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Highlights

e We develop a multiscale, individual-continuous framework for biological movement that in-
corporates non-local sensing across some perceptual range;

e Under certain parameter ranges, we show how the macroscopic continuous model can be ap-
proximated by a number of standard models, including the Keller-Segel model for chemotaxis
and non-local models of integro-partial differential equation type.

e In an application to hilltopping, we use a series of idealised studies to assess how non-local
sensing can overcome natural terrain noisiness.

e Applying the modelling to genuine terrain data (Bodega Marine Reserve), we assessyhow
perceptual range allows populations to coalesce and increase mating success.
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Abstract

Navigation of cells and organisms is typically achieved by detecting and processing orienteering
cues. Occasionally, a cue may be assessed over a much larger range than the individual’s body
size, as in visual scanning for landmarks. In this paper we formulate meodels that account for
orientation in response to short- or long-range cue evaluation. (Starting from an underlying ran-
dom walk movement model, where a generic cue is evaluated locally ‘er“honlocally to determine a
preferred direction, we state corresponding macroscopic partial differential equations to describe
population movements. Under certain approximations, these models reduce to well-known local
and nonlocal biological transport equations, including thoserof Keller-Segel type. We consider a
case-study application: “hilltopping” in Lepidoptera and other insects, a phenomenon in which
populations accumulate at summits to improve encéunter/mating rates. Nonlocal responses are
shown to efficiently filter out the natural noiiness\(or Toughness) of typical landscapes and al-
low the population to preferentially accumulatesat arsubset of hilltopping locations, in line with
field studies. Moreover, according to the4imescale 6f movement, optimal responses may occur for
different perceptual ranges.

Keywords: Animal navigation; Cell migration; Nonlocal sampling; Hilltopping; Perceptual range

1. Introduction

Navigation and migration play numerous crucial roles, for example allowing circulating immune
cells to seek and déstroy infections, and populations to collect at breeding grounds. A key ingre-
dient for successful navigation lies in the availability of external orienteering cues, ranging from
chemicals to #isual landmarks, interpreted via (for organisms) a variety of sensory organs (eyes,
ears, noses; lateral lines etc.) or (for cells) highly specific transmembrane receptors. The means
by which(cues are detected, processed and integrated are, naturally, subject to considerable spec-
ulation {14):

Numerous models have been formulated to describe oriented movement, most frequently for
chemical gradient responses (chemotaxis). Given that movement data is typically recorded at
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an individual level (e.g. cell/organism tracking), a natural approach is to model an individual’s
movement as a velocity-jump random walk (VJRW) [32]. In a VJRW, an individual undergoes an
alternating sequence of smooth “runs” with constant velocity and “turns” where a new velocity is
chosen. We note that the latter provides a point for including orientation. In a groundbreaking
paper, Patlak [37] derived a governing partial differential equation (PDE) for motions of this form,
a model of advection-diffusion type in which an external bias drifts the population in a specific
direction. This model foreshadowed phenomenological models such as the well-known Keller-Segel
[22] model for chemotactic guidance, a popular choice for incorporating taxis-type orientation into
models for biological movement [35].

Many models implicitly assume that guidance information is local to the individual’s/pesition.
For an adult fruitfly, capable of detecting and orienting according to a (spatial) chemical gradient
computed across its antennae [6], the length scale of antenna separation is microsgopie in com-
parison to its movement in the landscape at large. The scale of gradient detection is; effectively,
local. Yet in other cases the sampling region for cue detection may be much larger, covering a
significant portion of the individual’s environs. An obvious example lies indvisual sensing, where
individuals can assess information within eyesight. Here, the perceptual range <'the “distance from
which a particular landscape element can be perceived as such (or detected) by a given animal”
[24] — is a key concept and has been estimated at distances ranging from metres to kilometres,
according to species, habitat and conditions [54, 43, 30, 51, 11, 46, 12]. Auditory cues are also
detectable at a distance: a few kilometres for elephants [26] and possibly hundreds of kilometres
for baleen whales [38], the latter possible via the properties(of sound propagation in water. Less
obviously, fish and amphibians detect the electric fields genérated by mearby organisms and objects,
a process termed electrolocation [20]. Long-range assessments can also extend down to the single
cell, with certain cells generating membrane protrusions (filopodia, cytonemes) that stretch mul-
tiple cell diameters to acquire inherently nonlocal information about their tissue landscape [50, 23].

In this paper we explore models, founded on a simplified VJRW, that incorporate local and
nonlocal evaluation of the environment. Orientation enters by biasing turns into certain directions,
according to an underlying navigation field that can be adapted to account for various modes of
sampling the environment. As prototype models we consider three simple responses to a scalar
cue: a local gradient-based orientation;a nonlocal gradient-based orientation and a nonlocal re-
sponse in which orientation is aceerding to the maximum cue value over the perceptual range.
The corresponding macroscopic models/for the VJRW are of drift-anisotropic diffusion type. Via
approximating expansions,,weishow how the simple local gradient model reduces to a Keller-Segel
equation while the nonlecal models reduce to forms related to commonly-employed integro-PDE
equations, such as those used to describe nonlocal chemotaxis responses [17], cell interactions [36],
swarming/flocking 428] \and, pertinently, information gathering over some perceptual range [10].
While these simplifiediforms strictly apply only when the orientation is weak, higher order approx-
imations can extend the'range of application. Separate approximations can be applied for very
strong orientation, responses, generating a pure drift equation in the simplest case.

To.demonstrate how nonlocal assessment contributes to population structuring, we consider a
specific case-study application: hilltopping in butterflies, moths and other insects. In hilltopping,
population,members move up slope and localise at peaks and summits, a “lekking” behaviour
that increases mating encounters [48, 47, 1]. Given that elevation is (primarily) sensed visually,
wesexplore how perceptual range and assessment mode impacts on the macroscopic population
movement. Gradually introducing noise into an idealised elevation profile, we show how nonlocal
responses can allow a population to overcome roughness. Using terrain data for the Bodega



Marine Reserve, a recent site of field studies [15], these findings are shown to extend to natural
environments, with nonlocal sampling allowing the population to accumulate on a select subset
of prominent peaks. We discuss the results both generally and within the specific context of
hilltopping.

2. Model framework

We first outline the framework, referring to [32, 45, 18, 52| for further details. We let ¢ denote time,
x € R the spatial coordinate and v € R! the velocity. While the following derivation is general,
in this work we focus on two-dimensional navigation (I = 2). This type of navigation is relevant
for movement across a landscape. Individuals move via a VJRW with instantaneous waiting, time
between reorientations, requiring two probability distributions: a runtime distribution, over R+
that dictates the reorientation rate and a turning distribution over velocity space V" that describes
the new velocity. The former is taken to be a standard Poisson process, that”isy exponentially
distributed runtimes with constant mean runtime 7 (or turning rate A = 1/7)#We notethat other
choices of runtime can be made, potentially giving rise to subdiffusive or superdiffusive behaviour
[13, 49, 9]. For the turning distribution we assume: (i) individuals move with a fixed speed s
(i.e. v = sS'71); (ii) the new heading does not depend on the previous heading. Assumption (i)
means that the turning distribution can be defined in terms of a.directional distribution on the
unit sphere, g(nlt,x), specifying the probability of choosing direction™fyc S'~! following a turn,
where n is the directional heading on the unit sphere S'=1.

