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RESEARCH ARTICLE

The short-term influence of cumulative, sequential rainfall-runoff flows on sediment
retention and transport in selected SuDS devices
Deonie Allena, Heather Haynesa, Valerie Oliveb, Steve Allenc and Scott Arthura

aInstitute of Infrastructure and Environment, Heriot-watt university, EGIS, Edinburgh, United Kingdom of Great Britain and Northern Ireland;
bScottish Universities Environmental Research Centre, University of Glasgow, East Kilbride, United Kingdom of Great Britain and Northern Ireland;
cIETL, University of Edinburgh, Edinburgh, United Kingdom of Great Britain and Northern Ireland

ABSTRACT
It is necessary to understand Sustainable urban Drainage Systems (SuDS) sediment retention efficiencies
to fully comprehend SuDS pollution removal properties and urban sediment movement from source-to
sink. This research presents the detention and transport of a single tagged sediment release through four
SuDS devices over 12 months, with the aim of quasi-quantifying these selected SuDS devices sediment
detention efficiencies. Field monitoring and mass balance analysis of deposited sediment shows that
tagged sediment from the single sediment release moves through the monitored SuDS, with deposition
declining over the 12-month monitoring period. Initial retention is high (>80% during the first week of
monitoring) but falls below 80% after multiple consecutive rainfall-runoff events (events ≤50% ARI). The
field monitoring illustrates retention to generally remain above 50%, suggesting that SuDS are highly
efficient at retaining urban sediment pollution but that deposition of a single sediment release may
resuspend due to cumulative rainfall-runoff events.
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1. Introduction

Field or physically based studies often consider the deposition
and retention of sediment within Sustainable urban Drainage
Systems (SuDS) devices over multiple rainfall-runoff events
(International BMP database, 2016). Fewer studies have ana-
lysed or quantified the cumulative, sequential rainfall-runoff
influence on the deposition of a single release of urban sedi-
ment within SuDS devices. Once deposited, sediment within
SuDS devices are either permanently retained (retention) or
resuspended and conveyed (temporarily detained). Published
studies consider urban sediment deposition in ponds and
wetlands with perennial flow (Krishnappan and Marsalek
2002; Heal 2000; Heal, Hepburn, and Lunn 2006; McNett and
Hunt 2011; Merriman and Hunt 2014; Yousef et al. 1994) while
others (e.g. Deletic 2005; Barrett et al. 1998; Nara and Pitt
2005) analysed sediment retention of ephemerally flowing
filter strips and swales. The temporal focus of published stu-
dies has been individual flow events (i.e. multiple individual
flow event analysis); or longer-term studies where detention
or retention of total sediment load (total, cumulative influx
and retention of sediment) and mitigation of total suspended
solids (TSS, indicating deposition) is the focus. The retention
and conveyance of an individual (i.e. tagged) sediment release
over cumulative, multiple, sequential rainfall-runoff flows have
been less frequently calculated due to the difficulty in defining
the quantity of sediment deposited and retained form indivi-
dual sediment influx events (e.g. Merriman and Hunt 2014;
Allen 2017).

There is a wide range of field and laboratory data describing
the change in stormwater quality due to SuDS implementation

(Krishnappan and Marsalek 2002). This study aims to supple-
ment this dataset by providing a single sediment release deposi-
tion trend through field monitored SuDS. Uncertainty exists in
the quantification of urban sediment deposition within SuDS
devices (Taylor and Owens, 2009; Heal, Hepburn, and Lunn
2006). Local authority guidelines and design guidance provide
an indication of expected or acceptable water quality improve-
ment. Within the UK, the reference focus of this study, the
guidance is generally focused on a single design rainfall-runoff
event with an event mean concentration; for example the UK
SuDS Manual suggests Total Suspended Solid (TSS) improve-
ment by swale: 50–60%; linear wetland: 75–85%; wetland:
80–82%; pond: 75–80% (Woods Ballard et al. 2015).
Internationally, SuDS device achievements are considered over
extended periods (greater than 12 months) thus incorporating
the deposition and resuspension due to multiple rainfall-runoff
events (e.g. USA, Australia SuDS guidance and analysis (Caltrans
2015; Department of Environment 2004)). Solute pollution
change or water quality improvement provided by SuDS is
well understood and reflected in current design guidance
(Water by Design 2014; Woods Ballard et al., 2015). Within the
UK, while this information is generally compiled from single
event monitoring and analysis, they are often assumed to
represent longer-term SuDS sediment removal efficiency. The
international long-term monitoring and analysis of SuDS pre-
sents a positive example of best practice which the UK may
follow in future.

