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Abstract

This paper provides a new general method for establishing a finite-time singu-
larity formation for moving interface problems involving the incompressible Euler
equations in the plane. This methodology is applied to two different problems.
The first problem considered is the two-phase vortex sheet problem with surface
tension, for which, under suitable assumptions of smallness of the initial height of
the heaviest phase and velocity fields, is proved the finite-time singularity of the
natural norm of the problem. This is in striking contrast with the case of finite-time
splash and splat singularity formation for the one-phase Euler equations of [4] and
[8], for which the natural norm (in the one-phase fluid) stays finite all the way until
contact. The second problem considered involves the presence of a heavier rigid
body moving in the inviscid fluid. For a very general set of geometries (essentially
the contact zone being a graph) we first establish that the rigid body will hit the
bottom of the fluid domain in finite time. Compared to the previous paper [20] for
the rigid body case, the present paper allows for small square integrable vortic-
ity and provides a characterization of acceleration at contact. A surface energy is
shown to blow up and acceleration at contact is shown to oppose the motion: it is
either strictly positive and finite if the contact zone is of non zero length, or infinite
otherwise.

1. Introduction

Finite-time singularity formation in moving boundary problems has been an
active field of research for at least the past 10 years. Historically the first cases
studiedwere contact problems for a symmetric rigid bodymoving in afluid (see [11–
15,25] for the viscous fluid case and [16,20] for the inviscid case), which present the
simplification at the level of the analysis of having a constant shape for the inclusion.
More recently the case of one-phase and two-phase Euler interface problems have
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started to be considered. The present paper presents a newmethodology addressing
finite-time singularity formation for any type of problems when the fluid equations
are the incompressible Euler equations and the physical law of the included phase
provides spatial control of the position of the interface.

The first problem considered in this paper is the formation of finite-time sin-
gularity for the two-phase moving interface Euler equations with surface tension.
This problem is known to be locally in time well-posed for a natural norm N (t)
encoding the Sobolev regularity of the velocity field in each phase and the regularity
of the moving interface (see [2,3] for the irrotational case, and [5,22,23] for the
case with vorticity).

The one-phase water waves problem is known to be locally in time well-posed
in Sobolev spaces, as the pressure condition holding in this situation avoids any
Rayleigh–Taylor instability ([1,18,27,28] for the case without vorticity and [6,7,
19,21,29] for the casewith vorticity). The first type of singularity formation in finite
time for this problem in Sobolev spaces was established by Castro et al. in [4] by
introducing the notion of splash and splat singularity, which is the self-intersection
of the moving free boundary while the curve remains smooth (but is no longer
locally on one side of its boundary at contact). This result was generalised in 3-D
and with vorticity by Coutand and Shkoller [8] by a very different approach.
Our approach can be easily applied to many one-phase hyperbolic free boundary
problems. It is to be noted that this type of splash singularity is purely restricted to
a loss of injectivity, since the natural norm of the problem stays bounded until the
time of contact.

A natural question that then arose was about what happens when we extend this
type of self-contact along a smooth curve in the two-phase context (with surface
tension to make the problem locally well-posed in Sobolev spaces). With different
methods, Fefferman, Ionescu and Lie [10] and Coutand and Shkoller [9],
established that the two-phase vortex sheet problem with surface tension does not
have finite-time formation of a splash or splat singularity so long as the natural
norm of the problem for the velocity field in one phase stays bounded. The results
of [9] and [10] however do not exclude such a loss of injectivity; if it was to occur,
it would involve blow-up of the natural norm of the problem in both phases.

The present paper introduces a new methodology, based upon studying the
motion of the center of gravity of one of the twophases,which provides a differential
inequality for a surface energy introduced in the present paper. We here establish
that under some symmetry assumptions at time zero, and with gravity effects, there
will either be a loss of injectivity or a natural norm of the problem for local in
time existence will blow-up in finite time. In both cases of this alternative, we
show a natural norm of the problem blows up. This result is in striking contrast
with splash and splat singularity formation for the one-phase water-waves problem
introduced in [4], and treated with different methods in a more general context in
[8], where the natural norm N (t) stays finite. This was essential in the analysis of
these papers in order to establish the finite-time contact, as this ensures that the
magnitude of the relative velocity between two parts of an almost self-intersecting
curve coming towards each other will be in magnitude greater than some strictly
positive quantity. Such an approach would be impossible here, as in the two-phase
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problem, any contact would involve the formation of a cusp, which would make
impossible high order elliptic estimates.

We next turn our attention to the case of the rigid body. This is a simpler problem
given that the shape of the interface stays constant for all time, which removes
some considerable level of difficulty from the previous problem. The interest of
this problem resides in allowing a more precise description of the behaviour at the
time of singularity than for the case with deformable interface.

Recently, Glass and Sueur [17] proved that the motion of a rigid body in an
inviscid fluid in a domain in the plane is globally in time well posed so long as no
contact occurs between the moving rigid body and the boundary. The qualitative
question of whether contact singularity formation in finite-time is possible in the
natural case where u · n = 0 on ∂Ω arises then naturally.

The first results for finite-time contact for the rigid body case with zero vorticity
in the inviscid fluid were obtained by Houot and Munnier [16] for the case of
the disk in the half plane, and generalized byMunnier and Ramdani [20], where
they establish for the flat bottom case with the symmetric rigid body being a graph
of the type x2 = C |x1|1+α (α > 0), that finite-time contact occurs, with a rigid
body velocity which is shown to be either zero or non zero depending on α. Other
cases involving discussions on concavity of domains are also treated in [20]. It is
to be noted that their methods, purely elliptic in nature in some rescaled infinite
strip, require the zero vorticity assumption of their paper, as the rescaling of any
non zero vorticity in this infinite strip would be problematic. By contrast, we never
do any rescaling on some infinite strip in this paper, and allow for (small square
integrable) vorticity.

For this problem of the rigid inclusion (where the shape of the inclusion does not
change), our newmethodologybasedon adifferential inequality for a surface energy
that we identify (which is a completely different approach from the methodology of
[20], where no differential inequality appeared) allows us to consider small square
integrable vorticity, and allows us to obtain a characterization of acceleration at the
time of contact, which remarkably depends only on the size of the contact zone.
We first establish here the question of finite-time contact at Tmax > 0 when gravity
effects are taken into account (in particular the rigid body is assumed of higher
density than the fluid phase). We then establish a set of blow-up properties satisfied
by the fluid velocity and pressure fields and acceleration as t → Tmax, which are
new for this kind of problems:

• First, although the solid velocity stays bounded for all time of existence, the
present paper establishes the fluid has a radically different behaviour, as the
L2(∂Ω) norm of the fluid velocity approaches ∞ near contact. This happens
in a neighborhood of the contact zone, whereas away from the contact zone,
the fluid velocity stays bounded.

• Second, this work also establishes that the acceleration of the rigid body be-
comes infinite in the upward direction at the time of contact, except for the case
where the contact zone contains a curve of non zero length, in which case the
acceleration remains strictly positive and bounded close to the time of contact.
This behaviour is strikingly different from the behaviour of a material point
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falling in void (the basic question of elementary Newtonian mechanics), for
which the motion has constant negative acceleration −g.

The plan of this paper is as follows: in Sections 2 and 3, we remind the vortex
sheet problem with surface tension, precise notations, and our type of initial data.
In the essential Section 4, we derive an equation linked to the motion of the cen-
ter of mass of the included phase, using in particular the formulation (20) for the
incompressible Euler equations (which allows us to replace the pressure on ∂Ω by
an equivalent expression in terms of velocity and acceleration in the fluid, by inte-
gration of the tangential component of the Euler equations). This equation, where
appears a signed surface energy (depending on the sign of the vertical component of
the normal vector on the boundary), does not depend on the choice of constitutive
relation in the included phase. In Section 5, we deduce from the equation obtained
from the previous section a differential inequality for a surface energy. This differ-
ential inequality structure appears by some elliptic estimates away from the heavier
phase (corresponding to parts of ∂Ω where the sign of the vertical component of the
normal is opposite to where contact may occur). The elliptic estimates performed
(based on conservation of rotational and on a priori control of the L2 norm of veloc-
ity) allow to establish the velocity field is smooth (at least for the energy appearing
in the differential inequality) away from the interface. The differential inequality
obtained appears in a way quite natural to the problem of a moving Euler phase,
and is also quite different from the pioneering works of Sideris [24] and Xin [26]
for compressible Euler and Navier–Stokes equations. We then use this differential
inequality to establish the first theorem on finite-time singularity formation for the
Euler vortex sheet problem with surface tension and gravity effects:

Theorem 1. Let Ω ⊂ R
2 be a bounded domain of class H

9
2 , which is symmetric

with respect to x1 = 0 and satisfies the assumptions of Section 3 (in particular the
bottom of ∂Ω is a general graph, see Fig. 1 in Section 3), and let Ω+ ⊂ Ω be a
domain of same regularity whose center of gravity is at altitude h at time zero, and
which is symmetric with respect to x1 = 0. Let Ω− = Ω ∩ Ω+c

. With u±
0 being

our initial velocity field in each phase and ω−
0 = curl u−

0 , let us assume that

‖u±
0 ‖L2(Ω±) + ‖ω−

0 ‖L2(Ω−) + h + |∂Ω+|
is small enough (satisfying (22) and (80) stated later), and that ρ+ > ρ−. We also
assume our initial velocity field satisfying u±

0 ∈ H3(Ω±) with (u+
0 − u−

0 ) · n = 0
on ∂Ω+ and u−

0 ·n = 0 on ∂Ω (where n is the exterior unit normal to ∂Ω−). Then,
for some Tmax ∈ (0,∞), any solution of (4) satisfies that:

1) either limt→T−
max

N (t) = ∞, where

N (t) = ‖u−‖H3(Ω−(t)) + ‖u+‖H3(Ω+(t)) + ‖η−‖H4(∂Ω+),

where η− denote the Lagrangian flow map associated to u−;
2) or there is either a self-intersection of the interface ∂Ω+(Tmax) with itself, or

contact of ∂Ω+(Tmax) with ∂Ω at Tmax;
3) or

∫ Tmax
0

∫
∂Ω

|u−|2 dl dt = ∞.
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Remark 1. Wecan substitute in this Theoremany norm N (t) forwhich the problem
has a local in time existence. This particular norm was chosen due to our result of
local in time existence in [5].

Remark 2. If we were to assume the density of the material initially inside Ω+ to
be strictly smaller than the density of the material initially in Ω−, similar theorems
would hold, assuming the top of ∂Ω to be under the form of a graph.

The cases 1) and 3) obviously involve a blow-up of N . We now show in Sec-
tion 6.1 that the second case (corresponding to a loss of injectivity) leads to the
blow-up of the following norm:

Theorem 2. If the case 2) of Theorem 1 is satisfied then

lim
t→T−

max

[‖∇τ τ‖L∞(∂Ω+(t)) +
∑

±

∫ t

0
‖∇u±‖L∞(Ω±(t))] = ∞, (1)

where τ denotes the unit tangent on ∂Ω+(t).

Remark 3. If we assume our initial data to have a smoother curl in both phases:

curlu±
0 ∈ H

7
2 (Ω±), local in time existence can be carried in a similar way as in

[5], this time in the norm (of the same type as our earlier work [7])

Ñ (t) = N (t) + ‖η+‖
H

9
2 (Ω+)

+ ‖η−‖
H

9
2 (Ω−)

,

for which Theorem 1 applies similarly. We prove in Section 6.2 that if we have the
blow-up (1) of Theorem 2, then

lim sup
t→T−

max

Ñ (t) = ∞. (2)

We therefore have proved that with this higher regularity for the initial curl of
velocity in each phase, the natural norm Ñ (t) blows up in finite time for all situations
of Theorem 1.

We next consider the case of the rigid body in an inviscid fluid, governed by
(92). For this problem we show a small curl guarantees a monotone fall simply by
conservation of energy, whereas in the vortex sheet problem with surface tension,
there is no guarantee that the fall even occurs (locally in time when the solution is
smooth, it can be guaranteed, but not as the singularity forms). In Section 7, the
problem is reminded, and in Section 8 is precised our initial data (which is more
general than for the vortex sheet problem). In particular, since for this problem the
contact area is precisely known in advance (vertical fall of a rigid body), we just
require this time each part of ∂Ω where contact occurs to be under the form of
a graph (in particular at the same horizontal coordinate, there could be different
connected components of the contact zone). In Section 9, are provided elliptic
estimates showing the velocity remains smooth away from contact (similarly as the
one proved in Section 5 for the vortex sheet problem away from contact) and the
velocity is shown to be strictly non zero before contact. In Section 10, finite-time
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contact is established (this is a generalization of the results of [20] with a very
different approach), again by using our fundamental relation (34) established in
Lemma 1.

Theorem 3. Let Ω and Ωs be C2 bounded domains satisfying the assumptions of
Section 8 (essentially each connected component of ∂Ω where contact potentially
occurs satisfies n2 < 0 ). Let us assume that vs(0) = (0, vs2), with vs2 < 0, and
that ρ f < ρs . Let us furthermore assume that the odd (with respect to x1) vorticity
satisfies

‖ω0‖2L2(Ω f )
< min

(
ms

ρ f DΩ

|vs2(0)|2,
(ms − ρ f |Ωs |)g
2ρ f (CDΩ + C)

)

, (3)

with CΩ being the standard Poincaré constant in H1
0 (Ω), given by (107), DΩ being

given by (112) and C being given by (100).
Then there exists Tmax ∈ (0,∞) such that the rigid body will touch ∂Ω at time

Tmax with a finite velocity vs2(Tmax) � 0.

Unlike in the case of the vortex sheet problem, there is no restriction on how
far from the boundary the rigid body has to be initially. This is due to our use of
the velocity of the rigid body being of constant sign in our set up of a differential
inequality (which is done differently than in the vortex sheet problem) from our
fundamental relation (34).