For the above VJRW, given stochastically independént, walkers, we can obtain an evolution
equation for the macroscopic population density at pesitionsx and time ¢, u(x,t). The process
is to first write down the analogous transport (or kinetic) equation and, via scaling, obtain a
macroscopic equation in an appropriate limit. We'refer to [18] (and references therein) for details
and simply state that applying a moment closure method!' generates a macroscopic model in the
form of the Drift-Anisotropic Diffusion (DAD), equation

u(t,x): + V- (a(t, x)u(tix)) = VV : (D(t, x)u(t, x)). (1)

In the above, D(¢,x) is a [ x [ diffusion)tensor matrix and a(¢,x) is the I-dimensional advection
velocity. The colon (:) denotes theleontraction of two tensors, resulting in a summation across all

second order derivatives
l

VV :Du = Z

ij=1

0 0Du
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The macroscopic quantities a.and D are determined from the statistical properties of the individual-
level model: mean speéd, mean runtime and the turning distribution. Specifically,

alt,x) = s /Slilnq(nhf,x)dn, )

D(t,x) = 7 /Slil (sn —a)(sn —a)Tq(n|t,x)dn. (3)

LOur'moment closure relies on two frequently used assumptions: (i) the population’s variance is computable
from the equilibrium distribution, and (ii) a fast flux relaxation. The latter effectively states that, at the space/time
scales of interest, the particle responds instantaneously to the information obtained at its current position. In
later simulations we compare directly the distributions from repeated simulations of the stochastic model and the
macroscopic model, confirming their validity for the present problem.



Thus, the drift is proportional to the expectation of ¢ and the anisotropic diffusion is proportional
to its variance-covariance matrix.

Environmental guidance is encoded in ¢, via biasing turns into specific directions. For the
two-dimensional case considered here, the von Mises distribution [25] is a natural choice:

ol | kv) = g™, @

where I;(k) denotes the modified Bessel function of first kind of order j. Equation (4) plays an
analogous role to the normal distribution of linear statistics, and generates a predominance of
turns into preferred direction v € S! with certainty increasing with concentration paraméterk. We
note that v(x,t) and k(x,t) are functions of space and time to reflect variation inthe\direction
and strength of the orienteering cue, but we omit the dependences for clarity of presentation. As
k — 0, q tends to a uniform distribution, while as k — co, ¢ approaches a singularidistribution in
which the preferred direction is always selected.

Expectations and variance-covariance matrices of (4) can be explicitly calculated [19], yielding
the following drift-velocity and diffusion tensor

k) = T

18P Ix(k) 2 (Ti(k)? ) I (k)
D(k,¢) = —- (1— Io(k)> I=rs <Io(k)2 g Io(k)> . “

v, ()

Intuitively, the drift is in the dominant direction. The anisotropic diffusion tensor has been decom-
posed into isotropic (proportional to the identity matrix I} and anisotropic (proportional to the
singular matrix A = vv”) components. The relativetrength of diffusion to advection depends on
k, via the modified Bessel functions. We note'that

I (k) Iz:(k)

* L T 0 as k — 0 and we converge to isotropic diffusion;

Li(k) Iz(k)

® W®) To(R)

— 1 as k — oo and we econverge to a pure-drift equation;

ﬁg’;gz > ﬁgz; for all k, andyhence’the dominating axis of diffusion lies orthogonal to that of
drift.

Modified Bessel functions arise in’ numerous applications and a correspondingly large literature has
emerged [31]. In particular, approximating expansions are available for small and large arguments,
as presented in Appendix A.

3. Orientation: local and nonlocal sampling

Orientéering inférmation is encoded into a navigation vector field, denoted w(x,t) € R!. The

directions and vector lengths of w form the inputs for the von Mises distribution: v(x,t) = \XE§§§|
and k(x, t)/= |w(x,t)|. The navigation field in turn depends on a navigating factor, represented as
a'single scalar intensity function E(x,t), such as chemical concentration, elevation, temperature

or'magnetic intensity. We define w to have one of two generic forms:

e Local sampling — the navigation field is computed according to information obtained strictly
at an individual’s current position;



(a) M1 (d)

(b) M2

(c) M3

Figure 1: (a-c) Ilustration of (M1)-(M3) in the context of hilltopping behaviour. Red circles and(bluestars indicate
starting and expected final locations of the individual; green arrows represent the initial direction of the-bias; red
and blue lines indicate the sampling region at the start and at the end of movement. (a) Loeal slope response; (b)
Individual responds to the elevation angle, with 6 > 61, implying a bias to the right; (c)dndividual responds to the
absolute elevation, with Ej, > Eg implying a bias to the left. (d) Illustration of nonloeal sampling. An individual
at x samples the environmental cue E at points within some compact region (here taken to be-a circle centred on
x and characterised by the perceptual range, R), averaging the response into a preferred directional bias (green
arrow).

e Nonlocal sampling — the navigation field is computed over some spatially-extended sampling
region, centred on the current position.

For both sampling mechanisms we consider a general form before tailoring into the following
three model prototypes:

(M1) a local and linear gradient model;
(M2) a nonlocal and nonlinear gradient model;
(M3) a nonlocal and nonlinear maximum model.

The above have widespread applicability, but are particularly intuitive in the context of hilltopping.
In (M1), responses are to the/docal gradient, as highlighted in Figure 1(a). An individual, initially
at the red circle, moves up_the/slope until coming to rest at the nearest local peak (blue star).
In (M2), presented in Figure 1(b)yevaluations are made up to a given perceptual range (red/blue
lines). The bias is weighted, in the direction of the mazimum elevation angle from the current
position and, whilefall three peaks are observed from its initial position, the individual typically
moves towards the cloger of the two higher peaks: despite its lower overall height, it has the larger
elevation angle from the initial location. In (M3), the individual estimates the true height of peaks
and biases according to the highest peak within perceptual range, as highlighted by the schematic
in Figure/1(c).

3.1.% Local sampling

Loecal. models implicitly assume pointwise sampling (at the scale of the overall environment). To
generate a directional response we assume the local gradient of E' can be determined. This results
in’a (local) tropotaxis response in which w points in the direction of VE and the magnitude



depends on E and |VE| (and other factors, if necessary). Thus,

VE
t)=k(E,|VE|) == -
wix,t) = k(B [VE)
where k(E,|VE|) describes the strength and form of response: positive (negative) values of k imply
attraction (repulsion). We note that k(E, |VE|) must satisfy k = 0 for [VE| = 0. Given data, k
can be estimated through fitting, for example in leukocyte chemotaxis where chemokine responses
have been calculated for different concentrations and gradients [21].

To generate the prototype model (M1) we invoke the simple choice of linear gradient! depen-
dence: k = k1 |VE| with associated response coefficient ;. The navigation field is| therefore
directly proportional to VE, yielding

w=r VE. (M1)

We remark that similar models have been proposed in a cell biology context, where E arises from
local crowding between cells [3]. Movement in these models can either bé repulsive and hence
proportional to —VE, or attractive and hence proportional to VE [3]. We-note that such models
consider navigation based from interactions between individuals, whereas we, focus on processes
where individuals do not interact with each other. Instead, navigation, information is obtained
from an underlying environmental cue.

