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ABSTRACT  

The progress from batch to continuous manufacture of pharmaceuticals has highlighted the 

challenging area of dosing solid material directly, efficiently and accurately into continuous flow 

systems for work up in flow chemistry processes. Twin screw extruders (TSE) have the advantage 

of decoupling the dry (loss in weight feeder end) with the wet (liquid input) to prevent solids from 

sticking around the feeder thereby enabling continuous solid feeding into a flow process. In this 

study, the feasibility of a 16mm TSE as a solid feeder is investigated and efficient dissolution of 

an example API is demonstrated. Paracetamol and an 80:20 mixture of water and IPA are the solute 
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and solvent respectively. The concentrations of paracetamol during dissolution experiments are 

monitored using an in-line UV-ATR probe connected to a spectrometer, and dissolution kinetics 

are extracted. Full dissolution of powder particles is obtained within the residence time of the TSE, 

however full dissolution of granular particles is achievable by lowering feed rates or having higher 

barrel temperatures. We have, for the first time, proposed a methodology of estimating the power 

density for TSE, this enables a fair comparison of dissolution rates between this continuous system 

and a batch stirred tank.  

 

INTRODUCTION 

Continuous manufacturing in pharmaceutical industry has gained significant attractions recently 

as it offers potential flexibility, quality and economic advantages over batch operation 1-3; 

substantial research in reaction, crystallisation and filtration have been reported in the past decade 

4-8, however, continuous work up, e.g. solid dissolution and dosing, remains a challenging area yet 

to be addressed. The introduction of raw materials and intermediates for continuous 

pharmaceutical manufacturing processes are currently based on batch feed systems, e.g. using 

stirred tank vessels for dissolution of solid particles 9, 10. Depending on the physical properties of 

the solids, such as non-wetting (hydrophobic), clumping or floating, dissolution of solids in batch 
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vessels is often a labour intensive and time consuming operation, with common problems 

involving mass transfer limitation for solids dissolution, non-uniformity of slurry composition on 

discharge, and nozzles plugged by solids. For suspension of sinking solids, adequate mixing for 

off-bottom suspension of particles is essential, this however leads to overmixing overall, 

potentially causing foaming in solid-liquid suspensions, reducing dissolution characteristics 11. 

 

For suspension of floating solids, entrainment is often achieved using a mixer designed to 

provide downward pulling drag force to offset the upward buoyancy force, leading to incomplete 

solids wetting, shearing and breaking up of agglomerates 12, 13. If solids are sticky, agglomeration 

and accumulation on the impellers, baffles and supports are the norm, leading to batch to batch 

variation on product quality.  

 

The use of static mixers has addressed various mixing issues 14, 15, including solids blending in 

a fluid phase, the dispersion of additives in a suspension, and solid dispersion by breaking 

agglomerates in a fluid phase and in pulp and paper processes 16.  There are however still problems 

in maintaining slurry homogeneity in flow, resulting blockages in valves and nozzles during 

downstream processing when solids are present. A continuous solid dosing system incorporating 

complete dissolution would overcome the above issues; this is the focus of our work where a twin 

screw extruder is investigated as a novel solid dosing and dissolution system. Twin screw extruders 

have extensively been studied for Hot Melt Extrusion (HME) 17-20 and wet granulation 21-26. The 

objectives of this work are to design and adopt the twin screw extruder as a continuous dissolution 

system; to carry out a systemic investigation of the effects of design and operational parameters 
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on solid dissolution; to gain scientific understanding on dissolution kinetics and to establish a 

comparison on dissolution kinetics between batch and continuous dosing systems.    

 

EXPERIMENTAL SECTION 

MATERIALS 

Two grades (powder and granular) of paracetamol (99% purity) were supplied by Mallinckrodt 

Chemical Limited (UK). The mean particle size and particle size distributions (see Figure 1) were 

analysed by a Mastersizer 3000™ (HYDRO, Malvern) and given in Table 1. Raw materials, 

directly purchased from the manufacturer, were powders not agglomerates. The samples were 

dispersed in hexane and added directly to the Malvern. 

 

Figure 1 Particle size distribution of powder and granular paracetamol 
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Table 1 Particle sizes for two types of paracetamol 

 

Dx (10) (μm) Dx (50) (μm) Dx (90) (μm) 

Powder 12.6 44.9 124 

Granular 263 374 516 

 

Propan-2-ol (IPA) (>99.5% purity) was sourced from Sigma-Aldrich (Gillingham, UK). 

Deionised water was produced using the in-house Millipore Milli-Q system. 

