be satisfied. Indeed, as the convective part of the nonlinear
function F is linear, it is equal to its Frechet derivative. For δ1 ∈ [1, 2), if the operator

(−A)−
δ1
2 and the convective part of F commute, we can prove that the extra condition (40)

is satisfied.

In Figure 1 (c) where the boundary condition (a) is used, Assumption 2.1 (a) and Assump-
tion 2.1(b) are not satisfied as the domain of T is H2(Ω). We have also observed high orders
of convergence both for r = 1 and r = 2. More precisely, we have observed roughly 1.02 for
r = and 1.1 for r = 2. This result also suggests that our convergence results can also be
extended to larger family of nonlinear functions F .

To sum up in Figure 1, for boundary condition (a) or boundary condition (b), we can observe
that the schemes SETD1 or SETD0 are more accurate or have similar accuracy that the
modified implicit scheme developed in [25]. This modified implicit scheme has been proved
in [25] to be very accurate than the standard semi-implicit Euler-Maruyama scheme given
in (37).

5. Proofs of the main results

5.1. Two preparatory results

We introduce the Riesz representation operator Rh : V → Vh defined by

(−ARhv, χ) = (−Av, χ) = a(v, χ), v ∈ V, ∀χ ∈ Vh. (53)

Under the regularity assumptions on the triangulation and in view of the V−ellipticity (3),
it is well known (see [9]) that the following error bounds holds for v ∈ V ∩Hr(Ω),

‖Rhv − v‖+ h‖Rhv − v‖H1(Ω) ≤ Chr‖v‖Hr(Ω), 1 ≤ r ≤ 2. (54)

It follows that

‖Phv − v‖ ≤ Chr‖v‖Hr(Ω) ∀v ∈ V ∩Hr(Ω), 1 ≤ r ≤ 2. (55)

Since
‖Phv − v‖ ≤ C‖v‖, v ∈ H,

we therefore have by interpolation theory

‖Phv − v‖ ≤ Chr‖v‖Hr(Ω) ∀v ∈ V ∩Hr(Ω), 0 ≤ r ≤ 2. (56)
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(a) (b)

(c) (d)

Figure 1: Convergence in the root mean square L2 norm at T = 1 as a function of ∆t with 50 realizations
and ∆x = ∆y = 1/150, X0 = 0. Graphs in (a) (D = 1) and (b) (D = 0.01) are for boundary condition
(b)(homogeneous Neumann boundary condition), while graphs in (c) (D = 0.1) are for boundary condition
(a) (mixed boundary conditions). The noise is white in time and the stochastic process O(t) ∈ Hr(Ω)
respect to space variable with r = 1, r = 2 and δ = 0.0001 in relation (48). The streamline of the velocity
field is in (d). The reference solution or true solution for each realization is the numerical solution with
smaller time step 1/15360. Note that the numerical solution with time step ∆t = Rδt, R ∈ N is linked with
the reference solution by (46).

This inequality plays a key role in our convergence proofs. Let us consider the following
deterministic linear problem: find u ∈ V such that such that

du

dt
= Au given u(0) = v t ∈ (0, T ]. (57)

The corresponding semi-discretisation in space is to find uh ∈ Vh such that
duh
dt

= Ahuh

where u0
h = Phv. From the continuous and semi-discrete problems, we define the opera-
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tor

Th(t) := u(t)− uh(t) = S(t)− Sh(t)Ph = etA − etAhPh. (58)

The following lemma is key in our convergence proofs.

Lemma 5.1. The following estimates hold on the semi-discrete approximation of (57)

‖u(t)− uh(t)‖ = ‖Th(t)v‖ ≤ Chrt−(r−β)/2‖v‖β, v ∈ D((−A)β/2), (59)

‖
∫ t

0

Th(s)vds‖ ≤ Ch2−ρ‖v‖−ρ v ∈ D((−A)−
ρ
2 ), (60)

for 1 ≤ r ≤ 2 linked to (54) and 0 ≤ β ≤ r.