3.2. Nonlocal sampling

We consider the schematic in Figure 1(d) and suppose an‘individual at x computes a movement
response by directly sampling the environment at pésitions'x + r; for ¢ = 1...L, where L is
total number of perceived locations. Sampling could occur through (for an organism) visual focus
on a distant point or (for a cell) extending a filopédium,” We define a probability distribution,
Q(r|x,t), that denotes the probability that poesition\x +'r is sampled from position x at the time
of reorientation t. Logically, £ has compact supportjto reflect a maximum perceptual range, but
analytically convenient forms with decayifigytails (stuch as Gaussians) may also be reasonable. We
suppose the strength of attraction towards\(or repulsion from) x + r is encoded into a response
function g(E(x+r,t), E(x,1), |r|), potentially depending on the cue at both the current and sampled
points, as well as the sampling distance. The attraction vector p.(x,t) in direction r/ |r| due to
information at x + r is hence

pr(Xpt) = Q(r)g(E(x +1,t), E(x,1t), M)ﬁ ]

We suppose w is formed from the net attraction, obtained by sampling over different locations and
calculating the average. Thus, we take

L
1 r
w(x.t) = ¢ ;ﬂ(rlx, Hg(B(x +1,1), B(x, 1), Irl) o
If a Jarge number of points are sampled we can approximate w via the integral form

w(x,t) = /]Rl Qr|x,t)g(E(x +r,t), E(x,t), |r\)%dr. (7)

This generic formulation is easily adapted and we next consider the simple prototype models. Note
that here, for simplicity, we exclusively concentrate on uniform sampling over a circular region of



radius R, where we define R to be the perceptual range

L if r € Bg(0)

Qr|x,t) = { ? (8)

otherwise

where Br(0) is the ball of radius R, centred on the origin, and Vg is its volume (i.e. Vi = 7R?
for I =2).

3.2.1. Nonlocal gradient sampling
Suppose attraction is according to the nonlocal gradient of E

E(x+r,t)— E(x,t)
x| ’

g(E(x +r1,t), E(x,1),[r]) = Ko

with sensitivity coefficient k2. Substituting both the above and (8) into (7), we obtain

w@ﬂ:@/“ Ex+rt)r -
Vg Br(0) |z |

Notably, a Taylor series expansion about x applied to the RHS yields
w(x,t) = %VE +O(R?).
Hence, as R — 0 the nonlocal gradient model converges to the local’gradient model with ko = 2k1.

It is straightforward to incorporate nonlinear processing of the cue, and in particular we consider

E )" — E(x,t)"
BT~ Bt

g(E(x+r,t), E(x,1), |g|) Ir]

The parameter n gives additional control; inereasing the weighting of attraction bias as n is in-
creased. This gives the following navigation field (M2)

E )"
oo an [ EEERUNE g (M2)

Br(0) Ir| x|

¢ . KaW1
We note that we have absorbed various constants into ap = ———, where
Van
E t)!
%:/ BEx4rt) r 0
Br(0) || ||

The scaling normalises the navigation field, so that the magnitude remains essentially the same as
n is altered. Note that Taylor expansion again yields (M1) in a small R approximation.

3.2.2. Maximum value evaluation

Qur second prototype nonlocal model takes g to depend on the absolute size of the cue at E(x+r,t)

J(Ex+r,t), E(x,t),|r|]) = ksE(x +r1,t),



where k3 is the sensitivity coefficient. Substituting into (7) along with (8) now yields

K3

r
t) = — E t)—dr.
woe)= g2 [ B

The distinction with the gradient-based evaluation is exemplified through a Taylor expansion,
where we find
w(x,t) = ki3RVE + O(R?).

Hence, as R — 0 the navigation vector field shrinks to zero length and orienteering information is
lost. As before, we can extend to a nonlinear form to obtain (M3)

w(x,t) = a3/ E(x+ r,t)"idr, (M3)
Br(0) |

|r

R3W1

where ag = and

Van

Ww; = ’

x|

/ E(x+r, t)iidr
Br(0)

provides the normalisation as n is altered.

4. Approximations

A choice must be made about whether to perform direct ‘stochastic simulations of the VJRW
model or solve the full DAD model (1) with their Bessel function dependent coefficients (5)-(6).
Both approaches have associated costs. Simulations.of the'stochastic VJRW are expensive, scaling
with population size; evaluations of the modified Besselrfunctions and implementing anisotropic
diffusion terms are also costly. In an analyticicontext, anisotropic diffusion terms may be more
difficult to deal with than isotropic counterparts:  Consequently, it is worthwhile investigating
simplifying reductions.

4.1. Local sampling approximations

We consider model (M1). Expansions of the modified Bessel functions (see Appendix A) allow
a series of approximations t0,(1)"to\be obtained, relevant for small or large values of &k (weak or
strong navigating cues, respectively). For weak cues the lowest order approximation (O(k')) yields
the well known Keller-Segel equation for (chemo)taxis

uy = dV3u —V - (xyuVE) , (9)

with constant{diffusion’ (d = 7s2/2) and chemotactic (xy = sw1/2) coefficients®>. The above is
strictly valid only,for’ weak cues, but a series of higher order “corrections” extends the range of
k values for which/the approximation accurately describes the full DAD model. We tabulate up

2We remark the general choice k would instead yield a general form Keller-Segel equation in the first order
approximation:

E
up = dViu— V.- (k(E, VE, |VE|)uV—) :
|VE]



to O(k*) in Appendix B. For example, the O(k?) approximation in two dimensions introduces a
correction for each of the diffusion and chemotaxis terms, such that

K2 |VE| K2 |VE|? K2 |VE|
up=DVV:||(1- —to—— -2 L - — | Au
8+ 2k2 |V E| 44 2x2|VE]> 8+ 2k2|VE|
2+ k2|VE)?
~-V- 1- 222V uvVE | . 10
<X< 4+ K2|VE[ (10)

Notably, this correction introduces the anisotropic diffusion component. We remark that diffusion
coefficients remain positive for all k1, so the system is well-behaved.

As k becomes larger the approximations become less useful: more terms are requited to achieve
reasonable accuracy, and it would be natural to instead revert to the full DAD model (1)i However,
very large k can alternatively be dealt with through large argument approximations (Appendix B).
For example, for sufficiently large k (corresponding to strong navigation fields) we can approximate
the full DAD model (1) via the pure drift-equation

s
u+V | ==uVE| =0
f <VE ) ’
which simply generates direct movement with speed s in the direction of the steepest gradient. Cor-
rections to this again yield a sequence of chemotaxis/anisotropic diffusion style models, tabulated

in Appendix B. For example, the O(k~!) approximation in_2D"gererates

752 1 s 2k1|VE| -1
v (- A ) -V E).
W= vy <|VE|< )“> X <|VE| 2 [V E| “V>

The anisotropic diffusion in the above corresponds to\a degenerate/singular form in which diffusion
is one-dimensional and along the axis orthogonal te-the preferred direction.

4.2. Nonlocal sampling approximations

The process is identical for nonlo¢al sampling scenarios, and we therefore only state the first order
weak cue form for the general/mavigation field (7), and for both (M2)-(M3). In the general case,
the first order approximationyunder ya/weak cue yields a nonlocal integro-PDE equation

uy = dV2u =Y - <0’U /]Rl Qr|x,t)g(E(x +r,t), E(x,t), |r|)rdr> , (11)

x|

for d = 75%/2 ahd o = s/2. The above is closely related to various nonlocal PDE models. For
example, if F4sdirectly based on the population’s own density distribution the above is similar to
those employed toidescribe swarming [28] and cell interactions [36]. Moreover, the above is closely
related to the model proposed in [10] for perceived gradient following.