This research aims to quasi-quantify the sediment the
retention of a single sediment release in SuDS devices over
12 months (past the initiating sediment influx rainfall-runoff

CONTACT Deonie Allen deonie.allen@ensat.fr

URBAN WATER JOURNAL
https://doi.org/10.1080/1573062X.2018.1508594

© 2018 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

http://www.tandfonline.com
http://crossmark.crossref.org/dialog/?doi=10.1080/1573062X.2018.1508594&domain=pdf


event). Key to examining this short-term (12 month) sediment
retention is the identification of whether tagged sediment is
retained permanently or detained and conveyed within SuDS
devices after initial deposition. For the purposes of this study
fine sediment (monitored tagged sediment) is defined as
urban sediment <2 mm, d50 ~ 63–150 µm and density
~2600–2780 kg/m3; this is a typical urban particle size distri-
bution (Zanders 2005). To define a single sediment release
deposition and retention within the monitored SuDS devices
over cumulative, consecutive rainfall-runoff events a sediment
tracer methodology was used.

2. Methods

Four SuDS device designs (wetland, linear wetland, swale and
pond) were selected for the focus of this study. Each SuDS
device was considered in isolation. A fine sediment tracer
methodology using rare earth oxides (REO) (described in
Allen et al. 2015, Allen 2017) was employed at selected estab-
lished SuDS device field sites to allow the natural movement

of urban sediment to be recorded in conjunction with rainfall,
flow characteristics and mass deposition within monitored
SuDS.

2.1. The field sites

The selected established SuDS devices, located in Bathgate,
Scotland and Newcastle, England, were monitored for 12 months.
These SuDS were chosen due to access, establishment and
collection of urban runoff from residential and commercial urba-
nised development. The rainfall and flow characteristics were
continuously monitored at all SuDS locations for the total mon-
itoring duration using Tempcon RG3-M rain gauges and Greyline
Stingray depth velocity meters. Figure 1 (and Appendix 1) pre-
sent the SuDS device characteristics.

To calculate a general representation of flow, cross section
survey was completed at the location of the depth velocity
monitor placement and flow was calculated using standard
depth-velocity-area equation, taking into consideration vege-
tation (Mannings ‘n’) (similar methodology used by Stevens

Figure 1. Schematic diagrams of established, field monitored SuDS. A linear wetland, within the Scottish contest, is a large swale densely vegetated with wetland
plants but without permanent ponding areas provided within a wetland or wetland flow depth. Note that sampling intern deposition across the large pond was not
possible due to pond depth and health and safety regulations. The large pond deposition is estimated using sample points 1 and 4 (in the pond), 5, within the
outlet flow path and known inflows (inlet, samples 2 and 3).
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and Ogunyoye 2012; Heal 2000; Kadlec 1990; the ultrasonic
method described in Caltrans Guidance Manual: Stormwater
Monitoring Protocols (2000) (details provided in Allen 2017)).

Indicative areas (described in table of Appendix 1) reflect
the spatial extent of each SuDS device represented by each
sediment deposition monitoring location. It is acknowledged
that this presents an indication rather than a definitive quan-
tification but due to the nature of the experiments (ongoing
movement of tagged sediment over multiple, consecutive
rainfall-runoff events) sampling of the total tagged sediment
deposition in the SuDS devices was not possible.

2.2. Sediment conveyance and deposition monitoring

Fine sediment loading on the contributing catchment surfaces
was sampled (road and car park). 1 m2 area of each represen-
tative road and car park surface within each contributing
catchment was sampled (sampling occurred 48 hrs after rain-
fall-runoff) following vacuum sampling methodology
described in Vase, Francis, and Chiew (2002) and Egodawatta
and Goonetilleke (2006). Sampling was undertaken in tripli-
cate. The vacuum sampling was completed prior to tagged
sediment release to provide existing sediment characterisation
(particle size distribution presented in Appendix 7). This pro-
vided a representation of site specific urban sediment loading
and characterisation, but it is acknowledged that the loading
is not necessarily representative of the wash-off. An equivalent
of a 1 × 1 m2 surface area (comprised of four 0.25 × 0.25 m2