 

METHODS 

Flow Properties 

FT4 Powder Rheometer (Freeman Technology Ltd., Tewkesbury, UK) was used to measure bulk 

properties and dynamic flow for each of the grades of paracetamol including 1) Stability and 

Variable Flow, 2) Permeability, 3) Aeration, 4) Compressibility and 5) Shear Cell 9kPa. All tests 

were conducted in 25mm cells. Data was collected using the FT4 Powder Rheometer software 

version 4.0 (Freeman Technology Ltd., Tewkesbury, UK) and analysed with FT4 Data Analysis 

software version 3.01.0057 (Freeman Technology Ltd., Tewkesbury, UK). 

 

Continuous Twin Screw Extruder 

A 16mm diameter twin screw extruder (TSE) (Eurolab 16, Thermo Fisher Scientific, Stone, UK) 

is shown schematically in Figure 2. The barrel has a length of 400 mm with a length to diameter 

ratio of 25:1. Liquids are dispensed into the barrel using a peristaltic pump (Watson Marlow, 
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Falmouth, UK) and solids added via a loss in weight (LIW) gravimetric feeder. Two types of 

feeders were used in this work including a Brabender MT-S LIW Feeder and a Brabender FW-18 

Flexwall Classic LIW Feeder (see Figure 3). The former is a rigid frame laboratory scale feeder 

with twin concave screws suitable for low feed rates (< 10 g min-1) of high bulk density materials 

(e.g. granular paracetamol), while the latter is a universal flexible wall feeder with a single spiral 

screw suitable for materials with poor flowability and low bulk density (e.g. powder paracetamol). 

 

 

 

 

Figure 2 Schematic of continuous twin screw extruder 

 

The extruder is connected to a central control unit where temperature and screw speed can be 

varied. The temperatures of different sections along the barrel are controlled by electrical heating 

bands and monitored by thermocouples. A bespoke discharge coupling, and tubing was connected 

to the exit of the twin screw to provide downward output of material. This prevented build-up of 

material at the extruder exit. The UV probe was mounted on a retort stand and inserted into the 

tubing. Absorbance data is collected continuously using a UV-ATR probe inserted at the flow exit, 

interfaced with a Carl Zeiss MC600 Spectrometer and a PC for real-time display, logging and data 

analysis.  
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The residence time of liquid within the barrel was measured to aid the determination of 

dissolution kinetics. A dye was injected at liquid entry ports and minimum residence times of the 

dye were recorded. When liquid enters the barrel at port 6, the residence time is merely 3 seconds, 

which is the same as the UV probe capture time, hence the UV probe is insufficient to allow direct 

measurement for this case, a digital stopwatch was used instead. The variations obtained were + 

0.2 seconds for five measurements. 

 

Figure 3 Set up of continuous twin screw extruder with LIW gravimetric feeders 

In dissolution work, solids are dosed at Port 1 of the barrel as shown in Figure 4; liquid flows 
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way, the decoupling of the dry solids from the wet liquid is achieved, preventing solids from 

sticking around the feeder. Liquid coming at Port 2 has the longest residence time of 13 seconds 

within the barrel whereas liquid at Port 6 the shortest residence time of 3 seconds.  

 

 

 

 

 

 

Figure 4 Schematic of barrel showing input port positions 

In order to obtain a concentration-time profile, calibration curves of absorbance versus 

concentration were generated from known amounts of paracetamol in the Water/IPA (80:20) 

solvent system, with a maximum absorbance peak at 248nm. A complete set of sequential runs 

were then undertaken at each port, e.g. Run 1 at Port 6, Run 2 at Port 5, Run 3 at Port 4, and so on, 

due to the short residence time. The absorbance measurements were recorded using the in-line 

UV-ATR probe positioned at the TSE exit. Compiling the output concentrations at each port, a 

dissolution profile was finally assembled.    
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In order to feed solids consistently and accurately in continuous manufacturing processes even at 

small flow rates (< 5 g min-1), the choice of feeder is of utmost importance, as feeder’s performance 

is strongly dependent upon flow properties of materials 27, for instance, the use of LIW feeders 

improved the ability to control feed rates for powders with high cohesion and electrostatics 28; the 

use of flexible frame LIW feeders with a single spiral screw was good for materials with low bulk 

density and poor flow ability 26. For materials with higher values of bulk density (0.5 g ml-1), a 

rigid frame LIW feeder with concave twin screws worked well.  

 

Prior to the decision of feeder and screw used in this study, the flow properties of powder and 

granular paracetamol were determined using the FT4 Powder Rheometer as listed in Table 2.  