Ifwe consider the two prototype models, the above becomes

wp = AV — V- mgu/ Erxart)r
Br(0) || |

10
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Figure 2: Four different idealised elevation profiles.

for (M2), and

uy = dV3u —V - aagu/ E"(X—i—r,t)idr ,
Br(0) |

for (M3).

4.8. Numerical validation

We restrict our validation to local gradient sampling under an{environmental cue that does not
vary with time. The population is initially distributed uniformly, across the rectangular region
0<2<1,0<y <2 We generate a quasi-one-dimensional ‘scenario by assuming the cue varies
only with y, specifically

E(y) = e P 0%, (12)

The corresponding cue profile is presented in Figures2(a). The dominant direction for individuals
with locations y < 1 (y > 1) will be 7/2 (—m/2) and subsequently individuals are expected ac-
cumulate along the ridgeline y = 1. Comparisons are presented for (i) the average behaviour of
multiple realisations of the velocity-jumppprocess, (ii) numerical solution of the full DAD model
(1) under (5)-(6), and (iii) the O(k) to O(k!) approximations. These approximations rely on an
assumption that the strength of the navigating cue, k, is small. Numerical methods are described
in the Supplementary Materials, Section S3. Briefly, an implicit timestep method and an operator
splitting method are used to numerigally/solve the full DAD model and the corresponding O(k) to
O(k*) approximations. Thedrajéetories of individuals in the velocity-jump process are simulated
directly as described in [34]; and additionally detailed in the Supplementary Material, Section S3.

The Bessel function appreximations are independent of s and we therefore expect that the
difference between“approximations and the full DAD model (1) is constant as s changes. Thus,
differences between solutions under increasing s should stem only from the assumptions made
when deriving the’magroscopic model from the velocity-jump process. The difference between the
approximations and.€ither the full DAD model solution or the average behaviour of the velocity-
jump progess degreases with the order of the approximation. Further, both the full DAD model
solution and,approximations prove to be less accurate against the average velocity-jump behaviour
as s increases (Supplementary Material, Section S1), consistent with previous investigations [34].
Generally,swhether (1) provides a reasonable description of the underlying random walk depends
onmwhether the spatial and temporal scales are appropriately macroscopic, for example see [5, 18]
for further discussion. Specifically, average run lengths need to be short, compared to the overall
domain dimensions, and individuals need to make numerous turns over the study time.
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We next explore the match for fixed s = 0.001 and varying response coefficient ;. Vary-
ing Ky directly influences the concentration parameter k, so increasing x; should impact on the
matching ability of the approximations. Note that for a quasi-one-dimensional case the diffusion
tensor reduces to a function depending on y and k, denoted d(y), while the drift reduces to a
“chemotaxis”-type function, denoted a(y). As expected, truncating at higher order terms yields
a better fit for these functions, see Figures 3(a,d,g) for a(y) and Figures 3(b,e,h) for d(y). For
sufficiently small k1 (e.g. k1 = 0.5) even the lowest order approximations prove highly acceptable,
while larger values (e.g. k1 = 2) demand a higher order for a good fit.

Turning to full numerical solutions, we compare O(k) to O(k*) approximations with these of
the full DAD model and the average velocity-jump behaviour. Note that for the parameter,values
under consideration, the full DAD model closely describes the average velocity-jumps<behaviour.
For k1 = 0.5, Figure 3(c), all approximations are generally successful, although O(k) and O(k?)
approximations show some inaccuracy in regions where the diffusivity function approximation is
at its worst. Increasing ki generates a poorer fit: under this cue distribution andyxi/= 2, the
maximum value of k£ = 5.43 is beyond the expected range of k values for reasonably valid approx-
imations. Nevertheless, the O(k*) still proves reasonably accurate.

Overall, numerical comparisons validate the approximations, but only when &k remains within
relevant regions. Thus, if it is known that a particular cue provides.only a weak bias (say, a
cell migrating in a fairly stable and shallow gradient) it is reasonable to use the simplified PDE,
such as the local or nonlocal Keller-Segel equation. If, rathet, cue'strength cue varies widely, one
should resort to employing the full DAD equation (1), assuming the spatial/temporal scales are
appropriately macroscopic.

5. Short and long-range sampling: hilltopping casepstudy

The accumulation of butterflies, moths and other insects at hilltops has been widely documented
[48, 47, 8, 1, 43, 15]. Many insect populations\fluctuate over different locations and seasons, and
strategies that offer robustness against extinetion’ events are necessary. Hilltopping is perceived
as one such mechanism, due to an improved tate of mating encounters. The relatively local scale
over which movements occur, the precision to’which terrain can be documented and the (relative)
ease of tracking/counting population members combine to form an ideal system for determining
how environments structure & population. Given visual assessment of topography, it is natural
to query how perceptual rahge iimpacts on hilltopping. Natural terrains are typically “rough”, so
responses based strictly on the local gradient could easily trap a large percentage of the population,
scattered through small accumulations on many local peaks. Instead, studies of a hilltopping but-
terfly (Melitaea trivia) indicate that their orientation may be according to both the local slope and
higher peaks within aydonger range (~50 metres) [43]. Moreover, a recent capture-mark-recapture
study of the tiger moth (Arctia virginalis) revealed that populations accumulated only on a subset
of summitswith’the largest numbers found at the highest elevations [15].

Motivated by these findings, we use this section to explore how short- and long-range topo-
graphical sensing alters hilltopping outcomes. We consider our three prototype models for moving
up slopes, effectively describing populations that respond to: (M1) the strictly local gradient; (M2)
the nonlocal gradient, that is, according to the elevation angle of terrain within perceptual range;
(M3)the true height of land within perceptual range. We first generate idealised terrains in order
to, test principles before considering an application using elevation data for the Bodega Marine
Reserve, as used in a recent hilltopping survey conducted by Grof-Tisza et al. [15].
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We note that several previous simulation studies have explored hilltopping. For example, in [41,
39] an agent-based modelling approach was used to simulate butterfly movement paths, based on
field study data [43]. Topography was shown to channel movement paths along “virtual corridors”.
Further agent-based studies in [42] highlighted the importance of an element of randomness in the
movement paths to avoid the above described trapping. In [34] the multiscale framework used here
was employed to demonstrated how accumulations formed by hilltopping could optimise mating
for low-density populations, but may be disadvantageous for more abundant populations. The
current study here extends that work, specifically incorporating long-range perception to explore
its impact on population distribution.

5.1. Idealised study

We first explore how the prototype orienteering mechanisms impact hilltopping in a) series”of
idealised studies. We assume a quasi one-dimensional terrain and, unless stated otherwise, initially
suppose the population to be uniformly randomly distributed across the terrain.” We firstyexamine
the suitability of models (M1)-(M3) to describe hilltopping, considering moevément on a terrain
containing a single peak centred at y = 1, as presented in Figure 2(a). For ‘Succinetness we simply
note that all model prototypes allow the population to relocate to the peak by t'=.100; results and
further discussion are provided in the Supplementary Material, Section S2.1. JThus, all proposed
mechanisms are plausible and we shift to a more sophisticated analysis ofithe mechanisms.