The next sections are forω = 0, and establish a characterization of the accelera-
tion of the rigid body at contact. In Section 11, is established an essential comparison
of various norms of the velocity in the fluid by elliptic techniques proper to this
problem. In Section 12, we provide the essential and simpler (than (34)) formula
for acceleration (128) in Lemma 5. This formula shows straightforwardly that if
the L2(∂Ω) norm of u f blows up at the time of contact, and the velocity of the
rigid body at the time of contact is nonzero, then the acceleration becomes infinite
upwards (implying in particular a blow-up of the pressure, due to the definition
(92e) of acceleration of the rigid body). In Section 13 is established the blow-up of
the L2(∂Ω) norm (which is entirely new for this particular problem), which is an
essential step in characterizing acceleration at contact. In Section 14 is proved the
positive or infinite character of acceleration at contact depending on the size of the
contact zone. Note that for the fall of a rigid body in the Navier–Stokes context, a
different type of blow-up property is established in [15], with very different meth-
ods. The characterization of acceleration at contact presented hereafter is entirely
new for this type of contact problem.

Theorem 4. Let us assume furthermore that ω0 = 0. Then, with Tmax obtained in
Theorem 3, we have the following properties for the solution of (92):

1) lim
T−
max

‖u f ‖L2(∂Ω) = ∞;

2)

lim
T−
max

∣
∣
∣
∣

∫

∂Ωs (t)
pn dl

∣
∣
∣
∣ = lim

T−
max

dvs2
dt

= ∞,
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except for the casewhere the contact zone between ∂Ω and ∂Ωs(Tmax) contains
a curve of nonzero length, in which case we have

0 < lim inf
T−
max

dvs2
dt

� lim sup
T−
max

dvs2
dt

< ∞.

Remark 4. Point 2) shows a drastic difference between the problem of the rigid
body in an inviscid fluid and the basic problem of Newtonian mechanics in void
(without fluid), since in the casewith void, the acceleration remains constant (= −g)
for all time even at contact. It shows that the rigid body does feel the imminence of
contact by the presence of the fluid and tries to avoid it by an upward acceleration
(finite or infinite according to the size of the contact zone) opposing the fall. We
also note that point 2) establishes indirectly that the L1(∂Ωs(t)) norm of pressure
at contact becomes infinite for the case where the contact zone is of zero length,
although the present paper only keeps the fluid velocity and acceleration as its
variables (by integrating the tangential component of the Euler equations along the
boundary).

Remark 5. Any physical model for Ω+(t) such that ∂Ω+(t) can be shown to stay
away from the part of ∂Ω where n2 � 0 (typically the lateral sides and the top
of ∂Ω) would be suitable for this theory (for Theorem 1). Standard models of
nonlinear elastodynamics (such as the quasilinear Saint-Venant Kirchhoff model)
for the included phase Ω+ would be suitable.

2. Preliminaries on the Vortex Sheet Problem with Surface Tension

2.1. Formulation of the Vortex Sheet Problem with Surface Tension

The vortex sheet problem with surface tension is a moving interface problem
locally in time well-posed from [2,3] for the irrotational case, and [5,22,23] for the
case with vorticity.

Here, Ω ⊂ R
2 is a smooth bounded domain of class H

9
2 , and Ω+ ⊂ Ω is also

a smooth bounded domain of class H
9
2 , and such that Ω+ ⊂ Ω . We consider the

incompressible Euler equations for the motion of two fluids of densities ρ− and ρ+
that are at time zero in Ω ∩ Ω+c = Ω− and Ω+, with surface tension and gravity
effects:

ρ±(u±
t + u± · ∇u±) + ∇ p± = −ρ±ge2, in Ω±(t) (4a)

div u± = 0, in Ω±(t), (4b)

(p− − p+) n = −σ∇τ (τ ), on ∂Ω+(t), (4c)

u− · n = u+ · n, on ∂Ω+(t), (4d)

u− · n = 0, on ∂Ω, (4e)

Ω±(0) = Ω±, (4f)

u±(x, 0) = u±
0 , in Ω±, (4g)
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where the material interface ∂Ω+(t) moves with speed u− · n = u+ · n, where n is
the outward unit normal to Ω−(t), τ is the unit tangent, and e2 is the unit vertical
vector pointing upward.Also the surface tension coefficientσ is classically assumed
strictly positive.

If η± denote the Lagrangian flow map associated to u±, defined by

η±
t (x, t) = u±(η±(x, t), t), ∀x ∈ Ω±, t � 0,

η±(x, 0) = x,

we showed in [5] that the problem has a local in time solution defined in the norm:

N (t) = ‖η−‖H4(∂Ω+) + ‖u−‖H3(Ω−(t)) + ‖u+‖H3(Ω+(t)). (5)

We also define the Lagrangian velocity v±(x, t) = u±(η±(x, t), t).
We will show this problem has a finite-time singularity formation provided

some assumptions are made on the initial domain and data and that

ρ+ > ρ−.

To this end, we will establish that if N (t) stays finite for all time, then either a finite
in time contact occurs (either self intersection of ∂Ω+(t) or between ∂Ω+(t) and
∂Ω) or a surface energy blows up. In case of contact, we will show that this leads
to the blow-up (1).

2.2. Global Vector Field in Ω Extending the Normal

Wewill need later on a smooth vector field extending the normal to ∂Ω intoΩ .
We denote by n the outward unit normal to Ω , and by ñ the smooth solution of

the elliptic problem:


ñ = 0, in Ω, (6a)

ñ = n, on ∂Ω. (6b)

By the maximum and minimum principles we have that for each component of ñ,

|ñi | � 1. (7)

Given the regularity of ∂Ω , we have by elliptic regularity that ñ ∈ H3(Ω) ⊂
C1(Ω). Therefore,

‖∇ñ‖L∞(Ω) � βΩ < ∞. (8)

We then define the vector field τ̃ = (ñ2,−ñ1) ∈ H3(Ω), which extends the
tangent to ∂Ω inside Ω .
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2.3. Notations

Wehaven = (n1, n2)denote the outer unit normal toΩ−(t), and τ = (τ1, τ2) =
(n2,−n1) denote the unit tangent vector field.

The euclidean norm of a vector will be denoted as | · |.
For a smooth domain A ⊂ R

2 we denote by |A| its area and by |∂A| the length
of its boundary.

Due to incompressibility, we have for all time of existence |Ω±(t)| = |Ω±|.
We also use the Einstein convention of summation with respect to repeated

indices or exponents.

For a given vector a ∈ R
2, we denote ∇au = ai

∂u

∂xi
. Of particular interest will

be the case when either a = τ(x), or a = n(x). In that case the divergence of a
vector field u written in the (τ (x), n(x)) basis instead of the (e1, e2) basis reads as

div u = (∇τ(x)u) · τ(x) + (∇n(x)u) · n(x), (9)

while the curl reads as

ω = curl u = (∇τ(x)u) · n(x) − (∇n(x)u) · τ(x). (10)

Another context in which these derivatives will be encountered is integration
along closed curves. For instance, if θ is a smooth 1− periodic parameterization of
a closed curve γ , we have the following properties that will be used extensively:

τ(θ(s)) =
∂θ
∂s∣

∣ ∂θ
∂s

∣
∣
(s), (11)

∂(u ◦ θ)

∂s
= ∂θi

∂s

∂u

∂xi
◦ θ =

∣
∣
∣
∣
∂θ

∂s

∣
∣
∣
∣ (∇τu)(θ(s)), (12)

∫

γ

∇τu dl =
∫ 1

0

1
∣
∣ ∂θ
∂s

∣
∣
∂(u ◦ θ)

∂s

∣
∣
∣
∣
∂θ

∂s

∣
∣
∣
∣ ds

︸ ︷︷ ︸
=dl

= [u ◦ θ ]10 = 0. (13)

2.4. Conservation of Energy

For all time of existence it is classical that the quantity

1

2

∑

±
ρ±

∫

Ω±(t)
|u±(x, t)|2 dx +

∑

±
ρ±g

∫

Ω±
η±
2 dx + σ |∂Ω+(t)|,

is independent of time. Now given that

∫

Ω±
η±
2 dx =

∫

Ω±(t)
x2 dx,

∫

Ω−(t)
x2 +

∫

Ω+(t)
x2 dx =

∫

Ω

x2 dx,



Daniel Coutand

we then infer from this conservation that the total energy,

E(t) =
∑

±

ρ±

2

∫

Ω±(t)
|u±|2 dx + (ρ+ − ρ−)g

∫

Ω+(t)
x2 dx + σ |∂Ω+(t)|

=
∑

±

ρ±

2

∫

Ω±
|u±(x, t)|2 dx + (ρ+ − ρ−)

︸ ︷︷ ︸
�0

g x+
2 (t)

︸ ︷︷ ︸
�0

|Ω+| + σ |∂Ω+(t)|,

(14)

is constant in time for all time of existence of a smooth solution (namely so long
as no eventual collision with the boundary occurs, or that no self-intersection of
∂Ω+(t) occurs, and so long as the norm (5) stays finite) and where we defined

x+(t) = 1

|Ω+|
∫

Ω+(t)
x dx = 1

|Ω+|
∫

Ω+
η+ dx (15)

as the center of gravity of Ω+(t). Tracking the motion of this center of gravity will
prove a powerful tool in establishing our finite in time singularity formation result
(since any pointwise estimate would be hopeless in a two-phase problem as a cusp
forms in Ω−(t) at the time of contact).

We then have for the velocity of the center of mass that

v+(t) = 1

|Ω+|
∫

Ω+
v+ dx = 1

|Ω+|
∫

Ω+(t)
u+ dx, (16)

and for the acceleration that

a+(t) = 1

|Ω+|
∫

Ω+
dv+

dt
dx = 1

|Ω+|
∫

Ω+(t)
u+
t + u+ · ∇u+ dx . (17)

Due to (14) and our definition (16), we have by Cauchy–Schwarz that

|v+(t)|2 � 1

|Ω+|
∫

Ω+(t)
|u+|2 dx � 2E(0)

m+
, (18)

wherem+ = ρ+|Ω+|,which establishes the uniform in time control of this velocity.

2.5. Conservation of Curl in Each Phase

We have in each phase ω± + u± · ∇ω± = 0, which implies, with η± being
the flow map associated to u±, that we have similarly as for a problem on a fixed
domain

ω±(η±)(x, t) = ω±(x, 0) = ω±
0 . (19)

This implies conservation of the L2 norm of the curl of u− in the Ω−(t) phase,
which will be useful for elliptic estimates in Sections 5 and 9.

We will use in a crucial way the following equivalent formulation of the incom-
pressible Euler equations.
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Ω+(t) ∂Ω+(t)

Ω−(t)

Γ1 ⊂ {n2 ≤ −αΩ < 0} ⊂ ∂Ω

∂Ω ∩ Γ c
1

x1 = 0

n

n

(0, 0)

(0, H)

Fig. 1. In our convention, n is always exterior to Ω−(t)

2.6. An Equivalent Formulation of the Problem

First, using the definition of the curl, we see that

u−
1

∂u−
1

∂x1
+ u−

2
∂u−

1

∂x2
= u−

1
∂u−

1

∂x1
+ u−

2
∂u−

2

∂x1
− ω−u−

2 = 1

2

∂|u−|2
∂x1

− ω−u−
2 .

Similarly,

u−
1

∂u−
2

∂x1
+ u−

2
∂u−

2

∂x2
= u−

1
∂u−

1

∂x2
+ u−

2
∂u−

2

∂x2
+ ω−u−

1 = 1

2

∂|u−|2
∂x2

+ ω−u−
1 .

Therefore, the Euler equations in Ω−(t) can be written as

ρ−u−
t + ∇

(
ρ−|u−|2

2
+ p−

)

= −ρ−ge2 − ω−(−u−
2 , u−

1 ). (20)

3. Choice of Initial Data

We denote by Ω a bounded domain of class H
9
2 , which is symmetric with

respect to the vertical axis x1 = 0 and whose boundary ∂Ω is connected. This
domain is of height H > 0 along the vertical axis x1 = 0, with the bottom point
on the vertical axis being (0, 0). We also assume that Ω has a part of its boundary
Γ1, centered at the origin, with −L � x1 � L (L > 0), under the form of a graph
x2 = f (x1) and thus satisfying

n2 � −αΩ < 0, on Γ1. (21)

We then choose Ω+ such that Ω+ ⊂ Ω to be an equally symmetric domain
with respect to the vertical axis x1 = 0, which is of the same regularity class as Ω .

We then define the initial fluid domain Ω− = Ω ∩ (Ω+)c.
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We choose u+(0) ∈ H3(Ω+) and u−(0) ∈ H3(Ω−) divergence free velocity
fields such that their horizontal component is odd whereas their vertical one is even
and satisfying at time 0, (4d) and (4e). At time 0, the center of gravity of Ω+ is
located at x+(0) = (0, h). Given the symmetry of the initial data with respect to the
x1 = 0 axis, we have that for all time of existence u±

1 (−x1, x2, ·) = −u±
1 (x1, x2, ·),

u±
2 (−x1, x2, ·) = u±

2 (x1, x2, ·). This implies for the center of gravity ofΩ+(t) that
x+
1 (t) = 0 = v+

1 (t). This can be seen by setting the fixed-point approach of [5] in
a symmetric setting.

We moreover assume

E(0)

(ρ+ − ρ−)g|Ω+| + E(0)

σ
< min

(
L

4
,
H

8

)

, (22)

and {

(x1, x2); x1 ∈
[

− L

2
,
L

2

]

; f (x1) � x2 � H

2

}

⊂ Ω. (23)

We also assume

Γ c
1 ∩ ∂Ω ⊂ (∂Ω ∩ {|x1| � L}) ∪

(

∂Ω ∩
{

x2 � H

2

})

, (24)

where Γ1 was defined earlier in this Section. The first condition can be satisfied by
taking the dimensions of the container domainΩ large relative toΩ+ and the initial
x+(0), and small square integrable velocities, whereas the second and third ones
are conditions on the shape of ∂Ω (if Ω is for instance of essentially rectangular
shape, with four smoothed corners, all these conditions are satisfied).