samples) was vacuum sampled each month after tagged sedi-
ment release. The quantity of tagged sediment in each
vacuum sample was analysed to provide a representation of
the tagged sediment remaining on the urban surface (not
transported by rainfall-runoff wash-off). By comparing the
known quantity of tagged sediment initially released to that
remaining on the urban surface, quasi-quantification of the
amount of tagged sediment entering the SuDS devices was
possible (total tagged sediment initially released ̴ tagged sedi-
ment remaining on the surface + tagged sediment influx into
the SuDS device).

The quantity of tagged sediment in suspension and depos-
iting within the SuDS devices were monitored fortnightly
(monthly for the small pond due to access) to provide a
time-stepped dataset indicating sediment deposition over
the 12 month period. Sampling was completed to allow a
fortnightly mass balance of sediment deposited rather than
rainfall-runoff event specific calculations. Fixed sample points,
time-stepped sampling methodology has been illustrated by
McCarthy et al. (2017) to be more effective in presenting SuDS
pollutant removal efficiency than grab samples or random
sampling, but less so than runoff volume proportional sam-
pling (Caltrans 2015). Stormwater (collected at the surface)
and sediment deposition samples were collected from fixed
locations throughout the monitoring period, at locations cen-
tral to the representative SuDS device area (indicative area
weighting illustrated in Figure 1, Appendix 1). Surface samples
were collected to allow simple mass balance analysis of
tagged sediment in the SuDS device at the specific time of
bed deposition sampling. It is acknowledged that sediment
deposition may be laterally inconsistent, however due to the

physical limitations of this study lateral or composite sampling
was not possible. Central thalweg sample locations have
therefore been used to provide a representation of SuDS
device tagged sediment retention. Surface flow samples
were collected from directly above the bed sampling locations
using an ISCO 3700 sampler (10 mm diameter sample hoses
anchored to fixed positions for the duration of the monitoring
period, Appendix 4 (Allen 2017)).

Surface flow, indicative of tagged suspended sediment
quantity, was sampled from the swales and linear wetland
when flow depth ≥20 mm to insure sample integrity. 500 ml
samples were collected at marked locations from the upper
20 mm of flow for a period of 60 seconds. Surface flow of
equivalent volume was sampled from wetland and pond SuDS
devices (Appendix 4). Sampling hoses were attached to
anchored floats within these SuDS devices to ensure consis-
tency in sampling location. Surface flow tagged suspended
sediment was monitored to provide a snap-shot visualisation
of tagged total suspended solid (TSS) quantity within the SuDS
and to enable more accurate accounting of the total (mass
balance) of tagged sediment.

Bed deposition was sampled using sediment traps located
flush with the SuDS device bed surface (Appendix 5). Each
sediment trap was comprised of two 300 × 200 mm 5L con-
tainers, a static underlying plastic box installed to limit dis-
turbance during sample retrieval, and an inner plastic box (the
sediment trap) weighted with 500 g of 100 mm diameter
gravel, designed similar to Kayanian et al. (2012) and Lawler
(2006). The inner box was retrieved fortnightly (monthly in the
small pond) and collected sediment removed for analysis. The
cleaned inner box was replaced within the static anchored
outer box. Limited localised resuspension occurred on repla-
cement of the inner box, and after 15 minutes no visible
sediment accumulation was noted.

Core sampling, similar to IAEA (2003) and Fraley (2004), was
completed adjacent to the bed sediment traps. Core samples
(50 mm diameter, maximum 100 mm depth) were collected
from unique locations within a 1 m radius adjacent to the bed
sediment trap to define the rare earth oxide (REO) tagged
sediment deposition. No location was repeatedly sampled.
Coring frequency corresponded directly with the bed load
sampling.

For all samples, sediment from the urban surface (tagged
sediment release) was differentiated from underlying or native
soil sediment using the REO tag chemical signature (Allen
et al. 2015). The focus of this study was to monitor sediment
deposition and movement and the use of REO tagging
allowed for this differentiation.