5.1.1. Perceptual range and nonlocal response order

Here we investigate the influence of the perceptual range, R, ‘and nonlocal response order, n. We
consider a landscape containing two peaks of different heights, as"highlighted in Figure 2(b). For
model (M3) we observe a significant change between’R = 1"5"and R = 2.0. For smaller radii the
population is split into separated sub-populations, one on each hilltop with the majority of the
individuals on the higher of the two peaks. In contrastyfor R = 2.0 the individuals merge into a
single contiguous population at the higher peak. Comparing the dominant direction for the two
radii, Figure 4(c) and (f), a transition is observed such that under smaller radii each peak has
its own “zone of attraction”. For larger-radiiyhowever, the zone of attraction for the larger peak
expands to cover the entire domain. Note that for this example, n does not qualitatively change
the results.

Under model (M2) with a/high nenlecal order (n = 5), two distinct sub-populations are main-
tained even for large R. That is, even when the higher peak is fully within perceptual range of
members on the lower peak, theytwo sub-populations remain separate. Here, higher weighting is
applied according to the largest’elevation angles. Consequently, the lower peak can always be
perceived as more attractive for individuals located sufficiently close. As the nonlinear order is
decreased, however, thé sub-population that initially formed on the lower peak begins to migrate
towards the highet.peak: This is reflected in the comparison of the dominant direction, Figure
4(1), where_we observe a collapse from two zones of attraction to one. As the nonlocal gradient
model efféctively places a weight on higher environmental cue values close to an individual, it is
difficult for an individual to move away from the peak if that weighting is further compounded by
a high nonlinear order.

To ‘examine whether migration is unidirectional (from the lower to higher peak), we consider
the migration proportion for two initially separated populations: one uniformly distributed around
the lower peak and the second about the higher peak (see Supplementary Material, Section S2.1).
Notably, when peak to peak migration occurs it is only for those initially located on the lower
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peak, which translocate to the higher one. We therefore investigate how the combination of per-
ceptual range, ratio of peak heights and nonlocal order influences the proportion of the lower peak
population that have migrated by a fixed time, set at ¢ = 5000. The influence of peak height ratio
is determined via two elevation profiles, Figures 2(b)-(c), with peaks located at the same position
but with distinct heights to generate ratios of 1.5 and 2.0 respectively. Figure 5(a) summarises
the results for (M3). For all scenarios, there is negligible migration for R = 1 and full migration
by R = 2. In between, there is a steep transition with its location changing according to nonlocal
order and peak height ratio: increases in either will lower the perceptual range required to shift
the population. Effectively, an increase in either of these properties increase the attractiveness of
the higher peak and the population migrates accordingly. Figure 5(b) summarises the results for
(M2). Notably, there is now a significant difference between n = 1 and n = 5 for both profiles. As
discussed previously, the extra weighting toward higher environmental values close to-an individ-
ual, introduced by the 1/|r| factor in the nonlocal gradient term, influences the dominant direction
(Figure 4(0)). Substantially altering the disparity between peak heights, though, can, overcome
this additional weighting.

5.1.2. Influence of noisy environments

So far we have considered smoothly varying cues. In reality, environments are expected to be
considerably rougher, due to small-scale variations in topography.-Sincesa strictly local response
depends on the gradient at a specific point, this variation may signifiecantly impact on an individ-
ual’s ability to move across some environment. To explore this,\we introduce a form of gradient
noise into our environmental cue: we refer to Appendix C.for details, but remark that the added
noise contains local spatial correlation to ensure a differentiable;underlying environment.

We examine the average displacement of a populationunoving in response to a linear topograph-
ical profile, Figure 2(d), subject to the addition oftwarious levels of noise. Initially, the population
is uniformly distributed between y = 0 and y,= 1.2 (and zero elsewhere). Average displacement
is calculated by numerically solving the full DAD equation (1) under twenty identically-prepared
noise terms. That is, we generate twenty. different noise terms according to the same process,
with the only difference stemming from the numbers sampled from the (pseudo)-random number
generator. We then solve (1) for each of thejrioise terms and calculate the overall displacement
of the population, defined as theddifference between the median of the population at ¢t = 0 and
t = 500. We repeat this process for different levels of noise and scale according to the average
displacement under zero noisé.

The results for modelsi(M1)-(M3) are summarised in Figure 6 (a), where for the nonlocal mod-
els we consider R =.0:2, R =.0.5 and R = 1.0. As might be expected, increasing the strength of
the noise compared to the strength of the environmental cue results in a decrease in the average
displacement. Local sensing (M1) is the most susceptible to the added noise, with increasing noise
significantly réducing the displacement. Nonlocal models (M2)-(M3) prove considerably more re-
silient, particularly. for large perceptual ranges. This result is intuitive, as the nonlocal response
involves averaging the environmental cue over the perceptual region, reducing the contribution of
any noise. \Note' that as R — 0 for (M2), we observe convergence to (M1), consistent with our
earlier findings. Overall, given that environments in nature are non-smooth and exhibit variation,
nonlocal responses may be necessary for successful migration.

We now return to the example with two peaks, with two initially distinct populations, and

examine how the presence of noise influences the successful migration from the lower to higher peak.
We note that a small amount of noise can elicit a large change in the proportion of the population
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Figure 7: (a) Topography of Bodega Marine Reserve study site. (b)-(c) Zones used for population counts, following
either (b) peak-centred or (c) tessellated gridding.

that undergoes migration (Supplementary Material, Section S2.1). To determine how different
levels of variation influence hilltopping, we append twenty identigally-prepared noise terms to
Profile Two. Using two distinct R values we examine the proportion of individuals initially located
on the lower peak that migrate to the higher peak by ¢t = 50005 presenting the results in Figure 6
(b) for (M2) and (M3). As expected, we find that increasingthe amount of noise generally reduces
the ability for individuals to translocate to the higher peak for'both models: for combinations of R
and « that allow the entire population to relocate in the absence of noise, introducing noise inhibits
a portion of the population from doing so. Consistent, with previous findings, larger perceptual
ranges offset noise-induced trapping. As naturally,occurring environments do not typically exhibit
the smoothness of idealised models, this suggests that thesmechanism by which sensory information
is processed must be able to account for the noise.

5.2. Bodega Marine Reserve study
5.2.1. Study site and elevation data

We extend our case study to a natural environment, utilising topographical data for the Bodega
Marine Reserve, a site of recent hilltopping studies [15]. High spatial resolution LIDAR data
was obtained from the United State Geological Survey’s “The National Map” project over the
co-ordinate range of the study site; and longitude, latitude, elevation and classification (water,
ground etc.) are extracted at each data point. Interpolation onto a regular grid is performed,
and the resulting topographical structure is mapped in Figure 7(a). This topographical structure
allows individuals“te,obtain navigation information in a manner that mimics the behaviour of a
population undeérgoing directed motion according to the topography in the Bodega Marine Re-
serve. A population of butterflies/moths is uniformly randomly distributed across the landmass
at t = 0 and theiriniovements are followed over 20 hours. Of course, more realistic distributions
should aceount for oviposition/larval sites but a uniform distribution limits any subsequent bias
in the final'distributions. Simulation methods are described in the Supplementary Methods. Note
that we impose boundary conditions that effectively confine the population within the bounds of
the region/plotted in Figure 7(a), as described in the Supplementary Methods, Section S3.

For later analyses we subdivide the land region using two methods. The first is a peak-centred

scheme, Figure 7(b), where 200m by 200m (4 hectare) non-overlapping regions are defined accord-
ing to topography: (i) we find the complete set of local maxima; (ii) zone 1 is centred on the
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highest maximum and both this maximum and any others within distance are excluded; (iii) zone
2 is centred on the next highest non-excluded maximum and so forth. The second subdivision,
Figure 7(c), is a regular tessellation that intersects with the land coverage. The use of two methods
is to reduce bias due to zoning.