Proof. The proof of the estimate (59) can be found in [32, 26, 37], while the proof of the
estimate (59) can be found in [41, Lemma 4.2 (i)].

To prove our convergence results, we will also need the following lemma.

Lemma 5.2. Let X be the mild solution of (4) given in (6), such that (26) of Assump-
tion 2.2 is satisfied for r ∈ [1, 2). Let t1, t2 ∈ [0, T ], t1 < t2, assume that X0 ∈ L2(D,D((−A)r/2))
If X is a H1(Ω)-valued process and F satisfies the following linear growth condition

‖F (X)‖ ≤ C
(
1 + ‖X‖H1(Ω)

)
, (61)

then

E‖X(t2)−X(t1)‖2 ≤ C(t2 − t1)r
(
E‖X0‖2

r + sup
0≤s≤T

E‖X(s)‖2
H1(Ω) + 1

)
.

Proof. See a similar proof in [38, (2.13) of Theorem 2.4]. This proof can easily be updated
for part (ii) as we can bound ‖F (X(s))‖ by (61).

5.2. Proof of Theorem 3.1 for scheme SETD1

The proof follows the same basic steps as in [40], however here the discrete semigroup is an
exponential. Set

X(tm) = S(tm)X0 +
m−1∑
k=0

∫ tk+1

tk

S(tm − s)F (X(s))ds+O(tm)

= X(tm) +O(tm).

Recall that by construction

Xh
m = e∆tAhXh

m−1 +

∫ ∆t

0

e(∆t−s)AhPhF (Xh
m−1)ds+ PhPN

∫ tm

tm−1

e(tm−s)AdW (s)

= Sh(tm)PhX0 +
m−1∑
k=0

(∫ tk+1

tk

Sh(tm − s)PhF (Xh
k )ds

)
+ PhPNO(tm)

= Zh
m + PhPNO(tm),
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where

Zh
m = Sh(tm)PhX0 +

m−1∑
k=0

(∫ tk+1

tk

Sh(tm − s)PhF (Xh
k )ds

)

= Sh(tm)PhX0 +
m−1∑
k=0

(∫ tk+1

tk

Sh(tm − s)PhF (Zh
k + PhPNO(tk))ds

)
.

We are now estimating
(
E‖X(tm)−Xh

m‖2
)1/2

. We obviously have

X(tm)−Xh
m = X(tm) +O(tm)−Xh

m

= X(tm) +O(tm)−
(
Zh
m + PhPNO(tm)

)
=

(
X(tm)− Zh

m

)
+ (PN(O(tm))− PhPN(O(tm))) (62)

+ (O(tm)− PN(O(tm)))

= I + II + III. (63)

Then (
E‖X(tm)−Xh

m‖2
)1/2 ≤

(
E‖I‖2

)1/2
+
(
E‖II‖2

)1/2
+
(
E‖III‖2

)1/2
.

Since the first term requires the most work, we first estimate the other two.

Let us estimate (E‖II‖2)
1/2

. Using the property (56) of the projection Ph, the fact that the
semigroup and the spectral projection are bounded operators, yields

E‖II‖2 ≤ Ch2rE‖O(tm)‖Hr(Ω), 1 ≤ r ≤ 2.

Using Remark 2.2 and the equivalence ‖.‖Hr(Ω) ≡ ‖(−A)r/2.‖ in D((−A)r/2) yields

E‖II‖2 ≤ Ch2r

∫ tm

0

‖(−A)r/2S(tm − s)Q1/2‖2
HSds

≤ Ch2r‖(−A)(r−1)/2Q1/2‖2
HS.

For the third term, we have

E‖III‖2 = E‖(I− PN)O(tm)‖2 = E‖(I− PN)(−A)−r/2(−A)r/2O(tm)‖2,

and so

E‖III‖2 ≤ ‖(I− PN)(−A)−r/2‖2
L(L2(Ω))E‖(−A)r/2O(tm)‖2 ≤ C

(
inf

j∈Nd\IN
λj

)−r
.