Fine urban sediment particle size distribution is noted to
have a significant proportion of clay and silt (≥50% particle
size ≤ 63 µm) (Selbig et al. 2016; Drapper 2014) and may
therefore include a proportion of cohesive particulates (mate-
rial ≤ 63 µm) (Berlamont et al. 1993). The focus of this field
research was to consider total tagged sediment deposition
and movement, both individual particles and cohesive (floccu-
lated) particulates. It is acknowledged that occurrence and
cohesion of fine sediment plays an important part in the
deposition and transport of fine urban sediment pollution.
However, the depth of detail available from the field
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experiment was limited to total tagged sediment retention
and thus cohesive sediment was not explicitly considered.

2.3. The fine sediment tracer

A fine sediment tracer methodology using rare earth oxides
(REO) was implemented in this study. This method has been
piloted in a swale test case (Allen et al. 2015) and previously
used in agricultural erosion and sediment transport studies
(Zhang et al. 2001, 2003; Polyakov and Nearing 2004; Deasy
and Quinton 2010).

REOs were selected for urban fine sediment monitoring
due to their provision of the following key criteria, supporting
extended field monitoring of sediment transport or settling
within each of the monitored SuDS devices:

(1) Persistence – sediment supplied to the upstream
boundary should be tagged via a conservative tracer
persisting (adsorbed to the sediment) over a range of
spatial (m-km scale) and temporal (up to 12 month)
scales.

(2) Non-toxic – as the blue-green drainage network has
environmental value and importance, the tracer must
result in no detrimental impact on the receiving
environment.

(3) Particle characteristics – the tracer must be effective in
mimicking natural sediment movement; hence, particle
size, grain size distribution and density must be
considered.

(4) Multiple signatures – several unique forms of tracer
must be available to enable the monitoring of indivi-
dual sediment releases (time-lapse repetitions and
source-specific identifiers) within the same receiving
SuDS.

Fine sediment, the equivalent of approximately 1/12
th of the

annual urban sediment load (Haster and James 1994; Taylor
and Owens 2009; Egodawatta and Goonetilleke 2006) and
representative in particle size distribution to site specific sur-
face samples, was tagged (10 g REO/1 kg clean sediment) and
released onto the contributing catchments impervious urban
surfaces. Unique REOs, providing individual signatures, were
used for each release to allow repetition of the sediment
monitoring experiment without loss of integrity (e.g. delinea-
tion between deposited sediment from release 1 and release 3
at a single sample point). Tagging was undertaken following
the methodology described in Kimoto, Nearing, Shipitalo, and
Polyakov (2006), Polyakov et al. (2009) , Allen et al. (2016) and
Zhang et al. (2001), using clean sieved sediment and adsorp-
tion of selected REO tracer through a cycle of wetting and
drying.

Tagged sediment was released over selected impervious
contributing catchment areas directly adjacent to the relative
SuDS devices and was evenly distributed using sieving and
grid spaced quantity release (i.e. a selected kg/m2 REO
tagged sediment released consistently across the contribut-
ing catchment area). The pathway for sediment movement
between release surface and SuDS device was direct, either
through overland flow (into swales and wetland) or through

piped/channel conveyance (ponds, linear wetland). No pre-
treatment measures existed for the monitored SuDS devices.
The tagged sediment was then monitored through sus-
pended sediment and bed deposition sampling. REO tags
allow the quantity of tagged sediment material within each
suspended and bed deposition sample to be quantified using
Inductively Coupled Plasma Mass Spectrometry (ICPMS).
Samples were prepared for ICPMS analysis in accordance
with Allen et al. (2015, 2017), using strong acid digestion
and filtration prior to analysis using an Agilent 7500ce
ICMPS. ICPMS analysis of each flow and bed deposition sam-
ple provided unique REO tracer signatures (indication of
occurrence and quantity within the sample). The quantity of
tagged sediment was then calculated using the known REO:
tagged sediment ratio used for released tagged sediment.
REO characterisation and ICPMS detection limits are pre-
sented in Appendix 2 and 3.

2.4. Simple mass balance calculation methodology for
quasi-quantification of REO tagged fine sediment
deposition and retention

A simple mass balance analysis (Equation 1) was used to
identify the overall change in tagged sediment retention
over time.