We consider the three prototype models for topographic sensing, (M1)-(M3). Note that in
order to concentrate on how altering the navigation field and its associated parameters impacts on
population structuring, we fix the speed, turning rate and sensitivity coefficients at values similar
to those in an earlier study [34]. Specifically, we set s = 4m/min and a mean run time of 7 = 1 min;
note that these values account for pauses/resting periods during flight. Sensitivity coefficients are
set at k1 = 5, ko = 10 and k3 = 0.2; the relationship between x; and ks ensures convergence
from (M2) to (M1) as R — 0; the relationship between k2 and k3 is to generate quasi-equaivalent
navigation fields for (M2) and (M3) when R = 50 m. To provide context to these values, a butterfly
located on a linear ramp of gradient 10% would choose an uphill direction onjust over 75% of
occasions, rising to slightly more than 90% for a 20% gradient.

5.8. Navigation field variation

We first consider how orientation information changes as we shift from local o' nonlocal models.
For ease of illustration we plot only a portion of the full study site” (thetop-left region in Figure
7(a)). Plots are presented in the form of a “direction field”, wherested arrows indicate the local
direction of w at selected points and blue lines indicate the trajectory traced out if an individual
exactly follows these arrows. Light blue circles indicate trajectory jend points, and can be inter-
preted as attractors that potentially lead to local accumulationsief'the population.

The plots in Figure 8 show results for (M1), i.e. Rv= 0, and (M2) with R = 25, R = 100
and R = 500; note that these plots assume n = 5lUnder local sampling we observe significant
fluctuations in arrow directions, with some arrows\pointing in the direction of prominent peaks
but others directed elsewhere. Numerous local maxima exist, so that trajectories travel short dis-
tances before becoming trapped at an attractor. Transitioning to the nonlocal model, however,
dramatically reduces the number of attractors." The majority of trajectories now converge on a
select few summits (examples given=by black”arrowheads) and trajectories can be significantly
longer than the perceptual rangeEffectively, movement is first according to the highest elevation
angle within range, but subseguent higher peaks may be observed. For example, in Figure 8 (c)
we see trajectories converging on'the top-left attractor over a distance of approximately 1km, an
order of magnitude greatér-than the perceptual range. Increasing R steadily reduces the num-
ber of attractors, suchs/that by R = 500 all trajectories converge on one of just two attractors
within the plotted region, corresponding to prominent peaks. These peaks are not necessarily the
two highest peaks across the studied zone, rather they correspond to the highest within their region.

Further analyses have been performed for (M2) with n = 1 and (M3) with both n = 1 and
n = 5 (see’Supplementary Materials, Section S2.2). Qualitatively we observe similar phenomena,
with a reduction Jin the number of attractors as R is increased. However, a few subtleties emerge:
(i) higher nenloCal orders promote the persistence of attractors at lower prominences, consistent
with our earlier idealised study; (ii) for n = 1, attractors can occasionally form some distance
away from/the nearest local peak. This latter observation stems from the fact that, under a lower
nonlocal order, the weighting to summit points is diluted and evaluation is more according to a
broad assessment of the terrain. However, broadly the results are consistent and we note that
perceptual range, rather than the precise sensing model or degree of nonlinearity, appears to be
the primary determinant in the number of attractors. For the remainder of our investigation we
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and (d) R = 500. Note that the R = 0 case is effectivelyythe local\gradient model (M1). For these plots we use
n =5 as the nonlinear coefficient.

therefore restrict to presenting the results‘\for®(M2) under n = 5, noting that results for the other
cases are qualitatively consistent.

5.4. Comparison of the velocity jump and macroscopic models

We proceed to simulate the ¥MJRW and the full (unapproximated) macroscopic model (1) across a
range of R, using (M1), i.6. 'R =0, and (M2) with R = 25, R = 100 and R = 500. Results are pre-
sented in Figure 9. Agent-based model simulations of the VIRW are presented in Figures 9(a)-(d),
where blue circles denete finallocations (after 20 hours) and red dots indicate trajectories. The
results parallel the preyious direction field plots. For the local model, some larger collections occur
at the most preminentipeaks but the overall population remains scattered with numerous small
accumulations trapped at local maxima. Expanding the perceptual range reduces trapping, allow-
ing the populationito coalesce into fewer and larger aggregates that correlate with the prominent
peaks. The capacity for long-range information to influence movement is particularly illustrated
by the individuals that move across the bays, attracted to peaks on the other side (arrowheads in
Figure 9(d)).

Under each agent-based simulation we show the corresponding population distributions pre-
dicted by the macroscopic model after 2, 8 and 20 hours. Note that the distributions correlate well
with those of the agent-based model, suggesting that the macroscopic model accurately captures
individual-level behaviour at the spatial and temporal scales of study. We subsequently focus on
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Figure 9: Simalations of the VJRW and full DAD model (1) using elevation data for the Bodega Marine Reserve.
Navigation ffield given by (left to right) the local model (M1), i.e. R = 0, and (M2) with n = 5 and R = 25,
R =100 and R = 500. (a)-(d) Simulations of the VJRW. Blue circles represent end locations and red dots indicate
trajectories, for 250 individuals that are initially randomly uniformly distribued across the landmass. (e)-(p).
Corrésponding population distribution predicted by (1) at (e)-(h) 2, (i)-(1) 8 and (m)-(p) 20 hours. Density plotted
according to the colourbar in (e), where M denotes the the density if the population is uniformly distributed across
the landmass. Parameter values are as described in the main text.
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Figure 10: Comparison between the full DAD model (1), (a) and (c), and the first order approximation{obtained
under the assumption of a weak cue, (b) and (d): (a,b) ¢t = 4 hours; (c,d) ¢ = 20 hours. Simulation details as in
Figure 9, where for this comparison we use (M2) with n =5, k2 = 10 and R = 100.

the macroscopic model, exploiting its computational advantages. The simulations confirm the re-
sults of the agent-based model, with large sampling radii allowing the population 6 coalesce into
fewer and larger aggregates: for example, for R = 500 we observe th¢ population has coalesced
into just 3 principle populations.

We also test the validity of using an approximation, comparing the full DAD model with its
first order approximation (assuming a weak cue) in Figure 10. Subtle-difference emerge in regions
corresponding to the strongest field strengths but, overall,thefirst order approximation performs
remarkably well: differences between the approximation and\full DPAD model are likely to be small
in comparison to errors arising from parameter estimation."Moreover, differences are primarily no-
ticeable at early times, with the results in the quasi-steady, state distribution, presented in Figures
10(c)-(d), visually indistinguishable.

We perform an analysis of coalescence by\counting population densities present in different
zones, under the two schemes described previously. Results are consistent regardless of zoning
scheme, and we therefore only present the data for the peak-centred scheme. In Figure 11(a) we
present bar charts, which display theamber of zones (at 20 hours) where the zone population den-
sity is at x2, x5, x10 and x20 thémean density level M, defined as the density if the population is
uniformly distributed across the landmass. Local/short range sampling generates numerous sites
with moderately raised densitiess but, very few with significantly increased densities. For abundant
populations these moderate increases may offer mating benefits, but for rare species they may have
minimal effect on the overall encounter rate. Longer range sampling, however, generates relatively
few sites with raised densities; but those sites exhibit substantial increases in population density.
The conferred advantage is likely to be particularly acute for the rarest populations, substantially
raising densities and incereasing the likelihood of encounters.