We now turn our attention to the first term E‖I‖2. Using the definition of Th from (58),
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the first term I can be expanded as

I = ThX0 +
m−1∑
k=0

∫ tk+1

tk

S(tm − s)F (X(s))− Sh(tm − s)PhF (Zh
k + PhPNO(tk))ds

= ThX0 +
m−1∑
k=0

∫ tk+1

tk

Sh(tm − s)Ph(F (X(tk))− F (Zh
k + PhPNO(tk))))ds

+
m−1∑
k=0

∫ tk+1

tk

S(tm − s)(F (X(s))− F (X(tk)))ds

+
m−1∑
k=0

∫ tk+1

tk

(S(tm − s)− Sh(tm − s)Ph)F (X(tk))ds

= I1 + I2 + I3 + I4. (64)

Then (
E‖I‖2

)1/2 ≤
(
E‖I1‖2

)1/2
+
(
E‖I2‖2

)1/2
+
(
E‖I3‖2

)1/2
+
(
E‖I4‖2

)1/2
.

For I1, from (59) of Lemma 5.1 if X0 ∈ L2(D,D((−A)r/2)), 1 ≤ r ≤ 2, we have

(E‖I1‖2)1/2 ≤ Chr
(
E‖X0‖2

r

)1/2
.

If F satisfies Assumption 2.1 (a), then using the Lipschitz condition, the triangle inequality,
the fact that Ph is an bounded operator and Sh satisfies the smoothing property analogous
to S(t) independently of h [22], i.e.

‖Sh(t)v‖2 ≤ Ct−1/2‖v‖−1 v ∈ Vh t > 0,

we have

(E‖I2‖2)1/2

≤
m−1∑
k=0

∫ tk+1

tk

(
E‖Sh(tm − s)Ph

(
F (X(tk))− F (Zh

k + PhPNO(tk))
)
‖2
)1/2

ds

≤ C

m−1∑
k=0

∫ tk+1

tk

(tm − s)−1/2
(
E‖F (X(tk))− F (Zh

k + PhPNO(tk))‖2
−1

)1/2
ds

≤ C
m−1∑
k=0

∫ tk+1

tk

(tm − s)−1/2
(
E‖X(tk)−Xh

k ‖2
)1/2

ds.

As the estimation of I3 requires more work, let us first estimate I4. From Lemma 5.2, more
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precisely (59) with β = 0, for 1 ≤ r < 2 , X(t) is a H1(Ω)- valued process, we have

(E‖I4‖2)1/2 ≤
m−1∑
k=0

∫ tk+1

tk

(
E‖Th(tm − s)F (X(tk))‖2

)1/2
ds

≤ Chr

(
m−1∑
k=0

∫ tk+1

tk

(tm − s)−r/2ds

)(
sup

0≤s≤T
E‖F (X(s))‖2

)1/2

≤ Chr

(
1 +

(
sup

0≤s≤T
E‖X(s)‖2

H1(Ω)

)1/2
)

≤ Chr.

For r = 2, we have

(E‖I4‖2)1/2 ≤ Ch2−ε,

where ε > 0 small enough.

With only the Lipschitz condition in Assumption 2.1(a) and Lemma 5.2, the estimation of
I3 is given by

(E‖I3‖2)1/2 ≤
m−1∑
k=0

∫ tk+1

tk

(E‖S(tm − s)
(
F (X(s))− F (X(tk))‖2

)1/2
)ds

≤ C
m−1∑
k=0

∫ tk+1

tk

(tm − s)−1/2 (E‖F (X(s))− F (X(tk))‖−1)1/2 ds

≤ C
m−1∑
k=0

∫ tk+1

tk

(tm − s)−1/2(E‖X(s)−X(tk)‖2)1/2ds.

Since
m−1∑
k=0

∫ tk+1

tk

(tm − s)−1/2ds ≤ 2
√
T ,

then if X0 ∈ L2(D,D((−A)r/2)), as X(t) is a H1(Ω)- valued process

(E‖I3‖2)1/2 ≤ C∆t
r
2

(
E‖X0‖2

r + sup
0≤s≤T

E‖X(s)‖2
H1(Ω) + 1

)1/2

.