The conservation of (14) states that

∑

±

ρ±

2

∫

Ω±(t)
|u±|2 dx + (ρ+ − ρ−)gx+

2 (t)|Ω+| + σ |∂Ω+(t)| = E(0). (25)

First, (25) shows that

x+
2 (t) � E(0)

(ρ+ − ρ−)g|Ω+| <
H

8
, (26)

where we used (22) to obtain the second inequality. This shows that the center of
gravity of Ω+(t) stays away from the top of ∂Ω . Also (25) shows that

∑

±

ρ±

2

∫

Ω±(t)
|u±|2 dx � E(0). (27)

Now, we prove Ω+(t) stays away from the top of ∂Ω and from the lateral sides
of ∂Ω . Using (25) again, we have, since x+

2 (t) � 0, that

|∂Ω+(t)| � E(0)

σ
� min

(
H

8
,
L

4

)

, (28)

by using our assumption (22). Now, let xl(t) be a point of lowest altitude of Ω+(t)
and xh(t) be a point of highest altitude of Ω+(t). Then, since the straight line from
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these two points is shorter than any of the two paths along ∂Ω+(t) between them,
we have

xh2 (t) − xl2(t) � |xh(t) − xl(t)| � |∂Ω+(t)|
2

� H

16
, (29)

where we used (28). Thus,

xh2 (t) � H

16
+ xl2(t) � H

16
+ x+

2 (t),

which, with (26), provides

xh2 (t) � H

16
+ H

8
<

H

4
. (30)

By introducing at most on the left point x L(t) and at most on the right point
x R(t) of Ω+(t), we have, similarly, that

2x R1 (t) = x R1 (t) − x L1 (t) � |∂Ω+(t)|
2

� L

8
,

where we used (28). Thus,

0 �x R1 (t) � L

16
, (31a)

− L

16
�x L1 (t) � 0. (31b)

Propositions (30), (31a) and (31b) then show that for all the time of existence,

Ω+(t) ⊂
{

(x1, x2); x1 ∈
[

− L

16
,
L

16

]

; f (x1) � x2 � H

4

}

⊂ Ω, (32)

with our assumption (23). Therefore, due to our assumption (24), for all the time
of existence,

d(Ω+(t), ∂Ω ∩ Γ c
1 ) � D = min

(
H

4
,
15L

16

)

> 0, (33)

where Γ1 ⊂ ∂Ω was defined earlier in this Section as the bottom part of ∂Ω under
the form of a graph.

4. Evolution of the Center of Gravity of the Moving Fluid Bubble Ω+(t)

The present section is crucial in obtaining an ODE linked to the motion of the
center of mass of the inclusion. This ODE will be shown later to lead to finite-time
blow-up for a differential inequality. These calculations are quite general and only
require Ω−(t) to be governed by the incompressible Euler equations. In particular
they are true for both problems considered in this paper. Our aim is to establish
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Lemma 1. The vertical motion of the center of mass of Ω+(t) satisfies the relation

m+
dv+

2

dt
= ρ−

∫

∂Ω

|u−|2
2

n2 dl − ρ− d

dt

∫

Ω−(t)
u−
2 dx − (m+ − ρ−|Ω+|)g

− d

dt

∫

∂Ω

ρ−x1 u− · τ dl. (34)

Proof. We have the fundamental equation for the center of mass

m+
dv+

dt
(t) = ρ+

∫

Ω+
dv+

dt
(x, t) dx

= ρ+
∫

Ω+(t)
u+
t + u+ · ∇u+ dx

= −
∫

Ω+(t)
∇ p+ + ρ+ge2 dx

=
∫

∂Ω+(t)
p+ n dl(t) − m+ge2, (35)

where we remind n is the outer unit normal toΩ−(t), pointing insideΩ+(t), which
explains the sign in the boundary integral in (35). Using our boundary condition
(4c), this provides

m+
dv+

dt
=

∫

∂Ω+(t)
(p− n + σ∇τ (τ )) dl(t) − m+ge2

=
∫

∂Ω+(t)
p− n dl(t) − m+ge2, (36)

where we used
∫

∂Ω+(t)
∇τ (τ ) dl = 0

for any closed smooth curve such as ∂Ω+(t) (so long as the smooth solution exists).
By integrating by parts in Ω−(t), we have

∫

Ω−(t)
∇ p− dx =

∫

∂Ω+(t)
p− n dl(t) +

∫

∂Ω

p− n dl.

This provides, by substitution in (36)

m+
dv+

dt
= −

∫

∂Ω

p− n dl +
∫

Ω−(t)
∇ p− dx − m+ge2,

which with the Euler equations provides

m+
dv+

dt
= −

∫

∂Ω

p− n dl − ρ−
∫

Ω−(t)
u−
t + u− · ∇u− + ge2 dx − m+ge2,

= −
∫

∂Ω

p− n dl − ρ− d

dt

∫

Ω−(t)
u− dx − (m+ + ρ−|Ω−|)ge2. (37)
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Next, we notice that on ∂Ω , thanks to (20), we have

ρ−u−
t · τ + ∇τ

(

p− + ρ− |u−|2
2

)

= −ρ−ge2 · τ + ω− u− · n︸ ︷︷ ︸
=0 on ∂Ω

= −ρ−ge2 · τ.

(38)
We now denote by θ : [0, 1] → ∂Ω a 1-periodic smooth parameterization of ∂Ω

with θ(0) = (0, H). We integrate (38) along ∂Ω between θ(0) and θ(s) to get

[(

p− + ρ− |u−|2
2

)

(θ(·), t)
]s

0
= −

∫ s

0
(ρ−ge2 ·τ+ρ−u−

t ·τ)(θ(α), t) |θ ′(α)| dα
︸ ︷︷ ︸

=dl

,

which implies, by integrating (in the s variable) along ∂Ω , that

−
∫

∂Ω

p− n dl=ρ−
∫

∂Ω

|u−|2
2

n dl −
(

p− + ρ− |u−|2
2

)

(θ(0), t)
∫

∂Ω

n dl

+
∫ 1

0

∫ s

0
ρ−(ge2+u−

t ) · τ(θ(α), t)|θ ′(α)| dα n(θ(s)) |θ ′(s)| ds.

Since ∂Ω is a closed curve,
∫
∂Ω

n dl = 0, and thus the previous relation becomes

−
∫

∂Ω

p− n dl = ρ−
∫

∂Ω

|u−|2
2

n dl

+
∫ 1

0

∫ s

0
ρ−(ge2+u−

t ) · τ(θ(α), t)|θ ′(α)| dα n(θ(s)) |θ ′(s)| ds.
(39)

We now substitute (39) into (37), leading to

m+
dv+

dt
= −ρ− d

dt

∫

Ω−(t)
u− dx − (m+ + ρ−|Ω−|)ge2 + ρ−

∫

∂Ω

|u−|2
2

n dl

+
∫ 1

0

∫ s

0
(ρ−ge2 · τ +ρ−u−

t · τ)(θ(α), t)|θ ′(α)| dα n(θ(s)) |θ ′(s)| ds.
(40)

We now write in a much simpler way the fourth term on the right-hand side of this
equation. In order to do so, we define f (x) = x2, so that∇ f = e2 and∇τ f = e2 ·τ .
Therefore,

f (θ(s)) = f (θ(0)) +
∫ s

0
e2 · τ(θ(α))
︸ ︷︷ ︸

∇τ f (θ(α))

|θ ′(α)| dα
︸ ︷︷ ︸

dl

. (41)

Next, since
∫

Ω

e2 dx =
∫

Ω

∇ f dx =
∫

∂Ω

f n dl, (42)
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substituting (41) into (42) provides, (using f (θ(0))
∫
∂Ω

n dl = 0), that

∫

Ω

e2 dx =
∫ 1

0

∫ s

0
e2 · τ(θ(α))|θ ′(α)| dα n(θ(s)) |θ ′(s)| ds. (43)

Using (43) in (40) then yields

m+
dv+

dt

= ρ−
∫

∂Ω

|u−|2
2

n dl − ρ− d

dt

∫

Ω−(t)
u− dx − (m+ + ρ−|Ω−| − ρ−|Ω|)ge2

+
∫ 1

0

∫ s

0
ρ−u−

t · τ(θ(α))|θ ′(α)| dα n(θ(s)) |θ ′(s)| ds

= ρ−
∫

∂Ω

|u−|2
2

n dl − ρ− d

dt

∫

Ω−(t)
u− dx − (m+ − ρ−|Ω+|)ge2

+ d

dt

∫ 1

0

∫ s

0
ρ−u− · τ(θ(α))|θ ′(α)| dα n(θ(s)) |θ ′(s)| ds. (44)

Defining

F(t) =
∫ 1

0

∫ s

0
ρ−u− · τ(θ(α))|θ ′(α)| dα n(θ(s)) |θ ′(s)| ds, (45)

we next rewrite its vertical component F2 in a simpler way.
First, since n2 = τ1, we have

F2(t) =
∫ 1

0

∫ s

0
ρ−u− · τ(θ(α))|θ ′(α)| dα τ1(θ(s)) |θ ′(s)| ds,

which by integration by parts provides

F2(t) = −
∫ 1

0
ρ−u− · τ(θ(s))|θ ′(s)|

∫ s

0
τ1(θ(α)) |θ ′(α)| dα ds. (46)

Note here that we used the fact that
∫
∂Ω

τ1 dl = 0.
Moreover, in the same way as we obtained (41), this time for f (x) = x1, so

that ∇ f = e1 and therefore ∇τ f = e1 · τ , we have

f (θ(s)) = f (θ(0)) +
∫ s

0
e1 · τ(θ(α))
︸ ︷︷ ︸

∇τ f (θ(α))

|θ ′(α)| dα
︸ ︷︷ ︸

dl

, (47)

which by substitution in (46) provides

F2(t) = −
∫ 1

0
ρ−u− · τ(θ(s))|θ ′(s)| (θ1(s) − θ1(0)) ds.
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Using θ1(0) = 0, this yields

F2(t) = −
∫ 1

0
ρ−u− · τ(θ(s))|θ ′(s)| θ1(s) ds

= −
∫

∂Ω

ρ−x1 u− · τ dl. (48)

Substituting (48) in the vertical component of (44) proves (34). ��
We have by integrating (34) in time the corollary

− ρ−
∫

∂Ω

x1u
−(·, t) · τ dl

= m+v+
2 (t) + ρ−

∫

Ω−(t)
u−
2 dx − ρ−

2

∫ t

0

∫

∂Ω

|u−|2n2 dl dt
+ (ρ+ − ρ−)

︸ ︷︷ ︸
>0

|Ω+|gt

−ρ−
∫

∂Ω

x1(u
−
0 )2 · τ dl − m+v+

2 (0) − ρ−
∫

Ω−
(u−

0 )2 dx
︸ ︷︷ ︸

C0

. (49)

Remark 6. We notice the computations leading to (34) and (49) came purely from
using the incompressible Euler equations with gravity inΩ−(t) in the relation (36),
and are valid for any law governing the phaseΩ+(t), including the case of the rigid
body considered later in this paper.

5. Finite-Time Singularity Formation for the Vortex Sheet Problem with
Surface Tension

We note that from our energy conservation (25) and (18), the first and second
terms on the right-hand side of (49) are controlled for all the time of existence by
a constant independent of time, while the fourth term is linear in time. We now
address the question of the third term, which is not sign definite across ∂Ω , due to
the presence of n2.

We remind that our assumptions from Section 3 imply that we can split ∂Ω into
the graph Γ1, centered on the vertical axis x1 = 0, below the (potentially) falling
moving body in the fluid, and where n2 � −αΩ < 0 and its complementary, where
we will show the integral is small relative to the fourth term of (49).

From (49) and (48) we infer that

F2(t) � m+v+
2 (t) + ρ−

∫

Ω−(t)
u−
2 dx − ρ−

∫ t

0

∫

Γ c
1 ∩∂Ω

|u−|2
2

n2 dl dt

+ ρ−αΩ

∫ t

0

∫

Γ1

|u−|2
2

dl dt + (ρ+ − ρ−)
︸ ︷︷ ︸

>0

|Ω+|gt + C0
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� m+v+
2 (t) + ρ−

∫

Ω−(t)
u−
2 dx dx + C0

− ρ−
∫ t

0

∫

Γ c
1 ∩∂Ω

|u−|2
2

n2 dl dt + 1

4
(ρ+ − ρ−)|Ω+|gt

+ ρ−αΩ

∫ t

0

∫

Γ1

|u−|2
2

dl dt + 3

4
(ρ+ − ρ−)|Ω+|gt. (50)

We will prove later on that for initial height h and initial velocities satisfying
(80) stated later, that

(1 + αΩ)

∣
∣
∣
∣
∣
ρ−

∫ t

0

∫

Γ c
1 ∩∂Ω

|u−|2 dl dt
∣
∣
∣
∣
∣
� 1

4
(ρ+ − ρ−)|Ω+|gt. (51)

Using the property (51), we have by ∂Ω = Γ1 ∪ (Γ c
1 ∩ ∂Ω) that

ρ−αΩ

∫ t

0

∫

Γ1

|u−|2
2

dl dt + 1

8
(ρ+ − ρ−)|Ω+|gt � ρ−αΩ

∫ t

0

∫

∂Ω

|u−|2
2

dl dt,

and thus

ρ−αΩ

∫ t

0

∫

Γ1

|u−|2
2

dl dt + 1

4
(ρ+ − ρ−)|Ω+|gt � ρ−αΩ

∫ t

0

∫

∂Ω

|u−|2
2

dl dt.

(52)
Using (51) again, we also have

−ρ−
∫ t

0

∫

Γ c
1 ∩∂Ω

|u−|2
2

n2 dl dt + 1

4
(ρ+ − ρ−)|Ω+|gt � 0. (53)

Using (52) and (53) in (50), we infer that

F2(t) � m+v+
2 (t) + ρ−

∫

Ω−(t)
u−
2 dx + ρ−αΩ

∫ t

0

∫

∂Ω

|u−|2
2

dl dt

+ ρ+ − ρ−

2
|Ω+|gt + C0. (54)

On the other hand, given (48) for F2, we have the existence of C̃Ω > 0 (depending
on Ω) such that

|F2(t)| � C̃Ωρ−
∫

∂Ω

|u−|(·, t) dl. (55)

Using (55) in (54), we obtain

C̃Ωρ−
∫

∂Ω

|u−|(·, t) dl

� m+v+
2 (t) + ρ−

∫

Ω−(t)
u−
2 dx + ρ−αΩ

∫ t

0

∫

∂Ω

|u−|2
2

dl dt

+ ρ+ − ρ−

2
|Ω+|gt − |C0|. (56)
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By Cauchy–Schwarz, this implies

C̃Ωρ−
∫

∂Ω

|u−|(·, t) dl

� m+v+
2 (t) + ρ−

∫

Ω−(t)
u−
2 dx − |C0|

+ ρ−αΩ

2t |∂Ω|
(∫ t

0

∫

∂Ω

|u−| dl dt
)2

+ 1

2
(ρ+ − ρ−)|Ω+|gt. (57)

Using our energy bounds (27) and (18) in (57), we have

C̃Ωρ−
∫

∂Ω

|u−|(·, t) dl � −m+

√
2E(0)

m+
− ρ−

√
2E(0)

ρ−
√

|Ω−| − |C0|

+ ρ−αΩ

2t |∂Ω|
(∫ t

0

∫

∂Ω

|u−| dl dt
)2

+ 1

2
(ρ+ − ρ−)|Ω+|gt.