We further calculate the normalised encounter rate, which we define as

U; (t)2
u?

i—1 ~max

ER(t) =

M~

Inthe"above, Z is the total number of zones, u;(t) is the density of individuals within zone 4
ab, time ¢ and wumax is the maximum zone density (i.e. the density if the entire population is
concentrated into a single zone). Note that the above assumes that male/female distributions are



(a) (b)
0.4 A

A A
10 —&— Local ,"’/
w ¢ R=25 A
2 0.3[/--*--R=100| A~
8 ------ A---R=500 ‘
5 5 |
o)
Ke]
€
>
Z0
X 2
X 4) 4) ’9
“% Q. 4) 4)\5‘ \\700\6\06\00

oY

Figure 11: Results of zoning analysis for (M1) and (M2) under various R. (a) At the end of the’simulation (¢t = 20
hours) we calculate the number of zones for which the population has increased to.x2,5,10,20 the mean density.
(b) We plot the normalised encounter rate as a function of time for (M1) and (M2) under various R. All results use
the peak-centred zoning method while model parameters are as described in the text.

equivalent and that encounter rates are proportional to the produet of male and female densities.
The resulting value ranges between 0 and 1. Plotted<assasfunction of time, nuances are revealed
in terms of how the perceptual range impacts on the encounter rate. Over short time ranges
lower to medium values of R appears to be more ‘advantageous; at longer times, larger R values
are optimal. Intuitively, larger perceptual range can/ncourage direct movements towards distant
summits and less frequent on route encounters;\lower to medium R may facilitate earlier encounters.
This is reflected by comparing the trajectories|indicated by Figure 9 (c¢) and (d). For R = 100
we observe trajectories (indicated by red dets) densely channelled along “virtual corridors” [41],
which subsequently become dispersedsfor R ='500. Given the short lifespans of many insects, and
the potential need to mate rapidly, sampling across a very large portion of the environment may
therefore not always be the optimal'strategy.

6. Discussion and conclusions

The ability to deteet information located distant to a cell or organism can be crucial for its nav-
igation and moyement. Larger organisms can achieve this through various means: vision and
hearing providé obwious, pervasive examples; electrolocation by fish through their lateral line or-
gans presents. a more’ specialised case [20]. Certain migrating cells can extend long protrusions
(filopodiaj cytonemes) that span multiple cell diameters [50]. The majority of theoretical models,
however, implicitly assume that the underlying cue is local (or effectively local) with respect to
the individual’s position: for example, a chemical gradient computed across the individual’s basic
body dimension. Here we have described a multiscale framework, based on a biased velocity-jump
random walk, where the orienting environmental cue is either local or distant to the individual’s
current location.

Our underlying random walk is standard and, when scales of interest are suitably macroscopic,
its behaviour can be described by a general form nonlinear drift-anisotropic diffusion equation [18],
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the parameters of which depend on the navigation field/environmental cue. Via standard expan-
sions of the modified Bessel functions, we show that in certain parameter regimes we can approxi-
mate the general form equation as a Keller-Segel type equation (for local gradient sensing) and a
nonlocal integro-partial differential equation (under nonlocal sensing). Nonlocal integro-PDEs have
become popular in movement models, in both ecological [28, 7, 10] and cellular systems [33, 17, 36].
The work here provides a means of connecting these models with microscopic/individual level be-
haviour; for other recent approaches see [27, 4]. Of course, the form of continuous model is in-
trinsically linked to the VJRW assumptions and their alteration could demand recalculation. For
example, the default assumption of exponentially distributed runtimes does not universally apply:
under certain scenarios, occasional long transits are observed, a so-called Levy process deseribed
by long-tailed power-law distributions. Generalising VJRWs to include other runtime distributions
or resting periods between runs has been considered in a number of studies (e.g. see:[16, 49, 9]
amongst others). Even more challenging is the assumption of stochastically-independent walkers:
while reasonable for scattered/dispersed population, this becomes questionable if the individuals
aggregate/cluster tightly.

Explicit descriptions of (ecological) perceptual range have been included in a variety of theo-
retical/computational models, including agent-based [40], stochastic methanistic resource selection
models [2] and integro-PDEs of drift/diffusion type [10]. Our modelling here has similarities, in
particular, to the latter two studies. Similar to [2], our modelling is founded on stochastic random
walk movements of an individual evaluating landscape across a pérceptualrange; in [29] the authors
similarly derive diffusion-advection approximations for theirstochastic model. The integro-PDE
model studied in [10] includes a drift component that featiresmonlocal gradient following to some
resource, similar to the form (11) suggested as a first order approximation to our general model.

The utility of the model was demonstrated through a,specific application to hilltopping be-
haviour. Under both idealised and genuine terrain profiles we demonstrated that nonlocal sensing
allows a population to overcome terrain noisey so that individuals transit from lower to higher
peaks; local sensing, on the other hand, can lead te trapping of population members at local max-
ima close to their starting location. Since topographical data will typically possess numerous local
maxima, this suggests that an effective hilltopping mechanism would be based on highly nonlocal
sensing. Applied to the topographical data of the Bodega Marine Reserve, nonlocal sensing sub-
stantially increases population dénsities at a subset of “prominent peaks” across the studied area.
As such, the model broadly reproduces’ field findings on the distribution of tiger moths (Arctia
virginalis) at the same site.[15]/A direct translation between our results and the field findings of
[15] would require additional refinements, for example accounting for the biases arising from larval
site/vegetation distribution.Here we have not accounted for this, allowing us to focus exclusively
on the role played by nonlocal assessment on population distribution. Perceptual range, rather
than the exact meodeof sensing or nonlinear order, appears to be the primary determinant in the
number of congregation Sites. Large perception ranges are likely to be particularly helpful for the
scarcest populations, /bringing the dispersed population into concentrations at a small number of
sites. Yet, the advantages become less clear-cut at shorter timescales, where the more dispersed
travel_routes taken to reach distant sites may reduce the likelihood of earlier mating: effectively,
the narrow “virtual corridors” [41] encouraged by lower perceptual ranges become dispersed for
larger. R. Of course, the present modelling neglects to account for adaptive strategies, where in-
dividuals may first preferentially move to a nearby (lower) maximum and subsequently move to
one more distant if no encounters are formed. Such hypotheses can easily be tested through more
sophisticated nonlocal sensing rules.
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Here we consider two prototype models for nonlocal sensing: a nonlinear gradient and a non-
linear maximum model. In the context of hilltopping, these have clear and direct interpretations
regarding whether the bias is according to the highest elevation angle or elevation within percep-
tual range. Either model appears to be an effective mechanism for overcoming terrain roughness
and generating fewer, higher populated accumulations, although we remark that our earlier ide-
alised experiments suggest that the nonlinear maximum model may be slightly more effective for
overcoming noise. From a human perspective, elevation angle is easily gauged but estimating true
height would require an additional capacity for depth perception. Overall, though, these proto-
types can serve as simple models for describing various forms of sensing, such as visual, auditory,
or chemical information. However, focused applications would clearly demand closer inspection
of their foundation. For example, the choice of uniform 2 is somewhat simplistic, where we may
expect a more gradual drop-off in the ability to detect at a distance. Clearly the mere general
form (7) allows for a lot of tailoring.