Table 2 Particle properties of paracetamol 

 
Mean 

Particle 

Size 

(μm) 

Bulk 

Density 

(g ml-1) 

Permeability 

(cm2) 

Basic 

Flowability 

Energy (mJ) 

Compressibility 

(% @ 15kPa) 

Cohesion 

(kPa) 

Granular 374 0.728 6.6x10-5 630.2 29.1 0.49 

Powder 45 0.357 4.1x10-6 150.3 51.7 1.68 

 

It is clear that powder has lower bulk density and poorer flow properties (indicated by the 

numbers of the Basic Flowability Energy) than granular; while granular has a lower % 
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compressibility suggesting that this is a non-cohesive material which is less likely to compact on 

the feeder. The stability and variable flow tests indicated that two grades of the paracetamol did 

not show any signs of de-agglomeration or segregation and were stable during flow, although the 

powder was more sensitive to changes in flow rate, mainly as a result of high air content in the 

cohesive material. The measurements were made on the different feeders and in combination with 

the FT4, an agreement with previous work 26-28 is seen. 

 

Dosing trials at a solid feed rate of 3.33 g min-1 confirmed the above selections as the other 

combinations caused significant problems, e.g. the single spiral screw was unable to convey 

granular paracetamol due to an increase in the frictional resistance to flow because of entrainment, 

alarming feeder and shutting down the operation. Likewise, the powder presented challenges in 

the rigid frame feeder due to the increase in torque that has compacted powder within and between 

the screws, as well as the barrel housing. This also led to the feeder shutting down.  

 

Dissolution tests 

The solubility for paracetamol in water/IPA (80:20) at 40˚C is 11g paracetamol in 100g of solvent 

29, i.e. at a solid: liquid ratio of 1:9. The dissolution tests were carried out at a solid: liquid ratio of 

1:11 to ensure complete dissolution. Paracetamol powder was continuously dosed into the TSE 

using the single screw flexible wall LIW feeder at a feed rate of 3.33 g min-1 and the solvent 

(Water/IPA 80:20) at a flow rate of 37 g min-1, giving a target output concentration of 9.0 g per 

100 g solvent. Figure 5 shows that complete dissolution was obtained within the residence time of 
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the barrel (13 seconds) where the concentration of paracetamol at the exit was consistently 9.0 g 

+ 0.1 g per 100 g solvent (see Figure 5).  

 

The same tests were carried out for granular paracetamol using a twin screw rigid wall LIW 

feeder at the same feed rates, complete dissolution was not achieved within the residence time of 

the barrel (see Figure 5) with some undissolved paracetamol being observed in the exit. The 

concentration of paracetamol in the exit remained at 7.7 + 0.3 g per 100 g solvent for 3000 seconds. 

160 seconds run time for granular paracetamol is plotted for the purpose of comparison with that 

for powder paracetamol. 

 

 

Figure 5 Concentration-time profile post TSE for dissolution of paracetamol (Temperature = 

40˚C, solid feed rate = 3.33 g min-1, liquid flow rate = 37 g min-1) 
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Dissolution tests were carried out at a solid feed rate of 2.5 g min-1 and a liquid flow rate of 29 

g min-1, giving a target output concentration of 8.6 g per 100 g solvent. Dissolution profiles were 

compiled from the concentrations at exit of the TSE for liquid input at each port as shown in Figure 

6. Note that each concentration measurement was repeated 3 times and the data in Figure 5 are the 

averaged value from three repeats. Error bars are not shown on the graph as they are too small to 

see clearly. The variation obtained for the runs at each port are given for granular paracetamol - 

standard error 0.2, 0.3, 0.2, 0.2, and 0.1. 

 

We see that both grades gradually dissolve along the barrel of the TSE with faster and fuller 

for powder than for granular grade, which is consistent with what has been shown in Figure 5 as 

well as previous work 30 in a stirred tank vessel.  

 

Figure 6 Dissolution profile for paracetamol dissolution (Temperature = 40˚C, solid feed rate 

= 2.5 g min-1, liquid flow rate = 29 g min-1) 
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Dissolution Kinetics 

Fitting the first order kinetics, Figure 7 plots of ln (C2/C1) vs time where C2 and C1 are the 

concentrations of paracetamol (g 100g-1) at the starting and dissolution times. The straight line fit 

confirms the first order kinetics and the slope of which gives the rate constant of dissolution 𝑘 = 

0.0162 s-1 and 0.0211 s-1 for granular and powder respectively. 