(58)

Let

f (t) =
∫ t

0

∫

∂Ω

|u−| dl dt. (59)

From (58), we have that with

t0 = 4

g|Ω+|(ρ+ − ρ−)

(√
2E(0)m+ +

√
2E(0)ρ−|Ω−| + |C0|

)
(60)

for all t � t0, (58) implies

C̃Ωρ− f ′(t) � ρ−αΩ

2t |∂Ω| f
2 + 1

4
(ρ+ − ρ−)|Ω+|gt > 0.

Therefore, for all t � t0, f (t) > 0 and

f ′

f 2
� αΩ

2|∂Ω|C̃Ω t
, (61)

which by integration from t0 to t � t0 provides

− 1

f (t)
+ 1

f (t0)
� αΩ

2|∂Ω|C̃Ω

ln

(
t

t0

)

.

Therefore,

0 <
1

f (t)
� 1

f (t0)
− αΩ

2|∂Ω|C̃Ω

ln

(
t

t0

)

,

which shows that for t � t0 e
2|∂Ω|C̃Ω
αΩ f (t0) , we have

0 <
1

f (t)
� 0,
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Ω+(t)
∂Ω+(t)

Ωα
2 ⊂ Ω−(t)

Γα
2

Γ1 ⊂ {n2 ≤ −αΩ < 0} ⊂ ∂Ω

∂Ω ∩ Γ c
1

x1 = 0

n
(0, 0)

(0, H)

Fig. 2. Ω+(t) stays below Γ α
2 for α > H

4

which is an obvious impossibility. Therefore, the maximal time of existence of a
smooth solution Tmax > 0 satisfies

Tmax � t0 e
2|∂Ω|C̃Ω
αΩ f (t0) . (62)

We now have to turn back to proving our missing estimate (51) (provided our
initial data satisfy (80)), which controls the velocity on Γ c

1 (that we are sure the
moving bubbleΩ+(t) stays away from, given (33)). Here the difficulty is to get the
precise bound given by (51) and not just a generic constant, or a constant greater than
the majorant of (51), and it calls for subtle observations of elliptic and geometric
natures.

Our starting point is the fact that u− being divergence free

u− = ∇⊥φ, in Ω−(t), (63)

with
φ = 0, on ∂Ω, (64)

(we will not need the condition ∇⊥φ · n = u+ · n on ∂Ω+(t)) and

Δφ = ω−, in Ω−(t). (65)

We will also need the fact that

‖∇φ‖2L2(Ω−(t)) = ‖u−‖2L2(Ω−(t)) � 2
E(0)

ρ− , (66)

due to(27). We now define, for any α > H
4 ,

Ωα
2 = {x ∈ Ω; x2 � α}, (67)

and
Γ α
2 = {x ∈ Ω; x2 = α}. (68)
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From our relation (32), we know that for α > H
4 , Ω

α
2 does not intersect Ω+(t)

for all time of existence, and we will work with such values of α in what follows.
Taking ñ as being our global vector field extending n intoΩ defined in Section 2,

we now take |ñ|2∇ñφ as test function for (65) and integrate the relation in Ωα
2 .

We first notice that for any unit vector a, if b = a⊥, we have

ω− = Δφ = aia j
∂2φ

∂xi∂x j
+ bib j

∂2φ

∂xi∂x j
.

Therefore, for any vector a, if b = a⊥,

|a|2ω− = |a|2Δφ = aia j
∂2φ

∂xi∂x j
+ bib j

∂2φ

∂xi∂x j
.

We now simply use this expansion of Δ in the orthogonal (τ̃ (x), ñ(x)) system at
each point x ∈ Ω−(t), to get

|ñ(x)|2ω− = |ñ(x)|2Δφ = τ̃i (x)τ̃ j (x)
∂2φ

∂xi∂x j
(x, t) + ñi (x)ñ j (x)

∂2φ

∂xi∂x j
(x, t).

(69)
Integration by parts in Ωα

2 ⊂ Ω−(t) (and remembering that the normal exterior
vector to Γ α

2 is −e2 and to ∂Ω is n = ñ) provides us with

∫

Ωα
2

|ñ|2ω−∇ñφ dx =
∫

Ωα
2

(

τ̃i τ̃ j
∂2φ

∂xi∂x j
+ ñi ñ j

∂2φ

∂xi∂x j

)

ñk
∂φ

∂xk
dx

= −
∫

Ωα
2

∂φ

∂x j

∂(τ̃i τ̃ j ñk
∂φ
∂xk

)

∂xi
dx

︸ ︷︷ ︸
I1

−
∫

Ωα
2

∂φ

∂x j

∂(ñi ñ j ñk
∂φ
∂xk

)

∂xi
dx

︸ ︷︷ ︸
I2

−
∫

Γ α
2

∂φ

∂x j
τ̃2τ̃ j ñk

∂φ

∂xk
+ ñ2ñ j ñk

∂φ

∂x j

∂φ

∂xk
dx1

+
∫

∂Ωα
2 ∩∂Ω

∂φ

∂x j
τ̃i ñi︸︷︷︸
=0

τ̃ j ñk
∂φ

∂xk
+ ∂φ

∂x j
ñi ni︸︷︷︸

=1 on ∂Ω

ñ j ñk
∂φ

∂xk
dl.

Thus,

I1 + I2 = −
∫

Γ α
2

∂φ

∂x j
τ̃2τ̃ j ñk

∂φ

∂xk
+ ñ2ñ j ñk

∂φ

∂x j

∂φ

∂xk
dx1

+
∫

∂Ωα
2 ∩∂Ω

|∇nφ|2 dl −
∫

Ωα
2

|ñ|2ω−∇ñφ dx . (70)
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We next rewrite I1 and I2. From the definition,

I2 =
∫

Ωα
2

ñi ñ j
∂φ

∂x j

∂(ñk
∂φ
∂xk

)

∂xi
dx +

∫

Ωα
2

∂(ñi ñ j )

∂xi

∂φ

∂x j
ñk

∂φ

∂xk
dx

= 1

2

∫

Ωα
2

ñi
∂|∇ñφ|2

∂xi
dx +

∫

Ωα
2

∂(ñi ñ j )

∂xi

∂φ

∂x j
ñk

∂φ

∂xk
dx

= −
∫

Ωα
2

∂ ñi
∂xi

|∇ñφ|2
2

dx +
∫

∂Ωα
2 ∩∂Ω

|ñ|2
︸︷︷︸

=1 on ∂Ω

|∇ñφ|2
2

dl −
∫

Γ α
2

ñ2
|∇ñφ|2

2
dx1

+
∫

Ωα
2

∂(ñi ñ j )

∂xi

∂φ

∂x j
ñk

∂φ

∂xk
dx . (71)

We next move to I1:

I1 =
∫

Ωα
2

τ̃i τ̃ j ñk
∂φ

∂x j

∂2φ

∂xk∂xi
dx +

∫

Ωα
2

∂(τ̃i τ̃ j ñk)

∂xi

∂φ

∂x j

∂φ

∂xk
dx

=
∫

Ωα
2

τ̃ j
∂φ

∂x j
ñk

∂(τ̃i
∂φ
∂xi

)

∂xk
dx −

∫

Ωα
2

τ̃ j
∂φ

∂x j
ñk

∂τ̃i

∂xk

∂φ

∂xi
dx

+
∫

Ωα
2

∂(τ̃i τ̃ j ñk)

∂xi

∂φ

∂x j

∂φ

∂xk
dx

=
∫

Ωα
2

ñk
2

∂|∇τ̃ φ|2
∂xk

dx −
∫

Ωα
2

τ̃ j
∂φ

∂x j
ñk

∂τ̃i

∂xk

∂φ

∂xi
dx

+
∫

Ωα
2

∂(τ̃i τ̃ j ñk)

∂xi

∂φ

∂x j

∂φ

∂xk
dx

= −
∫

Ωα
2

∂ ñk
∂xk

|∇τ̃ φ|2
2

dx +
∫

∂Ωα
2 ∩∂Ω

|ñ|2
2

|∇τ̃ φ|2
︸ ︷︷ ︸

=0 on ∂Ω

dl −
∫

Γ α
2

ñ2
2

|∇τ̃ φ|2 dx1

−
∫

Ωα
2

τ̃ j
∂φ

∂x j
ñk

∂τ̃i

∂xk

∂φ

∂xi
dx +

∫

Ωα
2

∂(τ̃i τ̃ j ñk)

∂xi

∂φ

∂x j

∂φ

∂xk
dx . (72)

By gathering (70), (71) and (72), we obtain
∫

∂Ωα
2 ∩∂Ω

|∇nφ|2
2

dl = −1

2

∫

Ωα
2

∂ ñk
∂xk

|∇τ̃ φ|2 dx − 1

2

∫

Γ α
2

ñ2|∇τ̃ φ|2 dx1

−
∫

Ωα
2

τ̃ j
∂φ

∂x j
ñk

∂τ̃i

∂xk

∂φ

∂xi
dx +

∫

Ωα
2

∂(τ̃i τ̃ j ñk)

∂xi

∂φ

∂x j

∂φ

∂xk
dx

−1

2

∫

Ωα
2

∂ ñi
∂xi

|∇ñφ|2 − 1

2

∫

Γ α
2

ñ2|∇ñφ|2 dx1

+
∫

Ωα
2

∂(ñi ñ j )

∂xi

∂φ

∂x j
ñk

∂φ

∂xk
dx +

∫

Ωα
2

|ñ|2ω−∇ñφ dx

+
∫

Γ α
2

∂φ

∂x j
τ̃2τ̃ j ñk

∂φ

∂xk
+ ñ2ñ j ñk

∂φ

∂x j

∂φ

∂xk
dx1. (73)



Finite-Time Blow-Up for Incompressible Euler Moving Interfaces

In what follows, Ci is a generic constant which does not depend on our initial
velocity and height h. Due to (7), (8) and (27), we have that

∣
∣
∣
∣
∣

∫

Ωα
2

∂(ñi ñ j )

∂xi

∂φ

∂x j
ñk

∂φ

∂xk
dx

∣
∣
∣
∣
∣
� C1 ‖u−‖2L2(Ω−(t)) � C2E(0), (74)

with similar estimates for each of the integrals on Ωα
2 appearing on the right-hand

side of (73). With (73) and (74) and (19), we then obtain
∫

{x2�α}∩∂Ω

|∇ñφ|2 dl � C3(E(0) + ‖ω−
0 ‖2L2(Ω−)

) + C4

∫

Γ α
2

|u−|2 dx1.

Remembering that u · n = ∇τ φ = 0 on ∂Ω , we deduce that for any α � H
4 ,

∫

{x2�α}∩∂Ω

|u−|2 dl � C3(E(0) + ‖ω−
0 ‖2L2(Ω−)︸ ︷︷ ︸

M0

) + C4

∫

Γ α
2

|u−|2 dx1. (75)

Remembering that from (32) we can take for α any value between H
4 to H

2 , we get,
by integrating (75) for x2 between H

4 and H
2 (keeping in mind that

∀α ∈
[
H

4
,
H

2

]

,

∫

{x2�α}∩∂Ω

|u−|2 dl �
∫

{x2� H
2 }∩∂Ω

|u−|2 dl ),

H

4

∫

{x2� H
2 }∩∂Ω

|u−|2 dl � C3H

4
M0 + C4

∫

Ω−(t)∩{ H
4 �x2� H

2 }
|u−|2 dx

� C3H

4
M0 + C4‖u−‖2L2(Ω−(t)) � C5M0.

Therefore, ∫

{x2� H
2 }∩∂Ω

|u−|2 dl � C6M0. (76)

We now define
Ωα

1 = {x ∈ Ω; x1 � α}, (77)

and
Γ α
1 = {x ∈ Ω; x1 = α}. (78)

From our relation (32), we know that for α > L
4 , Ω

α
1 does not intersect Ω+(t)

for all time of existence, and we will work with such values of α in what follows.
By proceeding as for Ωα

2 we obtain in a verbatim way that
∫

{x1� L
2 }∩∂Ω

|u−|2 dl � C7M0. (79)

Due to our symmetry in x1, the same estimate holds for
∫
{x1�− L

2 }∩∂Ω
|u−|2 dl.

Using now our assumption (24) on Ω , we infer from (79) and (76) that
∫

Γ c
1

|u−|2 dl � C9M0.
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Taking h and the L2 norm of velocities as well as the L2 norm of the initial vorticity
small enough so that

C9

(
E(0) + ‖ω−

0 ‖2L2(Ω−)

)
� 1

4

ρ+ − ρ−

ρ−(1 + αΩ)
g|Ω+| (80)

then provides the desired estimate (51), which concludes our proof of finite in time
singularity formation.

Therefore for Tmax estimated by (62), we have established that so long as a
smooth non self-intersecting and non contacting with ∂Ω solution exists, blow-up
of f will occur at Tmax, namely we proved Theorem 1. ��

6. Blow-Up of Norms if Finite-Time Self-Contact or Contact with ∂Ω

We first establish that the finite-time contact cases 2) of Theorem 1 lead to
blow-up of a lower norm.