The hilltopping application features a fixed environmental cue, however, oftenythe cue will
vary with time. This could occur independently of the population, such.&n odour transported
by turbulent currents, or according to the population distribution, such_as.a cell population that
internalises a chemical signal or whales communicating through song./ A key study would be to
extend the analysis here to examine how nonlocal sensing impacts_on oriented movements under
dynamic variation of the cue; steps in this direction have been made. in [10], where the potential
beneficial effects of nonlocal sensing were illustrated. Related t6.this, here we have restricted our-
selves to consider only fixed noise. Time-varying noises in thie cue;ssuch as molecular fluctuations
in a chemical signal, are of significant interest: fluctuations may further restrict the effectiveness of
local gradient-based sensing mechanisms and highlight the importance of nonlocal sensing. Studies
of this nature may provide insight into some key questions, including the impact of human activity
on ecological populations. For example, the effective perceptual range of cetacean auditory com-
munication has been heavily eroded by noise pollutionjisuch as commercial fishing, naval sonars
and oil/gas exploration [38, 53]. Detailed modelling of such problems via our framework may
provide important predictions on how such unwanted noise can impact on population dynamics.
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Figure A.1: Comparison between the ratio of modified Bessel functions (red) (a) I1(k)/Io(k), (b) IZ(k)/13(k), (c)
I>(k)/Io(k), and the O(k) (orange), O(k?) (purple), O(k®) (green) and O(k*) (blue) approximations of the ratios.
Note that the O(k?) and O(k®) approximations are the same for IZ(k)/12(k) and I2(k)/Io(k).

Appendix A. Modified Bessel function expansions

Appendiz A.1. Small argument expansions

Under nonnegative integer orders, modified Bessel functions of the first 'kind have the following
power series expansions [31]

(k) = (;)Jmi m <§)2m : (A1)

0

Given (5) and (6), we are particularly interested in%j = 0,1,2 and the ratios I(k)/Io(k),
I#(k)/12(k) and I3(k)/Io(k). Using (A.1), we first approximate the modified Bessel functions
where j =0,1,2 as

k2. \k* kS
Io(k) = 1+Z+6»4+2284+m R (AQ)
k. K2 k® k7
]1(k) = §+E+@+718256+... R (AS)
k¥ Kt kS k8
I(k) )= —§+%+3056+ 182560+m . (A4)

To obtain the relevantdratios, I1(k)/Io(k), I3 (k)/13(k) and I3(k)/Io(k), we truncate the polyno-
mials on the numerator.and denominator such that terms up to O(k™) are included. We obtain

Lk) 32k + 4k3 + . .. (A5)
Io(k) 64+ 16k2 + k*+ ... '
k) 8k? +2k% + ... (A6)
I2(k) — 32+4+16k2+3k*+... "~ '
Lk) 24k2 + 2k + ... (A7)
Io(k) 192 + 48k2 +3k* + ... '

In_ general, according to the size of k we can truncate the above calculations at the k™th term
to, obtain a reasonable approximation: Figure A.l presents a comparison between a numerical
approximation of the relevant ratios modified Bessel functions and the O(k™) approximation of each
of the ratios. For k < 2 the ratios are adequately approximated by at least one of the truncated
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Figure A.2: Comparison between the ratio of modified Bessel functions (red) (a) I1(k)/Io(k), (b) I?(k)/I3(k), (c)
I>(k)/Io(k), and the O(1), O(k~!) (orange), O(k~2) (purple), O(k~3) (green) and O(k~*) (blue) approximations
of the ratios. Note that the O(k~!) and O(k~2) approximations are the same for 12 (k)/I2 (k).

power series and, as expected, including additional terms results in a bettér approximation. As k
increases the distance between the approximations are less accurate, suggestingythat it would be
inappropriate to implement these approximations in (1) above some threshold/k value.

Appendiz A.2. Large argument approximations

For larger k we can instead exploit the following large argument appreximations for the modified
Bessel functions of first kind [31], where for order j we haye

\/62% (1 + g‘g 75!?8113;1 <£[1 452 = (2m — 1)2>>. (A.8)

Again, we are primarily interested in ratiosdly (k)/do(k), I3(k)/I3(k) and Is(k)/Io(k). As the
summation component of (A.8) is less than one for large k, we can approximate the relevant ratios
as

Ii(k) =

L(k) 1 Y1 1 25

=1 - -+ ... A.
Iy(k) 2k  8k2  8Kk3  128k*4 T (A.9)
I3 (k) 1 1 1

s N/ 4 Al
2(0) PRV RT (4.10)
(k) 2 1 1 1
_- = 1-—"+=4+-—+-—+.. . A1l
To (k) Pttt (A-11)

A comparison between the approximations truncated at O(k™) for n = 0,—1,...,—4 and the

numerical approximation of each of the ratios of modified Bessel functions is presented in Figure
A.2. We observerthat/all approximations for I;(k)/Io(k) are indistinguishable from the numerical
approximation for K > 10!, whereas for both IZ(k)/I3(k) and Iz(k)/Io(k) the approximations
are near exact if k& > 102, Interestingly, the O(k~!) — O(k~*) converge to each other before
converging tothe numerical solution, which suggests that there is limited benefit to higher order
approximations for large k values.

Appendix B. Equation approximations

Here we only state approximations for model (M1); similar approximations can be formulated for
(M2)-(M3) following an analogous process. Note that we suppress subscripts on the x sensitivity
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coefficient for clarity of presentation.

Appendiz B.1. (M1) under small arguments

Assuming small k (shallow gradient V E/small response coefficient ), we approximate (5)-(6) using
the first few terms of the expansions (A.5)-(A.7). The series of O(k), O(k?),O(k?),... expansions
are as follows:

O(kl) ap %an
Dy =
OK) ay =% (1-ZEREL ) VE,
2 2 2 2 2 2
Dy =12 (1 - % I—rs? (4&5\3}5\2 - BféfLZV\IéIEP) A;
O as =% (1- 258 ) VE.
2 2 2 2 2 2
D =2 (1 PR )1t (25 - TR
o) ai =% (1- SNl Y v,

3

D, = 5% (1 _24x’|VE?+25"|VE]! [— 72 8k’ WEP+2rt|VEY

4 2 192+48K2|VE|?+3r4|VE|? 32+16K2|VE|?43k4|VE|*
24k%|VE|>+2:* | VE|* A
192+48k2|VE|?+3x4|VE|? )

Appendiz B.2. (M1) under large arguments

For large arguments k (shallow gradient VE/small“response- coefficient x), we can utilise the
first few terms of the expansions (A.9)-(A.11). Substituting into (56) generates a sequence of
O(k),0(k~1),0(k=2),... expansions as follows:

0 _ . VE
O(k ) apg — Sw,
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Appendix C. Terrain noise
To generate smoothly varying noisy terrain we consider a form of fractal noise [44]. We first sample

numbers from the normal distribution with mean zero and standard deviation one at m points.
We interpolate these numbers onto a grid with 2(m — 1) + 1 points using spline interpolation,
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and take the first m points from the grid. This ensures that any two noise points are correlated.
We repeat the process, generating n random values and interpolate these values onto a grid with
4(m — 1) + 1 points, taking the first m points from this new grid, and adding this noise to the
previously generated noise. This process is repeated |log,(y/(2f Ay))| times. Here we take f = 3.
Finally we apply a three point hat filter to smooth the noise further and scale it such that it lies
between —0.5 and 0.5.
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