Cin ¼ Clost þ Cdetained þ Cenriched þ Cdegredatded þ Cout (1)

Where:

Cin = total mass of tagged sediment entering the
SuDS;

Clost = the total mass of tagged sediment unaccounted
for in tagged sediment monitoring;

Cdetained = total tagged sediment detained in the SuDS;
Cenriched = enrichment of REO trace on tagged sediment

(increase in REO tag, reported as a maximum of
4% by concentration);

Cdegraded = loss of REO trace on tagged sediment (decrease
of REO on sediment due to environmental con-
ditions, reported as a maximum of 4% by
concentration);

Cout = total tagged sediment discharged from the
SuDS.

C is the total mass of tagged sediment (in suspension at the
time of sampling (TSS, g/ml) and deposited (g/m2)). As
expected, background levels of REO in all SuDS devices were
below detection (<1 ppt, Appendix 3). REO enrichment of
sediment is low, reported up to 4%, due to the strong adsorp-
tion to fine particles and no significant bias (up to 4% error) or
redistribution of REO within the suspended – 2 mm particle
size range (Kimoto et al. 2006; Zhang et al. 2003; Deasy and
Quinton 2010; Polyakov and Nearing 2004). The simple mass
balance was calculated for every sample time step. For each
sample (e.g. week 2, 4, 6, . . .) the total quantity of tagged
sediment entering into, deposited within and detained in
suspension was quantified and an estimation of retention
was made.
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Sample locations were considered representative of a
respective cell of each SuDS device (identified by the indica-
tive area-weighting delineation in Figure 1). The total REO
tagged sediment deposited or in suspension within each of
the SuDS devices was calculated. This provided a time-
stepped total SuDS device tagged sediment retention, allow-
ing temporal analysis of SuDS specific tagged sediment con-
veyance or retention. The REO tracer experiment was repeated
4 times, at 3 month intervals, for each SuDS device to ensure
that any trends identified were consistent (rather than an
isolated environmental or anthropically influenced
occurrences).

For each SuDS device the amount of tagged sediment
(deposited and in suspension at the time of sampling) was
compared to: the rainfall (total rainfall since release, rainfall
since the last sample period, characteristics of the rainfall
including number of rainfall events occurring); flow velocity
and depth (average, minimum, maximum and event occur-
rence for the previous two weeks and total monitoring per-
iod); corresponding discharge; and the antecedent dry days
(prior to sampling, over the previous two weeks and cumula-
tively since monitoring commencement). The fortnightly and
total tagged sediment retained in the SuDS devices were
correlated against these rainfall-runoff characteristics to iden-
tify possible drivers or correlating occurrences that might help
explain the tagged sediment retention and movement.
Analysis was completed in R Studio. The strongest correla-
tions, with significant p-values (p-value <0.05) were included
in regression analysis to examine if the rainfall-runoff charac-
teristics could effectively represent or explain the tagged sedi-
ment retention and movement (rainfall characteristics
presented in Appendix 8, Allen 2017).

3. Results and discussion

The tagged sediment mass balance retention results for each
time step for all monitored SuDS devices have been presented
in Figure 2. In conjunction with the four releases, the average
trend is presented (black points) and the respective cumula-
tive rainfall (lines coloured respectively). In conjunction with
the mass balance retention, values of the preferential fort-
nightly tagged sediment deposition locations are presented
(as a percentage of tagged deposited sediment) for each SuDS
device.

3.1. Wetland REO tagged sediment retention

Tagged fine sediment retention of a single sediment release
was illustrated to decline over multiple events through the
monitored wetland (Figure 2(a)). The initial temporary reten-
tion efficiency, week 0–2, was high (≥90% of the supply) with
>80% sediment retention efficiency for the first 15 weeks
(average). Over 52 weeks, the tagged sediment retention effi-
ciency of the wetland was found to fall between 73% and 27%
of the total tagged sediment inflow. While there is variation in
monitored results (≤29%, standard error ≤10%) all data show a
gradual decrease in deposition or retention of tagged material
over multiple events.

The variation between results (comparison of release 1, 2, 3
and 4 results) may be primarily due to rainfall occurrence.
Strong correlation was found between tagged sediment reten-
tion within the wetland and temporal rainfall and flow char-
acteristics: the cumulative number of rainfall events; rainfall
quantity; duration and period of antecedent dry days (ADD);
average monitoring period flow depth; velocity and discharge
(m3/s) (correlation values of ≥ ±0.8, p-value <0.01). The cumu-
lative impact of multiple rainfall events showed a stronger
influence on tagged sediment retention in the wetland than
the most recent rainfall-runoff events suggesting cumulative
rainfall and multiple events may be more important in tagged
sediment deposition than the last event prior to sampling.
Simple linear regression analysis suggests that the decline
(and variation) in wetland tagged sediment retention may be
a function of: cumulative number of rainfall events, rainfall
depth, rainfall duration, ADD and the cumulative number of
hydrograph peaks recorded within the wetland flow (r2 < 0.8,
p-values <0.01).