6.1. Blow-Up of a Lower Norm if Finite-Time Self-Contact or Contact with ∂Ω

Proof. We just provide the proof of themore difficult case of self-contact of ∂Ω+(t)
with itself at Tmax, the other case having a similar proof. Assume that ∂Ω+(t) self-
intersects at Tmax and that there exists C0 > 0 finite so that

∀t ∈ [0, Tmax), ‖∇τ τ‖L∞(∂Ω+(t)) +
∑

±

∫ t

0
‖∇u±‖L∞(Ω±(t)) � C0. (81)

From the fact that the length of the interface and the L2 norm of the velocities
u± are bounded, it is not difficult to infer from (81) that there exists C1 > 0 such
that

∀t ∈ [0, Tmax),

∫ t

0
‖u±‖L∞(Ω±(t)) � C1. (82)

From (82) we can define by continuity in time as t → Tmax

η±(x, Tmax) = x +
∫ Tmax

0
v±(x, t) dt,

since v± has the same L∞ norm as u±. The self intersection assumption 2) simply
means that there exists x0 �= x1 points of ∂Ω+ such that

η−(x0, Tmax) = η−(x1, Tmax). (83)

In [9]we proved there can only be a finite number of additional points xi ∈ ∂Ω+
such that η−(xi , Tmax) = η−(x0, Tmax). Note that although the assumptions about
regularity in [9] are stronger than the ones involved here, in order to prove this
statement (and the other statements we will make after), it is only the fact that the
length of Γ (t) stays bounded, as well as the uniform bounds (81) and (82), which
are needed.
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Remark 7. The present work does not exclude the possibility that the velocity field
in one phase would remain smooth all the way until contact. This exclusion was
done in [9]. In order to exclude this situation, which corresponds to the case of
a splash singularity (in order to have an analogous of the one-phase problem, all
relevant norms in one of the phases are assumed bounded), the extra regularity in
the framework of [9] are needed.

From (81) we see that the tangent vector at η(x0, t) is a continuous function of
space (due to the control of ∇τ τ ) and time (due to the control of ∇u−). Given the
fact the curve first self-intersect at time Tmax we have that the tangent vector on
∂Ω+(Tmax) at each η(xi , Tmax) is the same, and we call it e1 (it is not necessarily
horizontal).

By proceeding in away similar to Section 6 of [9] (assuming contact occurswith
Ω−(t) being pinched), we have by the fundamental theorem of calculus applied in
a path orthogonal to e1 that (η−(x0, t), η−(z(t), t)) ⊂ Ω−(t), and a path alongside
the interface between η−(z(t), t) and η−(x1, t) (figure 4 of [9]) that

∣
∣
∣
∣
d

dt
(η−(x0, t) − η−(x1, t))

∣
∣
∣
∣ = |u−(η−(x0, t), t)) − u−(η−(x1, t), t)|
� C2‖∇u−‖L∞(Ω−(t))|η−(x0, t) − η−(x1, t)|.

Remark 8. The key to adapt Section 6 of [9] is simply to notice that the Claim
1 (before (6.20) of [9]) becomes in the present context η−

2 (x1, t) − η−
2 (z(t), t) =

o(1)(η−
1 (x1, t)−η−

1 (x0, t)), with limT−
max

o(1) = 0 (if 1 denote the coordinate along
e1 and 2 the coordinate along the direction orthogonal to e1). This shows the length
of each path involved is less than 2|η−(x0, t) − η−(x1, t)|, for t close enough to
Tmax, and C2 can be chosen as 2 if t is close enough to Tmax.

Therefore,

d

dt
|η−(x0, t) − η−(x1, t)|2 � −2C2‖∇u−‖L∞(Ω−(t))|η−(x0, t) − η−(x1, t)|2,

which provides, by integration, that

0 = |η−(x0, Tmax) − η−(x1, Tmax)|2
|η−(x0, 0) − η−(x1, 0)|2 � e−2C2

∫ Tmax
0 ‖∇u−‖L∞(Ω−(t)) dt ,

and thus
∫ Tmax

0
‖∇u−‖L∞(Ω−(t))dt = ∞,

which is in contradiction with (81). If contact had occured with Ω+(t) being
pinched, we would have had the same identity with ∇u+ and Ω+(t). This es-
tablishes Theorem 2. ��
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6.2. Blow-Up of a Natural Norm of Local in Time Existence if Finite-Time
Self-Intersection or Contact with the Boundary

Wenow assume our initial data to have a smoother curl in both phases: curlu±
0 ∈

H
7
2 (Ω±). Local in time existence can be carried in a similar way as in [5] in the

norm Ñ (t) = N (t) + ‖η+‖
H

9
2 (Ω+)

+ ‖η−‖
H

9
2 (Ω−)

, for which Theorem 1 applies

similarly. We now prove that if we have the blow-up (1) of Theorem 2, then (2)
holds.

Proof. For the sake of contradiction, let us assume (1) holds and that there is
constant C > 0 such that

∀t ∈ (0, Tmax), Ñ (t) � C. (84)

We have as a consequence of this bound (and the Sobolev embeddings in the
initial smooth domains Ω+ and Ω−) that

∑

+,−
‖η±‖C3(Ω±)

� C, (85)

where we take the convention C is a generic positive constant independent of t
approaching Tmax.

Moreover due to the Sobolev embeddings in the initial smooth domains Ω+
and Ω−, we have that for the Lagrangian velocities

‖v±‖C1(Ω±)
� C‖v±‖H3(Ω±). (86)

Due to v = u ◦ η and (84) and (85) we have

‖v±‖H3(Ω±) � C. (87)

Therefore, (87) and (86) imply

‖v±‖C1(Ω±)
� C. (88)

Next we have from u = v ◦ η−1 (in each phase, interface included) that

∇u = ∇v(η−1) ∇(η−1) = ∇v(η−1) (∇η)−1(η−1) = ∇v(η−1) (Cof∇η)T (η−1),

where we used det(∇η) = 1 in the last equality. Therefore, from (85) and (88) we
have

‖∇u±‖L∞(Ω±(t)) � C. (89)

We now look at curvature on the interface and show (84) implies it stays finite as
well. If θ denote a smooth parameterization from [0, 1] of the initialΓ (in particular
| ∂θ
∂s | stays by some α1 > 0 away from 0), we have

|κ| =
∣
∣
∣
∣
∣

1

| ∂(η◦θ)
∂s | |

∂2(η ◦ θ)

∂s2
· n(η ◦ θ)

∣
∣
∣
∣
∣
. (90)
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From this expression and (85), we just need to ensure that | ∂(η◦θ)
∂s | stays bounded

from below. Let us show this now. From

|∂(η ◦ θ)

∂s
| = |(∇τ η)(θ)| |∂θ

∂s
| � α1|(∇τ η)(θ)|,

1 = | det(∇τ η,∇nη)| � |∇τ η||∇nη| � C |∇τ η|

(where we used (85)), we infer

∣
∣
∣
∣
∂(η ◦ θ)

∂s

∣
∣
∣
∣ � α1

C
. Therefore, curvature stays

bounded independently of time:

‖κ‖L∞(Γ (t)) � C, (91)

wherewe remind readers thatC > 0 is a generic constant independent of time. From
(91) and (89) we have a contradiction with (1), which shows that (2)
holds. ��

7. Equations of the Rigid Body Moving Inside an Inviscid Fluid, Stream
Function and Conservation of Energy

We now consider a rigid body moving in the inviscid fluid. The rigid body
dynamics is described by the following unknowns:

• The position of the center of the rigid body at time t : xs(t).
• The angular velocity of rigid body at time t : r(t).
• The velocity field in the rigid body Ωs(t) = Ωs(0) + (xs(t) − xs(0)):

us(x, t) = vs(t) + r(t)(x − xs(t))⊥, (x1, x2)
⊥ = (−x2, x1).

• The fluid phase is described by the incompressible Euler equations inΩ f (t) =
Ω ∩ Ωs(t)

c
, with unknown velocity field u f (x, t) and pressure field p(x, t).

This classical interacting fluid-rigid solid system is written as

ρ f (u
f
t + u f · ∇u f ) + ∇ p = −ρ f g e2 in Ω f (t), (92a)

div u = 0 in Ω f (t), (92b)

u f · n = us · n on ∂Ωs(t), (92c)

u f · n = 0 on ∂Ω, (92d)

ms
dvs

dt
=

∫

∂Ωs (t)
p n dl − msg e2, (92e)

Is
dr

dt
=

∫

∂Ωs (t)
p (x − xs(t))⊥ · n dl, (92f)

u f (0) = u0 in Ω f , (92g)

xs(0) = xs0, vs(0) = vs0, r(0) = r0, (92h)
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where n is the exterior unit normal to Ω f (t), pointing inside Ωs(t), and e2 is
the unit vertical vector pointing upwards. Also, ms = ρs |Ωs | is the mass of
the rigid body, and Is the inertial moment. In this paper we assume that

ρs > ρ f . (93)

The existence and uniqueness of this system (if the initial data satisfies u f
0 ·n =

(vs0 + r0(x − xs0)
⊥) · n on ∂Ωs and u f

0 · n = 0 on ∂Ω) was established by Glass
and Sueur in [17], which shows the existence and uniqueness of a solution to this
problem so long as ∂Ωs(t) does not touch ∂Ω .

We next establish the boundary condition satisfied on the boundary of the solid
body by the stream function and remind the conservation of energy.

7.1. Stream Function

Since u f is divergence free we have u f = ∇⊥φ = (− ∂φ
∂x2

,
∂φ
∂x1

), with φ the
solution of the elliptic system

Δφ(·, t) = ω(·, t) = curlu f (·, t), in Ω f (t), (94a)

φ(·, t) = 0, on ∂Ω, (94b)

φ(x, t) = vs2(t)x1, on ∂Ωs(t). (94c)

Since ∇τ φ = u f · n we then have ∇τ φ = 0 on ∂Ω which ensures we can
choose φ = 0 on the connected ∂Ω . On the other hand, we have on ∂Ωs(t) that

∇τ φ = vs2(t)n2 = vs2(t)τ1 = vs2(t)∇τ x1,

which provides φ(x, t) = vs2(t)x1 + c(t). Next, by the fundamental theorem of
calculus, if we denote by r2 the distance from the centre of gravity to the lowest
point on x1 = 0 (which is not necessarily the lowest point of the rigid body, just
the lowest on the vertical axis of symmetry), then

φ(0, x2(t) − r2, ·) = φ(0, 0, ·) +
∫ x2(t)−r2

0

∂φ

∂x2
(0, x2, ·) dx2

= −
∫ x2(t)−r2

0
u f
1 (0, x2, ·) dx2 = 0,

due to the fact u f
1 is odd. This in turn provides us with c(t) = 0 and (94c).

7.2. Energy Conservation

For all the time of existence it is classical that the quantity

1

2
ms |vs |2(t) + 1

2
ρ f

∫

Ω f (t)
|u f (x, t)|2 dx + msgx

s
2(t) + ρ f g

∫

Ω f
η
f
2 dx (95)
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is independent of time. Similarly as to establishing (14), this shows that the total
energy

E(t) = 1

2
ms |vs |2(t) + 1

2
ρ f

∫

Ω f (t)
|u f (x, t)|2 dx + msgx

s
2(t) − ρ f gxs2(t)|Ωs |

= 1

2
ms |vs |2(t) + 1

2
ρ f

∫

Ω f (t)
|u f (x, t)|2 dx + (ρs − ρ f )

︸ ︷︷ ︸
>0

gxs2(t)|Ωs | (96)

is constant in time for all the time of existence of a smooth solution (namely from
[17] so long as no eventual collision with the boundary occurs).

Thus,

1

2
ms |vs |2(t) + 1

2
ρ f

∫

Ω f (t)
|u f (x, t)|2 dx + (ρs − ρ f )gxs2(t)|Ωs | = E(0). (97)

Moreover, since xs2 > 0, we also have from (97) the control of the kinetic energy:

1

2
ms |vs |2(t) + 1

2
ρ f

∫

Ω f (t)
|u f (x, t)|2 dx � E(0). (98)

8. Choice of Initial Data

Wedenote byΩ a bounded domain of classC2, which is symmetricwith respect
to the axis x1 = 0.

We then choose Ωs such that Ωs ⊂ Ω to be an equally symmetric connected
domain with respect to the vertical axis x1 = 0, which is of the same regularity
class as Ω .

We then define the initial fluid domain Ω f = Ω ∩ (Ωs)c.
We choose

vs(0) = (0, vs2(0)), with vs2(0) < 0, (99a)

u f (0) divergence free with u f
1 (0) odd, u f

2 (0) even, and, (99b)

vs2(0)n2 = u f (0) · n on ∂Ωs, (99c)

r(0) = 0, (99d)

xs(0) = (0, h), (99e)

with h > 0 such that Ωs ⊂ Ω .
Given the symmetry of Ω and Ωs with respect to the x1 = 0 axis, as well

as the symmetry of the initial data with respect to this axis, we then have that
for all time of existence u f and us are symmetric with respect to the vertical
axis x1 = 0: u f

1 (−x1, x2) = −u f
1 (x1, x2) and u f

2 (−x1, x2) = u f
2 (x1, x2) and

vs1(t) = 0, r(t) = 0 for all time of existence. Therefore, the rigid solid falls in
a vertical translation (at a speed dependent of time) and there is no rotation. The
argument is simply to use the construction of solutions of [17] pp. 937–942, set up
with r = 0 in the functional framework.
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As we will see later on, the assumption (99a) together with a small square
integrable vorticity ensures that if the rigid body falls from its initial position, then
the rigid body keeps falling for all time of existence.

Here, since we know in advance where contact would occur (vertical fall of a
body keeping its shape), we just need contact to occur on a strict subset of

Γ1 = {n2 � −αΩ < 0},
(for some αΩ ∈ (0, 1)) with Γ1 being not necessarily required to be connected
(unlike in the case of the deformable interface). The vertically falling rigid body
then stays away from ∂Ω ∩ Γ c

1 by a strictly positive distance.

9. Elliptic Estimate Away from the Contact Zone and Non zero Velocity for
the Vertically Falling Rigid Body

Our starting point is (34) which is valid for this problem as well, since it was
established from (36) which is satisfied for this problem as well.

Due to the nature of the vertical fall of a rigid body not rotating, any point of
∂Ω ∩ Γ c

1 will stay away from Ωs(t) by a positive distance D > 0 for all time in
[0, Tmax), Tmax being the maximal time of existence of a smooth solution (that we
do not assume finite or not here). In a manner similar to that in which we proved
the boundary estimate (75) for the vortex sheet problem (for which we used the
conservation of curl (19) in Ω−(t), which holds in Ω f (t) for the problem with a
rigid body), we have by using ξ2(x)∇n(x0)φ(x, t) (where ξ is a cut-off function in
a neighborhood of x0 ∈ Γ c

1 ) as a test function in the same elliptic system (94)

Lemma 2. For all the time of existence of a smooth solution,

‖u f ‖2L2(∂Ω∩Γ c
1 )

� C
(
‖u f ‖2L2(Ω f (t)) + ‖ω0‖2L2(Ω f )

)
, (100)

where C > 0 is independent of time.