To obtain a higher rate, Assumption 2.1(b) is needed. If Assumption 2.1(b) is satisfied, we
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follow closely the proof in [40, Theorem 4.1 (I11)], but with our new assumption.

(E‖I3‖2)1/2 ≤

(
E‖

m−1∑
k=0

∫ tk+1

tk

S(tm − s)F ′(X(tk))(S(tm − tk)− I)X(tk))ds‖2

)1/2

+

(
E‖

m−1∑
k=0

∫ tk+1

tk

S(tm − s)F ′(X(tk))

∫ s

tk

S(s− σ)F (X(σ))dσds‖2

)1/2

+

(
E‖

m−1∑
k=0

∫ tk+1

tk

S(tm − s)F ′(X(tk))

∫ s

tk

S(s− σ)dW (σ)ds‖2

)1/2

+

(
E‖

m−1∑
k=0

∫ tk+1

tk

S(tm − s)R(X(tk), X(s))ds‖2

)1/2

=: I
(1)
3 + I

(2)
3 + I

(3)
3 + I

(4)
3 ,

where

R(X(tk), X(s)) :=

∫ 1

0

F ′′(X(tk) + λ(X(s)−X(tk)))(X(s)−X(tk), X(s)−X(tk))(1− λ)dλ.

The estimation of I
(4)
3 is the same as the one in [40, Proof of Theorem 4.1, I

(4)
11 ]. For the

estimation of I
(1)
4 , using the fact that Assumption 2.1(b) is satisfied, Proposition 2.1 and

the regularity of the solution, we have

I
(1)
3 ≤ C

m−1∑
k=0

∫ tk+1

tk

tm − s)−1/2‖S(tm − tk)− I)(−A)−
r
2‖L(H)

(
E‖(−A)

r
2X(tk))‖2

)1/2
ds

≤ C∆tr/2
m−1∑
k=0

∫ tk+1

tk

(tm − s)−1/2ds.

≤ C∆tr/2.

Again, using Assumption 2.1(b), Proposition 2.1, the regularity of the solution, the linear
growth (61) yields

I
(2)
3 ≤ C

m−1∑
k=0

∫ tk+1

tk

∫ s

tk

(tm − s)−1/2
(
E‖F (X(σ))‖2

)1/2
dσds

≤ C
m−1∑
k=0

∫ tk+1

tk

∫ s

tk

(tm − s)−1/2

(
1 + sup

0≤σ≤T
E‖(X(σ))‖2

1

)1/2

dσds

≤ C
m−1∑
k=0

∫ tk+1

tk

∫ s

tk

(tm − s)−1/2dσds

≤ C∆t.
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The estimation of I
(3)
3 follows the one in [40, Proof of Theorem 4.1, I

(3)
11 ] but with As-

sumption 2.1(b). Indeed using Burkholder-Davis-Gundy-type inequality [40, Lemma 4.2]
gives

I
(3)
3 =

(
E‖

m−1∑
k=0

Zk‖2

)1/2

≤ C

(
m−1∑
k=0

E‖Zk‖2

)1/2

, (65)

where

Zk =

∫ tk+1

tk

S(tm − s)F ′(X(tk))

∫ s

tk

S(s− σ)dW (σ).