 

 

Figure 7 Dissolution kinetic plots of ln (C2/C1) vs time for granular and powder paracetamol 
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solid and 29 g min-1 liquid) is 8.6 g (paracetamol)/100 g (solvent). This was achieved for powder 

grade but not for granular where 6.9 g (paracetamol)/100 g (solvent) was dissolved. Several 

operational parameters in the TSE can however be manipulated to afford full dissolution, including 

liquid flow rate, solid feed rate, screw speed, screw configuration and barrel temperature. These 

parameters are investigated in turn. 

 

Effect of Liquid Flow Rate 

At a fixed solid feed rate of 2.5 g min-1 and a fixed solution temperature of 40˚C, Figure 8 shows 

the dissolution concentrations for various liquid flow rates from 15 to 35 g min-1. Increasing liquid 

flow rates to achieve sink conditions results in a higher driving force for dissolution but reduces 

the residence time for mixing within the barrel as the degree of screw fill is higher. Increasing the 

liquid feed rate decreases the concentration of the output solution and does not achieved full 

dissolution of the solute. Solvent flow affects the dissolution process by physical abrasion of the 

solid, thereby reducing the diffusion layer thickness around each particle 31. The decrease of liquid 

flow rate increases the residence time within the barrel from 11 to 15 seconds allowing more time 

for dissolution. Table 3 shows the correlations between the solid/liquid feed rates and 

concentrations. 
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Figure 8 Concentration-time profile of granular paracetamol in water/IPA (80:20) 

(Temp=40°C, solid feed rate = 2.5 g min-1). 
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Effect of Solid Feed Rates 

At a fixed liquid flow rate of 30 g min-1 (at which full dissolution was not achievable) and at a 

fixed solution temperature of 40 ˚C, Figure 9 shows the effect of varying solid feed rates on the 

dissolution concentration. Increasing the solid feed rate increases the concentration of the output 

solution but does not achieve full dissolution of the solute. Decreasing the solid feed rate from 

3.33 g min-1 to 1.05 g min-1 decreases the saturation level of the solution and the degree of screw 

fill. The TSE is a starve fed system hence when the throughput is decreased at constant rpm more 

mixing occurs as the materials being processed have a longer residence time in the mixing 

elements. Full dissolution was achieved at 1.67 g min-1. Table 4 shows the correlations between 

the solid/liquid feed rates and concentrations. 

 

Drug development studies are often carried out with limited amount of materials, the lowest 

feed rate of solids is thus of significant interest for this type of work. Our tests show that the lowest 

feed rate of solids for the TSE producing consistent concentrations measurements at the exit was 

1.67 g min-1. Observations in this study indicate more variability in the exit concentration with 

decreasing feed rate. 
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Figure 9 Concentration-time profile of granular paracetamol in water/IPA (80:20) 

(Temp=40°C, liquid flow rate = 30 g min-1) 

 

Table 4 Correlations between concentrations and solid feed rate at fixed liquid flow rates 
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The screw in the TSE conveys the solids forward and the speed of which can affect dissolution 

rate. The investigations were carried out for the screw speed from 100 to 500rpm (50 rpm resulted 

in accumulation of solids at the input port) at a fixed liquid flow rate of 30 g min-1, a fixed solid 

feed rate of 2.5 g min-1 and a solution temperature of 40˚C. The target concentration for full 

dissolution at the set feed rates is 8.3 g (paracetamol)/100 g (solvent). While shear mixing and 

power consumption intensify with the increase of the screw speed, allowing solute molecules to 

encounter fresh solvent molecules faster, dissolution rate does not change significantly and 

complete dissolution of granular paracetamol was not achieved by increasing the screw speed 

alone. This is due to the fact that the residence time of the solute within the barrel is reduced as 

the screw speed is increased (see Table 5). 

Table 5 Effect of screw speed on residence time 

Screw Speed (rpm) Mean Concentration of Paracetamol in 

Solution (g 100 g-1) 

Residence 

Time (s) 

100 7.9 13.2 

200 7.1 8.8 

300 7.5 6.9 

400 7.8 6.7 

500 8.1 6.0 

 

Effect of screw configuration 

The twin screws in the TSE are made up of individual elements of either concave conveying or bi-

lobe mixing (see Figure 10A), delivering different shear energy to the materials. The effect of the 

screw configuration on dissolution was investigated by using one, two and three mixing elements 
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at the discharge (left) end of the screws (Figure 10B), i.e. at Ports 5 and 6 (Figure 4). The 

dissolution profile is shown in Figure 11. Adding mixing elements to the screw configuration 

increases dissolution, more for Ports 6-5 than the earlier ones, due to the increase in shear mixing. 