Remark 9. Of course the energy estimate implies that ‖u f ‖L2(Ω f (t)) is bounded
uniformly in time, implying that the right-hand side of (100) can be replaced by
just a constant C independent of time. Although having just C is enough for most
of our purposes, it turns out that the more precise form (100) is used in Section 10
in a crucial way.

In a similar way we also have, for Γ s
1 (t) being the vertical projection of Γ1 on

∂Ωs(t),

Lemma 3. For all the time of existence of a smooth solution,

‖u f ‖L2((Γ s
1 (t))c∩∂Ωs (t)) � C, (101)

where C > 0 is independent of time.
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We next establish that the rigid body keeps falling for all time of existence of a
smooth solution with our small square integrable curl assumption.

Lemma 4. With our choice of initial data in Section 8, for all time t > 0 of existence
of a smooth solution, we have vs2(t) < 0.

Proof. Since vs2(0) < 0, we know that for some time T > 0 wewill have vs2(t) < 0
for all t < T . Now let us assume that there exists a first value of t0 > 0 such that

vs2(t0) = 0, (102)

while there is no contact with ∂Ω at t0, with

∀t ∈ [0, t0), vs2(t) < 0 (103)

(namely the rigid body is with zero speed at t0, and does not touch ∂Ω , and was
before that time falling at a negative vertical speed). From the start of this Section,
we have u f = ∇⊥φ satisfying (94).

From the elliptic system (94) we immediately have by Green’s theorem that
∫

Ω f (t)
|u f |2 dx = −

∫

Ω f (t)
ωφ dx + vs2(t)

∫

∂Ωs (t)
∇nφ x1 dl

= −
∫

Ω f (t)
ωφ dx − vs2(t)

∫

∂Ωs (t)
u f · τ x1 dl. (104)

Therefore,

‖u f ‖2L2(Ω f (t)) � ‖φ‖L2(Ω f (t))‖ω0‖L2(Ω f ) + |vs2(t)|
∣
∣
∣
∣

∫

∂Ωs (t)
u f · τ x1 dl

∣
∣
∣
∣ .

(105)

We now need to establish a Poincaré inequality for φ (independent of how close to
contact we are), in order to control ‖φ‖L2(Ω f (t)). To do so we simply notice that if
we define φ̄ as

φ̄(x, t) = 1Ω f (t)(x)φ(x) + 1Ωs (t)(x)v
s
2(t)x1, (106)

we have, due to the continuity (94c), that φ̄ ∈ H1(Ω), and due to (94b), that
φ̄ ∈ H1

0 (Ω). Note here that this is done for any t such that ∂Ωs(t) and ∂Ω do not
intersect.

By the standard Poincaré inequality for φ̄ in Ω , we then have (independently
of any t such that ∂Ωs(t) and ∂Ω do not intersect)

∫

Ω

φ̄2 dx � CΩ

∫

Ω

|∇φ̄|2 dx = CΩ

(∫

Ω f (t)
|∇φ|2 dx + vs2(t)

2|Ωs(t)|
)

.

(107)
From (105) and (107) we infer successively, that

‖u f ‖2L2(Ω f (t)) �
‖φ‖2

L2(Ω f (t))

2CΩ

+ CΩ

2
‖ω0‖2L2(Ω f )

+ |vs2(t)|
∣
∣
∣
∣

∫

∂Ωs (t)
u f · τ x1 dl

∣
∣
∣
∣
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� 1

2
‖∇φ‖2L2(Ω f (t)) + 1

2
vs2(t)

2|Ωs | + CΩ

2
‖ω0‖2L2(Ω f )

+ |vs2(t)|
∣
∣
∣
∣

∫

∂Ωs (t)
u f · τ x1 dl

∣
∣
∣
∣ .

Therefore,

‖u f ‖2L2(Ω f (t)) � vs2(t)
2|Ωs | + CΩ‖ω0‖2L2(Ω f )

+ 2|vs2(t)|
∣
∣
∣
∣

∫

∂Ωs (t)
u f · τ x1 dl

∣
∣
∣
∣ .

(108)
We will need later on to replace the integral set on ∂Ωs(t) by an integral set on
∂Ω . This is done in the following way:

∫

∂Ωs (t)
x1 u

f · τ dl =
∫

∂Ωs (t)
x1 (u f

1 n2 − u f
2 n1) dl. (109)

Now, by integration by parts in Ω f (t) for the right-hand side of (109), we have

∫

∂Ωs (t)
x1u

f · τ dl = −
∫

∂Ω

x1(u
f
1 n2 − u f

2 n1) dl+
∫

Ω f (t)

∂(x1u
f
1 )

∂x2
− ∂(x1u

f
2 )

∂x1
dx

= −
∫

∂Ω

x1u
f · τ dl −

∫

Ω f (t)
x1ω + u f

2 dx

= −
∫

∂Ω

x1u
f · τ dl −

∫

Ω f (t)
x1ω + ∂φ

∂x1
dx

= −
∫

∂Ω

x1u
f · τ dl −

∫

Ω f (t)
x1ω dx − vs2(t)

∫

∂Ωs (t)
x1n1 dl,

(110)

where we used (94b), (94c) and integration by parts to obtain the last term above.
Therefore using (110) in (108) we obtain

‖u f ‖2L2(Ω f (t)) � vs2(t)
2(|Ωs | + 2diam(Ωs)|∂Ωs |) + CΩ‖ω0‖2L2(Ω f )

+ 2|vs2(t)|
∣
∣
∣
∣

∫

∂Ω

u f · τ x1 dl

∣
∣
∣
∣ + 2|vs2(t)|

∣
∣
∣
∣

∫

Ω f (t)
x1ω dx

∣
∣
∣
∣ .

Using Young’s inequality for the last term of the right-hand side, we obtain

‖u f ‖2L2(Ω f (t)) � vs2(t)
2(|Ωs | + 2diam(Ωs)|∂Ωs | + diam(Ω)2)

+ (CΩ + |Ω f |)‖ω0‖2L2(Ω f )
+ 2|vs2(t)|

∣
∣
∣
∣

∫

∂Ω

u f · τ x1 dl

∣
∣
∣
∣

� DΩ (vs2(t)
2 + |vs2(t)|

∣
∣
∣
∣

∫

∂Ω

u f · τ x1 dl

∣
∣
∣
∣ + ‖ω0‖2L2(Ω f )

), (111)
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with

DΩ = max(|Ωs | + 2diam(Ωs)|∂Ωs | + diam(Ω)2, 2,CΩ + |Ω f |). (112)

Thus, if vs2(t0) = 0, we infer from (111) that

‖u f ‖2L2(Ω f (t0))
� DΩ‖ω0‖2L2(Ω f )

. (113)

Therefore, the total energy satisfies

E(t0) � DΩ

2
ρ f ‖ω0‖2L2(Ω f )

+ (ρs − ρ f )gxs2(t0)|Ωs |. (114)

Now, from (103) we infer that

∀t ∈ [0, t0), xs2(t) > xs2(t0). (115)

With our assumption (3) of smallness of ω0 relative to vs2(0), (114) and (115) lead
to

E(t0) <
ms

2
|vs2(0)|2 + (ρs − ρ f )gxs2(0) = E(0),

which is in contradiction with the conservation of energy. Therefore, for all time
t such that Ωs(t) does not intersect ∂Ω , we have vs2(t) < 0, which proves the
lemma. ��

We can now prove our general finite-time contact Theorem 3.

10. Finite-Time Contact for the Rigid Body Vertically Falling Over a Contact
Zone Locally Under the Form of a Graph

Proof. We now assume that the rigid body does not touch ∂Ω at any finite t > 0.
From [17], we then know the maximal time of existence of a smooth solution
satisfies

Tmax = ∞. (116)

From Lemma 4, we infer

∀t � 0, xs2(t) = h −
∫ t

0
|vs2(s)| ds,

which shows that
∫ ∞

0
|vs2(s)| ds � h. (117)

We now integrate (34) from 0 to t :

ms (vs2(t) − vs2(0)) = ρ f
∫ t

0

∫

∂Ω

|u f |2
2

n2 dl dt − (ms − ρ f |Ωs |)gt
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− ρ f
∫

∂Ω

x1u
f (·, t) · τ dl + ρ f

∫

∂Ω

x1u
f (·, 0) · τ dl

− ρ f
∫

Ω f (t)
u f
2 (·, t) dx + ρ f

∫

Ω f
u f
2 (·, 0) dx . (118)

We now write

∫

∂Ω

|u f |2
2

n2 dl =
∫

Γ1

|u f |2
2

n2 dl +
∫

Γ c
1 ∩∂Ω

|u f |2
2

(−αΩ + (n2 + αΩ)) dl,

(119)

which, thanks to Γ1 ⊂ {n2 � −αΩ < 0}, 0 < αΩ � 1, provides us with

∫

∂Ω

|u f |2
2

n2 dl � −αΩ

∫

∂Ω

|u f |2
2

dl +
∫

Γ c
1 ∩∂Ω

|u f |2 dl. (120)

Using our elliptic estimate (100) away from the contact zone, together with the
other elliptic estimate (111), we infer that

∫

∂Ω

|u f |2
2

n2 dl � − αΩ

∫

∂Ω

|u f |2
2

dl + CDΩ(‖ω0‖2L2(Ω f )
+ vs2(t)

2

+ |vs2(t)|
∣
∣
∣
∣

∫

∂Ω

u f · τ x1 dl

∣
∣
∣
∣) + C‖ω0‖2L2(Ω f )

� − αΩ

∫

∂Ω

|u f |2
2

dl + (CDΩ + C)|‖ω0‖2L2(Ω f )

+ CDΩ

(

vs2(t)
2 + |vs2(t)|diam(Ω)

√|∂Ω|
√∫

∂Ω

|u f · τ |2 dl
)

.

Integrating this in time and using Young for ε > 0 for the last term, we get

∫ t

0

∫

∂Ω

|u f |2
2

n2 dl dt � − αΩ

∫ t

0

∫

∂Ω

|u f |2
2

dl dt + (CDΩ + C)‖ω0‖2L2(Ω f )
t

+ CDΩ‖vs2‖L∞(0,t)

∫ t

0
|vs2(t)| dt

+ CDΩdiam(Ω)2

4ε

∫ t

0
vs2(t)

2 dt

+ CDΩε|∂Ω|
∫ t

0

∫

∂Ω

|u f |2 dl dt. (121)

Noticing that due to (117),

∫ t

0
(vs2)

2 dt � ‖vs2‖L∞(0,t)

∫ t

0
|vs2(t)| dt � h‖vs2‖L∞(0,t) �

√
2E(0)

ms
h,



Finite-Time Blow-Up for Incompressible Euler Moving Interfaces

we infer from (121) that for ε = αΩ

4CDΩ |∂Ω| ,
∫ t

0

∫

∂Ω

|u f |2
2

n2 dl dt � −αΩ

∫ t

0

∫

∂Ω

|u f |2
4

dl dt + (CDΩ + C)‖ω0‖2L2(Ω f )
t

+ CDΩ(1 + CDΩ |∂Ω|diam(Ω)2

αΩ

)

√
2E(0)

ms
h. (122)

Reporting (122) in (118) we obtain

ρ f
∫

∂Ω

x1u
f (·, t) · τ dl � − ρ f αΩ

∫ t

0

∫

∂Ω

|u f |2
4

dl dt

+ ρ f C(DΩ +1)t‖ω0‖2L2(Ω f )
−(ρs − ρ f )|Ωs |gt+C1,

(123)

where we also used the conservation of energy to have an estimate uniform in
time for the terms not explicitly reported in (123) and controlled by some C1 > 0
independent of time. Therefore, remembering our small curl assumption (3),

ρ f ‖x1‖L∞(∂Ω)

∫

∂Ω

|u f |(·, t) dl

� αΩρ f

4

∫ t

0

∫

∂Ω

|u f |2 dl dt + (ρs − ρ f )|Ωs |g
2

t − C1.

Proceeding in an identical manner as to the one in which we obtain (62) from (58)
we infer that the maximal time of existence Tmax of a smooth solution is finite,
which is in contradiction with our assumption that it was infinite. Therefore,

Tmax < ∞. (124)

From [17], the rigid body will then touch ∂Ω at Tmax. ��
From now on we assume that ω0 = 0.

11. Equivalence of Norms for the Velocity Field when ω = 0

We have by integration by parts that

0 =
∫

Ω f (t)

u f · u f dx

= −
∫

Ω f (t)
|∇u f |2 dx +

∫

∂Ω f (t)
∇nu

f · u f dl.

Therefore, expanding in the (τ, n) basis,

0 = −
∫

Ω f (t)
|∇u f |2 dx +

∫

∂Ω f (t)
∇nu

f · n u f · n + ∇nu
f · τ u f · τ dl,
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and using the divergence and curl relations on the boundary integral,

0 = −
∫

Ω f (t)
|∇u f |2 dx +

∫

∂Ω f (t)
−∇τu

f · τ u f · n + (∇τu
f · n) u f · τ dl.

Rearranging the last term of the boundary integral, this identity yields

0 = −
∫

Ω f (t)
|∇u f |2 dx −

∫

∂Ω f (t)
∇τu

f · τ u f · n dl

+
∫

∂Ω f (t)
(∇τ (u

f · n) − u f · ∇τn) u f · τ dl. (125)

By integrating by parts the first integral set on ∂Ω f (t), (125) becomes

∫

Ω f (t)
|∇u f |2 dx =

∫

∂Ω f (t)
u f · ∇τ τ u f · n + u f · τ ∇τ (u f · n) dl

+
∫

∂Ω f (t)
∇τ (u

f · n) u f · τ − u f · ∇τn u f · τ dl

=
∫

∂Ω f (t)
κu f · n u f · n + u f · τ∇τ (u f · n) dl

+
∫

∂Ω f (t)
∇τ (u

f · n)u f · τ + κu f · τu f · τ dl, (126)

where we used ∇τ τ = κ n and ∇τ n = −κτ on ∂Ω f (t) (we remind n points
outside Ω f (t)). Using the boundary conditions u f · n = vs(t) · n on ∂Ωs(t) and
u f · n = 0 on ∂Ω , we obtain from (126) that

∫

Ω f (t)
|∇u f |2 dx =

∫

∂Ωs (t)
κ (vs · n)2 + 2u f · τ vs · ∇τn + κ (u f · τ)2 dl

+
∫

∂Ω

κ (u f · τ)2 dl. (127)

12. A Formula for Acceleration at Time of Contact for the Case Without
Vorticity

Our aim is to establish the following formula for the case without vorticity,
which will be crucial to characterize the acceleration at contact later:

Lemma 5.