As in [40], using Assumption 2.1(b) and Assumption 2.2, we have

E‖Zk‖2 ≤ ∆t

∫ tk+1

tk

E‖
∫ s

tk

S(tm − s)F ′(X(tk))S(s− σ))dW (σ)‖2ds

≤ ∆t

∫ tk+1

tk

∫ s

tk

E‖S(tm − s)F ′(X(tk))S(s− σ))‖2
L0
2
dσds

≤ C∆t

∫ tk+1

tk

(tm − s)−1/2(s− tk)min(1,r)ds

≤ C∆tmin(2,r+1)

∫ tk+1

tk

(tm − s)−1/2ds. (66)

Using (66) in (65) yields

I
(3)
3 ≤ C∆tmin(1,(r+1)/2). (67)

Then we find

I3 ≤ C∆tr/2. (68)

As we can observe, to improve the estimation of I3, we need to improve the estimation of
I

(1)
3 . If Assumption 2.1(b) and (40) are satisfied, the estimation of I

(1)
3 is done as in [38,

Proof of Theorem 3.1, I31] and we have

I31 ≤ ∆tmin(1,r). (69)

Combining our estimates (E‖I‖2)
1/2
, (E‖II‖2)

1/2
and (E‖III‖2)

1/2
and using the discrete

Gronwall lemma concludes the proof.
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5.3. Proof of Theorem 3.1 for SETD0 scheme

Recall that

Y h
m = e∆tAh

(
Y h
m−1 + ∆tPhF (Y h

m−1)
)

+ PhPN

∫ tm

tm−1

e(tm−s)AdW (s)

= Sh(tm)PhX0 +
m−1∑
k=0

(∫ tk+1

tk

Sh(tm − tk)PhF (Y h
k )ds

+ PhPN

∫ tk+1

tk

S(tm − s)dW (s)

)
= Sh(tm)PhX0 +

m−1∑
k=0

(∫ tk+1

tk

Sh(tm − tk)PhF (Y h
k )ds

)
+ PhPNO(tm)

= Zh
m + PhPNO(tm).

As in the proof of SETD1 scheme, we obviously have

X(tm)− Y h
m

= X(tm) +O(tm)− Y h
m

= X(tm) +O(tm)−
(
Zh
m + PhPNO(tm)

)
=

(
X(tm)− Zh

m

)
+ (PN(O(tm))− PhPN(O(tm))) + (O(tm)− PN(O(tm)))

= I + II + III.

The estimations of (E‖II‖2)
1/2

and (E‖III‖2)
1/2

can be found in the analysis of the SETD1
scheme. We also have

I = ThX0 +
m−1∑
k=0

∫ tk+1

tk

S(tm − s)F (X(s))− Sh(tm − tk)PhF (Zh
k + PhPNO(tk))ds

= ThX0 +
m−1∑
k=0

∫ tk+1

tk

Sh(tm − tk)Ph(F (X(tk))− F (Zh
k + PhPNO(tk))))ds

+
m−1∑
k=0

∫ tk+1

tk

S(tm − s)(F (X(s))− F (X(tk)))ds

+
m−1∑
k=0

∫ tk+1

tk

(S(tm − s)− Sh(tm − tk)Ph)F (X(tk))ds

= I1 + I2 + I3 + I4. (70)

The estimation of (E‖I‖2)
1/2

is therefore performed as for the SETD1 scheme, but the

estimation of (E‖I4‖2)
1/2

is closer to [40, Proof of Theorem 4.1, I12]. Due to the nature of
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the nonlinear function F in Assumption 2.1(b), we should not follow [40] for Theorem 3.1
in the estimation of I4 as an extra term I5 arises,

I5 =
m−1∑
k=0

∫ tk+1

tk

(S(tm − s)− S(tm − tk))F (X(tk))ds.

As in [25] that extra term can be estimated by(
E‖I5‖2

)1/2 ≤ C(∆t+ ∆t| ln(∆t)|).

6. Conclusion

In this work, we have considered the numerical approximation of general second order semi
linear parabolic stochastic partial differential equations (SPDEs) driven by additive space-
time noise and have designed two novel schemes for finite element method, finite volume
method and finite difference method using linear functionals of the noise and the expo-
nential time stepping methods. We have provided rigorous convergence proofs for a new
family of Lipschitz nonlinear functions and obtained high orders of convergence. Numerical
simulations to sustain our theoretical results are provided. Those numerical simulations
cover realistic flow problems in porous media and also reveal that our theoretical results
can be extended to larger family of nonlinear functions. This will be our interest for future
work.
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