The impact on residence time of solute within the barrel was < 2 seconds. Complete dissolution of 

the granular paracetamol was not attained for any mixing elements, however more consistent 

concentration of solution is obtained with more mixing elements. 
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Figure 10 (A) - Conveying and Mixing Elements, (B) twin screws within the barrel  

 

 

Figure 11 Effect of adding mixing elements on dissolution profiles (Temperature = 40˚C, solid 

feed rate = 2.5 g min-1, liquid flow rate = 30 g min-1, screw speed = 100 rpm) 
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Figure 12 Effect of barrel temperature on dissolution of paracetamol (solid feed rate = 2.5 g 

min-1, liquid flow rate = 30 g min-1, screw speed = 100 rpm), Solubility curve overlaid 

 

In summary, the flow rates of either liquid or solid together with the barrel temperature can lead 

to complete dissolution of granular paracetamol. 
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and higher thermal energy generated by the rotation of the screws 32. This also delivers good 

uniformity of the solute in the solution.  

 

 

Figure 13 Dissolution profile of granular paracetamol in water/IPA (80:20) at 40˚C according 

to two methods 
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The dissolution rate constants are given in Table 6 for both devices, however power density 

should be the basis for such a comparison. The power density of stirred tanks is well reported 33, 34 

as: 

 

𝑃

𝑉
=

𝑃𝑂𝜌𝑁𝑠
3𝐷𝑆

5

𝑉𝐿
   (𝑊𝑚−3)                                                                                                    (1) 

 

Where P/V is the power density (W m-3), ρ the fluid density (kg m-3 at 40 °C), Ns the speed of the 

stirrer (rps), DS the diameter of the stirrer (m), VL the volume of liquid in the STC (m3) and PO the 

dimensionless power number of the agitator, which was estimated as 2.3 based on data presented 

by Nienow and Miles 35 for the type of impellor used in our work. 

  

Previous estimations of power density in a twin screw extruder36, 37 were based on a non-

isothermal melt and a non-Newtonian fluid, covering various conditions including melt 

temperatures, feed rates and scale of equipment. However, the definition of power density from 

previous work differs from ours in that we estimate the power dissipated into the liquid or power 

experienced by the liquid, not the power input by the motor as in previous power consumption 

calculations. By treating the twin screw extruder as a stirred tank working horizontally, we could 

estimate the power dissipation as follows. The diameter of the stirrer in eq. (1) becomes the 

diameter of the screw, while the rotational speed remains the same. There is no similar power 

number for the twin screw, but the helical screw impellor is the closest. In terms of the liquid 
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volume, only half of the liquid in the TSE is experiencing the effect of shearing imposed by the 

twin screws at any given time, as the screw pitch is only 45% filled38. 

 

Applying these values to eq. (1), the power density for the stirred tank and the TSE are 3196 

and 5968 W m-3 respectively. It is observed that faster dissolution rate is achieved in the TSE 

however the power density alone is an insufficient descriptor for comparison with the stirred tank. 

Other factors influencing the dissolution rate include the short mass transfer distances and the 

efficient shear mixing in the TSE.  

 

Start up and shut down losses encountered in this work were low. It took approximately 90 

seconds to reach steady state on starting the equipment from empty which equates to losses of 

approximately 3 g solid and 50 ml solvent. On shutdown the material remaining in the barrel 

equates to losses of approximately 1g of solid and 8 ml of solvent. 

 

CONCLUSIONS 

In this work, we have demonstrated that the twin screw extruder enables the decoupling of liquid 

from the solid feed, thus eliminating any potential fouled solid feeding even at low solid feed, e.g. 

1.67 g min-1. It also allows the controlled and synchronised input flows, together with intense 

mixing, to deliver either a dissolved solution or suspension of controlled composition ready for 

the next unit operation in the process train. These are the novelties of this work, they fill the gap 

for continuous reaction and crystallisation in the pharmaceutical industry. This study also 
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highlights the flexibility of the TSE to cope with different raw material feed stocks; achieving full 

dissolution of powder paracetamol within the residence time of the TSE and achieving full 

dissolution of granular paracetamol by altering key variables such as solid or liquid feed rates and 

barrel temperature. 

 

We have, for the first time, proposed an alternative method of estimating the power density for 

the TSE when used as a continuous dissolution feed stream. This enables a fair comparison of the 

dissolution rates between two devices, i.e. TSE and stirred tank. The faster dissolution rate in the 

TSE is associated with higher power dissipation generated by the aggressive shear mixing and 

thermal energy within the barrel. The dissolution rate constant per power density in the TSE is 

slightly more favourable than that in the stirred tank. In addition, the variability in the output 

concentration in the former (1%) is much less than that in the latter (up to 10%)39 . We are carrying 

out further tests using a range of diverse materials and will report our results in a separate 

communication.  
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