2
E(0) + (ρ f − ρs)gxs2|Ωs |

(vs2)
2

︸ ︷︷ ︸
>0 by (135) seen after

dvs2
dt

= −ρ f
∫

∂Ω

|u f |2
2

n2 dl + (ρ f − ρs)g|Ωs |.

(128)
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Proof. Using (104) we obtain that
∫

Ω f (t)
|u f |2 dx = −vs2(t)

∫

∂Ωs (t)
u f · τ x1 dl.

Using u f = ∇ψ for some potential ψ (since in this Section u f is curl free), this
provides

∫

Ω f (t)
|u f |2 dx = −vs2(t)

∫

∂Ωs (t)
∇τψ x1 dl

= vs2(t)
∫

∂Ωs (t)
ψ ∇τ x1 dl

= vs2(t)
∫

∂Ωs (t)
ψ τ1 dl

= vs2(t)
∫

∂Ωs (t)
ψ n2 dl. (129)

We will also need the following simple identity:
∫

Ω f (t)
u f
2 dx =

∫

Ω f (t)

∂ψ

∂x2
dx

=
∫

∂Ω

ψ n2 dl +
∫

∂Ωs (t)
ψ n2 dl. (130)

From (34), we obtain that

ms
dvs2
dt

= ρ f
∫

∂Ω

|u f |2
2

n2 dl − ρ f d

dt

∫

Ω f (t)
u f
2 dx − (ms − ρ f |Ωs |)g

+ ρ f d

dt

∫

∂Ω

ψ n2 dl, (131)

where we used
∫

∂Ω

u f · τ x1 dl = −
∫

∂Ω

ψn2 dl which is established similarly as

in the proof of (129). Using (130) in (131) yields

ms
dvs2
dt

= ρ f
∫

∂Ω

|u f |2
2

n2 dl −(ms −ρ f |Ωs |)g−ρ f d

dt

∫

∂Ωs (t)
ψ n2 dl. (132)

Using (129) in (132) yields

ms
dvs2
dt

= ρ f
∫

∂Ω

|u f |2
2

n2 dl − (ms − ρ f |Ωs |)g − ρ f d

dt

(‖u f ‖2
L2(Ω f (t))

vs2

)

.

(133)
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From our conservation of energy, (133) becomes

ms
dvs2
dt

= ρ f
∫

∂Ω

|u f |2
2

n2 dl − (ρs − ρ f )|Ωs |g

− d

dt

(
2E(0) − ms(v

s
2)

2 + 2(ρ f − ρs)gxs2|Ωs |
vs2

)

,

and thus by noticing that the second term in the time derivative on the right hand

side of this relation equals ms
dvs2
dt , we obtain

0 = ρ f
∫

∂Ω

|u f |2
2

n2 dl −(ρs−ρ f )|Ωs |g− d

dt

(
2E(0) + 2(ρ f − ρs)gxs2|Ωs |

vs2

)

.

(134)
The quotient rule for the last derivative of the right hand side of (134) then yields
the desired (128). ��

As a corollary of Lemma 5 we notice the following to define velocity at time

of contact: since n2 � −αΩ on Γ1, we have that
∫ Tmax

0

∫

Γ1

|u f |2n2 dldt is well
defined in [−∞, 0]. Since u f is bounded away from contact in L2(Γ c

1 ∩ ∂Ω) we

also have that
∫ Tmax

0

∫

Γ c
1 ∩∂Ω

|u f |2n2 dldt is well defined in R. Therefore (134)

shows that

lim
t→T−

max

2E(0) + 2(ρ f − ρs)gxs2(t)|Ωs |
vs2(t)

∈ [−∞,∞).

Since the coefficient

2E(0) + 2(ρ f − ρs)gxs2(t)|Ωs | � ms |vs(0)|2 + 2 (ρs − ρ f )
︸ ︷︷ ︸

>0

g (h − xs2(t))︸ ︷︷ ︸
>0

|Ωs |

� C0 > 0 (135)

is positive this provides that the following limit is well-defined:

vs2(Tmax) = lim
t→T−

max

vs2(t) ∈ (−∞, 0],

which allows us to speak of a velocity at contact.

13. Blow-Up of the L2(∂Ω f (t)) Norm of the Velocity Field in the Fluid in the
Case Without Vorticity

13.1. Blow-Up of the L2(∂Ω f (t)) Norm of u f as t → T−
max for the Case

vs2(Tmax) = 0

Integrating (134) from 0 to Tmax and using (135) we infer
∫ Tmax

0

∫

∂Ω

|u f |2n2 dl = −∞.
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Fig. 3. ωε(t)=fluid region between blue, red and purple curves

13.2. Blow-Up of the L2(∂Ω f (t)) Norm of u f as t → T−
max for the Case

vs2(Tmax) < 0

Proof. In this case we have the existence of α > 0 such that

∀t ∈ [0, Tmax), −
√
2E(0)

ms
� vs2(t) < −α < 0.

Let us now assume that we have the existence of β > 0 such that for a sequence
of points tn converging to Tmax, we have

∫

∂Ω f (tn)
|u f (tn)|2 dl � β. (136)

In what follows we work exclusively with this sequence of points, that we denote
t .

Let us denote by x0 ∈ ∂Ω a point where intersection occurs at Tmax. By as-
sumption our normal vector satisfies

n2(x0) � −αΩ < 0.

Wealsoknow that at the intersection, the directionof thenormal vector to ∂Ωs(Tmax)

at x0 will be the same as n(x0).We now for ε > 0 small consider the curve γε ⊂ ∂Ω

centered at x0, and with length ε. For t close to Tmax, we then call γε(t) the pro-
jection of γε on ∂Ωs(t) parallel to n(x0). Namely, for t close to Tmax and ε > 0
small, these two curves are almost like segments of length ε which are orthogonal
to n(x0).

Remark 10. γ ε(t) and γε do not need to be locally on one side of the tangent at
x0(t) and x0, respectively.
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Since our curves are of class C2 we have the existence of C > 0 such that the
area A1 between γε and the tangent line passing through x0 satisfies

|A1| � Cε3. (137)

Next we remember that since the fall of the rigid body is purely vertical, the vertical
projection of x0 onto ∂Ωs(t), that we call x0(t) satisfies

n(x0(t)) = −n(x0), (138)

as well as x0(t) ∈ γε(t) if t is close enough to Tmax. Then, similarly, by increasing
C if necessary, the area A2(t) between the tangent line passing though x0(t) (which
is perpendicular to n(x0)) and γε(t) satisfies

|A2(t)| � Cε3. (139)

Next the distance between between x0 and x0(t) satisfies (since x0(Tmax) = x0)

|x0 − x0(t)| �
√
2E(0)

ms
︸ ︷︷ ︸

C0

(Tmax − t). (140)

If we denote byωε(t) the region comprised between γε, γε(t), and the two segments
parallel to n(x0) and starting at an extremity point of γε, we have

|ωε(t)| � |A1(t)| + |A2(t)| + ε|x0 − x0(t)| � 2Cε3 + C0(Tmax − t)ε. (141)

Now, by integration by parts,
∫

ωε(t)
∇n(x0)u

f · n(x0) dx =
∫

γε∪γε(t)
u f · n(x0) n(x0) · n dl. (142)

Thus, with (127) and our assumption (136) we obtain by Cauchy–Schwarz that
∣
∣
∣
∣

∫

γε∪γε(t)
u f · n(x0) n(x0) · n dl

∣
∣
∣
∣ � C

√|ωε(t)| (143)

for some C > 0 independent of t and ε. We next have on γε that

|n(x0) − n| � max |κ||γε| � Cε (144)

for some C > 0 independent of t and ε. Taking ε > 0 and Tmax − t > 0 small
enough, we have

|γε(t)| � 2ε. (145)

Due to x0(t) ∈ γε(t) for t close enough to Tmax and (145),

∀x ∈ γε(t), |x − x0(t)| � 2ε.

Therefore the distance on γε(t) satisfies (for ε > 0 small enough) that

∀x ∈ γε(t), dγε(t)(x, x0(t)) � 3ε.
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Therefore,

∀x ∈ γε(t), |n(x0(t), t) − n(x, t)| � max |κ|maxγε(t)dγε(t)(x, x̃0(t)) � Cε

(146)
for some C > 0 independent of t and ε. We now write for γε that

u f ·n(x0)n(x0) ·n = u f · (n(x0)−n)n(x0) ·n+u f ·n(n(x0)−n) ·n+u f ·n n · n︸︷︷︸
=1

,

while for γε(t),

u f ·n(x0)n(x0) ·n = u f · (n(x0)+n)n(x0) ·n−u f ·n(n(x0)+n) ·n+u f ·n n · n︸︷︷︸
=1

.

Using these two equations in (143), (144) and (146), we infer that for some C > 0
independent of t and ε,

∣
∣
∣
∣

∫

γε(t)
u f · n dl

∣
∣
∣
∣ �C

√|ωε(t)| + Cε

∫

γε(t)∪γε

|u f | dl

�C
√|ωε(t)| + Cε(

√|γε| + √|γε(t)|)‖u f ‖L2(∂Ω f (t)). (147)

Using the boundary condition u f · n = vs2n2 on ∂Ωs(t) and our estimate (141)
as well as our crucial assumption (136) we then obtain from (147) that for some
C > 0 independent of t and ε,

∣
∣
∣
∣v

s
2(t)

∫

γε(t)
n2 dl

∣
∣
∣
∣ � C

√
ε3 + ε(Tmax − t) + Cε

√
ε. (148)

Therefore, since for ε > 0 small enough and t close enough to Tmax, n on γε(t) is
close to −n(x0), which satisfies n2(x0) < −αΩ ; we then infer from (148) that

|vs2(t)|αΩε � 2C
√

ε3 + ε(Tmax − t) + 2Cε
√

ε.

Letting (with ε > 0 fixed) t converge to Tmax we then have

|vs2(Tmax)|αΩ � 2C
√

ε + 2C
√

ε.

This identity being true for any ε > 0 small enough leads us to obtain that
vs2(Tmax) = 0, which is in contradiction with our assumption that vs2(Tmax) < 0.
Therefore our assumption (136) has to be rejected, which means we proved 1) of
Theorem 4:

lim
t→T−

max

‖u f ‖L2(∂Ω f (t)) → ∞. (149)

��
Remark 11. Away from the contact points at time Tmax, the velocity field in the
fluid stays smooth by elliptic regularity (by (100) and (101)), so it is indeed at the
contact points that the blow-up is localized.
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We now establish that contact occurs with an infinite upward acceleration for
the solid, except for the case where the contact zone at Tmax contains a curve of
non-zero length, in which case the acceleration becomes strictly positive as contact
nears, while staying bounded.

The blow-up (149) shows that the first term in the expression of acceleration in
(34), established in Lemma 1, will tend to −∞ (since n2 < 0 in the contact zone).
This term indeed contributes oppositely to the announced result. It is the detailed
treatment of the last term of (34) for the case without vorticity which allows us to
rewrite this term and obtain (128) in Lemma 5. In turn, (128) shows in the next
section that the acceleration of the rigid body is either positive finite or infinite at
contact, establishing a repelling effect of the boundary at contact.

14. Positive or Infinite Upward Solid Acceleration at Time of Contact for the
Case Without Vorticity

From (128) in Lemma 5 we immediately have

2
E(0) + (ρ f − ρs)gxs2|Ωs |

(vs2)
2

dvs2
dt

� ρ f αΩ

∫

∂Ω

|u f |2
2

dl + (ρ f − ρs)g|Ωs |

− ρ f
∫

∂Ω∩Γ c
1

|u f |2
2

(n2 + αΩ)dl

︸ ︷︷ ︸
bounded by (100)

, (150)

where we used in (150) the fact that n2 < −αΩ on Γ1.
We can now conclude on our acceleration. We will have to distinguish three

cases. The first case is when the velocity at contact is nonzero. The next case is
when the velocity at contact is zero, and contact occurs on a set of zero length,
which has the same conclusion with an infinite upward acceleration. The final case
considered is when contact occurs on a set containing a connected component with
non zero length, for which we establish that the velocity at contact is zero, and the
acceleration remains finite and stays away from zero.

Case 1. vs2(Tmax) < 0
From (135), we infer from (150), the fact that the velocity stays away from zero,

and our blow-up (149) that

lim
t→T−

max

dvs2
dt

(t) = ∞. (151)

From (151) and (92e), we immediately have

lim
t→T−

max

∫

∂Ωs (t)
pn dl = ∞, (152)

which establishes the blow-up of the normalized (to zero on top of ∂Ω on x1 = 0)
pressure on ∂Ωs(t) as we approach contact.
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We now get back to (150). From the fact that the velocity stays away from zero
as t → T−

max (from our assumption vs2(Tmax) < 0) we then infer that 1
vs2(t)

stays

bounded as t → T−
max. Therefore, from (128) and

d(vs2)
−1

dt = − 1
(vs2)

2
dvs2
dt , this implies

that ∫ Tmax

0
‖u f ‖2L2(∂Ω)

dt < ∞.

Case 2. vs2(Tmax) = 0. The calculations in this part are for any contact zone covered
in Theorem 4, with vs2(Tmax) = 0, until (161) included. After this relation, they are
for a contact zone of zero length. Here

lim
t→T−

max

vs2(t) = 0 (153)

simply translates into
lim

t→T−
max

(vs2(t))
−1 = −∞. (154)

By integrating (128) from 0 to Tmax we then obtain

∫ Tmax

0

∫

∂Ω

|u f |2n2 dl dt = −∞. (155)

By conservation of total energy, we have by (135) that

ρ f
∫

Ω f (t)
|u f |2 dx → 2(E(0) − (ρs − ρ f )g|Ωs |x2(Tmax)) > 0, as t → T−

max.

(156)
Using (129), we obtain
∫

∂Ωs (t)
φn2 dx vs2(t) → 2

ρ f
(E(0) − (ρs − ρ f )g|Ωs |x2(Tmax)), as t → T−

max.

(157)
Using (130) in (157) then yields

∫

∂Ω

φn2 dx vs2(t) → − 2

ρ f
(E(0) − (ρs − ρ f )g|Ωs |x2(Tmax)), as t → T−

max,

(158)
where we also used the fact that u f is bounded in L2(Ω f (t)). By reasoning similar
to that used to obtain (129), this is equivalent to
∫

∂Ω

u f · τ x1 dl vs2(t) → 2

ρ f
(E(0) − (ρs − ρ f )g|Ωs |x2(Tmax))

︸ ︷︷ ︸
C0>0

, as t → T−
max.

(159)
Using Cauchy–Schwarz in the integral on the left hand side of (159), this then
provides some C1 > 0 such that for t close enough to Tmax,

∫

∂Ω

|u f |2 dl � C1

vs2(t)
2 . (160)
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Reporting (160) in (150) yields

dvs2
dt

(t) � ρ f C1αΩ

5E(0)
= a0 > 0 (161)

for any t close enough to Tmax, which again shows a positive upward acceleration
for the rigid body as contact nears, opposing the fall.

We now prove that for the case when the part of ∂Ω intersecting ∂Ωs(Tmax) is
of zero measure and vs2(Tmax) = 0, we have an infinite upward acceleration for the
solid at the time of contact.

From now on C denotes a generic positive constant independent of t < Tmax.
Let us now fix ε > 0.
Using our assumption that the intersecting part of ∂Ω is of zero length, we

write
∂Ω = Γε ∪ (Γ c

ε ∩ ∂Ω), (162)

where Γε is a union of curves containing the contact points at Tmax and whose
total length is less than ε. By Cauchy–Schwarz applied on Γε and that which is
complementary to it, we have

∣
∣
∣
∣

∫

∂Ω

u f · τ x1 dl

∣
∣
∣
∣ � C

√
ε

√

−
∫

Γε

n2|u f · τ |2 dl+C

√∫

Γ c
ε ∩∂Ω

|u f · τ |2 dl, (163)

since n2 � −αΩ < 0 on the contact part of ∂Ω .
Due to our control of u f away from the contact zone by (100), we have from

(163) that
∣
∣
∣
∣

∫

∂Ω

u f · τ x1 dl

∣
∣
∣
∣ � C

√
ε

√

−
∫

Γε

n2|u f · τ |2 dl + Cε, (164)

whereCε is independent of t (but blows up as ε → 0).With (159), (164) provides for
t close enough to Tmax (with ε > 0 fixed, and remembering that limt→T−

max
vs2(t) =

0, and C is generic) such that
∣
∣
∣
∣
∣
(E(0) − (ρs − ρ f )g|Ωs |xs2(Tmax))

ρ f vs2(t)

∣
∣
∣
∣
∣
� C

√
ε

√

−
∫

Γε

n2|u f · τ |2 dl. (165)

Therefore,

(E(0) − (ρs − ρ f )g|Ωs |xs2(Tmax))
2

(ρ f )2vs2(t)
2C2ε

�
∫

∂Ω

|u f · τ |2 dl. (166)

Using (166) in (150) then yields, for t close, that enough to Tmax, that

dvs2
dt

(t) � (E(0) − (ρs − ρ f )g|Ωs |xs2(Tmax))

5ρ f C2

αΩ

ε
,

which, given the arbitrary nature of ε > 0, provides

lim
t→T−

max

dvs2
dt

(t) = ∞. (167)
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Case 3. When the contact zone is of non zero length.
We now treat the remaining case where the contact zone contains a curve Γc ⊂

Γ1∩∂Ωs(Tmax) of non zero length.Wewill first prove the velocity of the rigid body
at contact is zero (therefore allowing the inequality (161)), and that the acceleration
remains bounded.

Since n2 < −αΩ on Γ1, we have the existence of f smooth such that Γ1 is the
graph of a function f for x1 ∈ ∪i∈I [αi , βi ] for some αi � βi . In a neighborhood
of the region of the rigid body which intersects Γ1 at Tmax, we also have that
∂Ωs(Tmax) is the graph of a function g, which equals f on the contact zone. We
have that f = g for x1 ∈ ∪i∈J [ai , bi ] (J ⊂ I and [ai , bi ] ⊂ [αi , βi ]) and for ε > 0
small, we have the existence of cε > 0 small such that

∀x ∈ [ai − cε, bi + cε], f (x1) � g(x1) � f (x1) + ε. (168)

We now define for t < Tmax the distance in the vertical direction between the two
curves at time t :

ηs2(t) =
∫ t

Tmax

vs2(s) ds > 0. (169)

We denote this by (dropping the i index)

S−
a,b,ε = {(x1, f (x1)); x1 ∈ [a − cε, b + cε]} ⊂ Γ1,

S+
a′,b′(t) = {(x1, f (x1) + ηs2(t)); x1 ∈ [a′, b′] ⊂ [a, b]},

Ω
f
a,b,ε(t) = {(x1, x2); x1 ∈ [a − cε, b + cε]; x2 ∈ ( f (x1), g(x1) + ηs2(t))},

Ω
f
a′,b′(t) = {(x1, x2); x1 ∈ [a′, b′] ⊂ [a, b]; x2 ∈ ( f (x1), f (x1) + ηs2(t))}.

Since the fall is vertical with velocity constant in space, we have that

Ω
f
a,b(t) ⊂ Ω

f
a,b,ε(t) ⊂ Ω f (t),

S+
a,b(t) ⊂ ∂Ωs(t).

For α ∈ [0, b−a
4 ] we now denote this by

Ωα(t) = Ω
f

a+α,a+3 b−a
4 +α

(t) ⊂ Ω f (t). (170)

From the divergence theorem,
∫
∂Ωα(t) u

f · n dl = 0, which provides, if we denote

Sα(t) = S+
a+α,a+3 b−a

4 +α
(t) ⊂ ∂Ωs(t),

vs2(t)
∫

Sα(t)
n2 dl =

∫

∂Ωα(t)∩{x1=a+α}
u f
1 dx2 −

∫

∂Ωα(t)∩{x1=a+3 b−a
4 +α}

u f
1 dx2.

(171)
Integrating (171) with respect to α (variable x1) between 0 and b−a

4 yields

vs2(t)
∫ b−a

4

0

∫

Sα(t)
n2 dl dx1 =

∫

Ω
f

a,a+ b−a
4

(t)
u f
1 dx −

∫

Ω
f

a+3 b−a
4 ,b

(t)
u f
1 dx .
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Ωa,b(t)
S+

a,b(t) ⊂ ∂Ωs(t)

S−
a,b(t) ⊂ ∂Ω

x1
a ba − cε

b + cε

Fig. 4. Here, the blue and red curves are translated vertically from each other. Contact at

time Tmax does not occur along the black curves. Ω f
a,b,ε(t) is defined as Ω

f
a,b(t) with the

green vertical lines replacing the purple ones

Therefore, by Cauchy–Schwarz applied to the right-hand side of this identity,

|vs2(t)|
∣
∣
∣
∣
∣

∫ b−a
4

0

∫

Sα(t)
n2 dl dx1

∣
∣
∣
∣
∣
� 2

√
|Ω f

a,b(t)|‖u f ‖
L2(Ω

f
a,b(t))

,

which provides us (since u f is bounded in L2(Ω f (t)) and |Ω f
a,b(t)| = ηs2(t) ×

(b − a) ) with the existence of C > 0 independent of t < Tmax such that

|vs2(t)| � C
√

ηs2(t). (172)

Remark 12. This inequality uses in a crucial way the fact contact occurs on a zone
containing a curve of non-zero length. It also establishes that the contact velocity
is zero whenever a curve of non-zero length is part of the contact zone.

Remark 13. After completion of this work, the author was informed that in the
Navier–Stokes context, Starovoitov in [25] previously defined similar geometric
sets as the various sets appearing in the previous page. The present paper obtains
the inequality before (172) in the same way as the original inequality (11) of [25].
The rest of the present proof (in particular to obtain (179), as well as the type
of conclusions reached) and the analysis of [25] however differ significantly. For
instance, [25] establishes the estimate (12) from (11) by means of a Sobolev in-
equality inΩ (domain without cusp), which is allowed since the velocity field for a
viscous problem is in H1

0 (Ω) (unlike in the inviscid case where there is tangential
discontinuity).
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We define the vertical distance between the two graphs at time t at x1 as follows

d(x1, t) = g(x1) − f (x1) + ηs2(t),

and we define for any x1 ∈ [a − cε, b + cε] the vertical average of u f
1 as:

ū1(x1, t) = 1

d(x1, t)

∫ g(x1)+ηs2(t)

f (x1)
u f
1 (x1, x2, t) dx2.

Due to u f = ∇⊥φ with φ = 0 on ∂Ω and φ = vs2(t)x1 on ∂Ωs(t), we have

ū1(x1, t) = − vs2(t)x1
d(x1, t)

. (173)

Next since ū1(x1, t) is a value taken by u
f
1 on the vertical segment {x1} × [ f (x1),

g(x1) + ηs2(t)], we have the existence of α(x1, t) ∈ [ f (x1), g(x1) + ηs2(t)] such
that ū1(x1, t) = u f

1 (x1, α(x1, t), t), which leads to

u f
1 (x1, f (x1), t) − ū1(x1, t) =

∫ f (x1)

α(x1,t)

∂u f
1

∂x2
(x1, x2, t) dx2. (174)

This implies by Cauchy–Schwarz that

(u f
1 (x1, f (x1), t) − ū1(x1, t))

2 � d(x1, t)
∫ g(x1)+ηs2(t)

f (x1)

∣
∣
∣
∣
∣
∂u f

1

∂x2
(x1, x2, t)

∣
∣
∣
∣
∣

2

dx2.

(175)
We now multiply (175) by the length element

√
1 + f ′2(x1) on ∂Ω and integrate

the resulting relation with respect to x1 ∈ [a − cε, b + cε]. Remembering that cε

was chosen so that (168) was satisfied, we then obtain

∫

S−
a,b,ε(t)

|u f
1 − ū1|2 dl � C(ε + ηs2(t))

∫

Ω
f
a,b,ε(t)

∣
∣
∣
∣
∣
∂u f

1

∂x2
(x1, x2, t)

∣
∣
∣
∣
∣

2

dx . (176)

Using the triangular inequality we infer from (176) and (173) that

∫

S−
a,b,ε(t)

|u f
1 |2 dl � C(ε + ηs2(t))

∫

Ω
f
a,b,ε(t)

|∂u
f
1

∂x2
|2 dx + C

(vs2(t))
2

ηs2(t)
2 , (177)

where we remind the reader C is a generic constant independent of time. Since by
our assumption on Γ1, n2 � −αΩ < 0 , and since u f · n = 0 on S−

a,b,ε, we have

that |u f
1 | � C |u f | on Γ1 for some C > 0 independent of time. Therefore, we infer

from (177) that (we remind the reader C is generic)

∫

S−
a,b,ε(t)

|u f |2 dl � C(ε + ηs2(t))
∫

Ω
f
a,b,ε(t)

|∂u
f

∂x2
|2 dx + C

(vs2(t))
2

ηs2(t)
2 . (178)
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We now work with t close enough to Tmax so that ηs2(t) � ε. Therefore, with our
generic constant C , (178) becomes

∫

S−
a,b,ε(t)

|u f |2 dl � Cε

∫

Ω
f
a,b,ε(t)

|∂u
f

∂x2
|2 dx + C

(vs2(t))
2

ηs2(t)
2 . (179)

Summing over all regions of the type S−
a,b,ε(t) in case contact occurs on a non–

connected set, we then have from (179) that

∫

∂Ω

|u f |2 dl � Cε

∫

Ω f (t)
|∂u

f

∂x2
|2 dx + C

(vs2(t))
2

ηs2(t)
2 + Cε, (180)

with Cε being a constant independent of time (and becoming large as ε is small).
Due to (127), this inequality implies that

∫

∂Ω

|u f |2 dl � Cε

∫

∂Ω f (t)
|u f |2 dl + C

(vs2(t))
2

ηs2(t)
2 + Cε.

By choosing ε > 0 small enough, this inequality implies (we remind readersC > 0
is generic and ∂Ω f (t) = ∂Ωs(t) ∪ ∂Ω)

∫

∂Ω

|u f |2 dl � Cε

∫

∂Ωs (t)
|u f |2 dl + C

(vs2(t))
2

ηs2(t)
2 + Cε. (181)

Next we notice that since n2 � −αΩ on Γ1, we have n2 � αΩ > 0 in the region
of ∂Ωs(t) near ∂Ω . Since u f is bounded away from the contact zone, we have

∫

∂Ωs (t)
|u f |2 dl � 1

αΩ

∫

∂Ωs (t)
|u f |2n2 dl + C. (182)

By integration by parts in Ω f (t),

∫

∂Ωs (t)
|u f |2n2 dl = −

∫

∂Ω

|u f |2n2 dl + 2
∫

Ω f (t)

∂u f

∂x2
· u f dx .

Thus, for δ > 0 small (to be made precised later), we have
∫

∂Ωs (t)
|u f |2n2 dl �

∫

∂Ω

|u f |2 dl + δ

∫

Ω f (t)
|∇u f |2 dx + 1

δ

∫

Ω f (t)
|u f |2 dx

�
∫

∂Ω

|u f |2 dl + δ

∫

Ω f (t)
|∇u f |2 dx + C

δ

�
∫

∂Ω

|u f |2 dl + Cδ

∫

∂Ω f (t)
|u f |2 dl + C

δ
, (183)

where we used (127). By using (182) we then see that for Cδ < αΩ

2 we have, from
(183), ∫

∂Ωs (t)
|u f |2n2 dl � C

∫

∂Ω

|u f |2 dl + C.
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From (182), (and remembering that C is generic)
∫

∂Ωs (t)
|u f |2 dl � C

∫

∂Ω

|u f |2 dl + C. (184)

Therefore, by picking ε > 0 small enough, (184) used in (181) implies

∫

∂Ω

|u f |2 dl � C
(vs2(t))

2

ηs2(t)
2 + C. (185)

Using (185) in our formula for acceleration (128), we obtain

dvs2
dt

� C
(vs2(t))

4

ηs2(t)
2 + Cvs2(t)

2.

Using (172) in the previous inequality provides
dvs2
dt

� C, and therefore with (161),

0 < a0 � lim inf
t→T−

max

dvs2
dt

(t) � lim sup
t→T−

max

dvs2
dt

(t) < ∞,

which finishes the proof of Theorem 4. ��
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