Tagged sediment deposition and retention occurs across all
cells of the wetland, with lower deposition close to the inlet.
This is most likely due to sampling from a zone of significant
fluid mixing where turbulent shear stresses are sufficiently
high so as to keep fine tagged material in suspension, thus
precluding deposition into the bed. Location 2 shows the
highest sediment deposition results, with locations 2, 3 and
4 performing comparably (slight decrease moving down-
stream) in terms of tagged sediment detention, suggesting
that within this wetland shear stress was relatively uniform
away from the inlet. The higher deposition at location 2, 3 and
4 may also be due to flocculation of cohesive material occur-
ring along the wetland flow path, resulting in greater tagged
sediment material settling within the latter wetland extent. It
may also be a result of the increased residency time within the
wetland at the downstream locations. Deposition results sug-
gest the incorporation of multiple cells in a wetland design
helps achieve greater wetland potential retention efficiency.
These results are dissimilar to those reported by Hathaway and
Hunt (2009) where wetland ‘cell 1’ was reported to detain
approximately 80% of sediment. The Piedmont wetland
study illustrated sediment to be primarily detained within
the first cell (a total wetland) with the following total wetlands
(identified as cell 2 and 3) detaining less than 20% of mon-
itored sediment. Therefore, while multiple consecutive wet-
lands (as discussed in the Piedmont study by Hathaway and
Hunt (2009)) may not provide significant sediment detention
benefit, the result of this study suggests multiple cells within a
single wetland may be beneficial.

3.2. Linear wetland REO tagged sediment retention

The initial tagged sediment retention in the linear wetland
was >90%, 80% of tagged sediment was retained (on average)
after 4 weeks with the average linear wetland results achiev-
ing tagged sediment retention efficiency >50% for the
12 month monitored period (Figure 2(b)). The linear wetland
results show variance in deposition over the total monitoring
period (≤28%, standard error ≤10%) but with all release data-
sets illustrating a declining retention trend. The overall
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declining tagged sediment detention trend is smaller within
the linear wetland compared to wetland results, however the
decline appears to be continual over the monitored period.
The linear wetland differs from the wetland in that it contains
no significant open water elements in its design. The greater
sediment detention in the linear wetland may be a result of
the vegetation density across the entire linear wetland with
this vegetation acting as a major sediment trapping
mechanism.

Correlation analysis of rainfall and runoff characteristics
relative to the linear wetland presented a complex dataset.
Unlike the wetland, the linear wetland tagged sediment reten-
tion results do not show any strong correlation results to any
individual factors, but multiple moderate (0.5 ≥ r ≤ 0.8, p-value
<0.05) correlating factors. This moderate, more complex cor-
relation result may be due to high roughness within the asset
mitigating flow velocity and shear stress on (re)suspension or
deposited tagged sediment movement. Simple regression
analysis of the rainfall and runoff factors suggests linear wet-
land tagged sediment retention decline (and variation) to:
cumulative number of rainfall events, rainfall duration, flow
depth (average and maximum), flow velocity, calculate Froude
and Reynolds numbers (Fr and Re) (r2 < 0.5, p-values <0.05)
(i.e. the turbulence and flow energy occurring within this SuDS
device).

Tagged fine sediment was found to deposit across the
entire linear wetland, indicating its transport to and through
the linear wetland over multiple rainfall-runoff events. The
greatest tagged sediment deposition occurred at the linear
wetland inlet and central sections, decreasing at the linear
wetland outlet. Tagged sediment deposition in the early sec-
tion of the linear wetland may be due to aggregated floc
particulates, allowing the finer sediment fraction to settle
(after aggregation or coalescence) in the moderately turbulent
inlet location (cohesion influence on deposition has been seen
in estuarine environs (McAnally and Mehta 2002) and wetland
and urban runoff controls (Sholz 2006)). The linear wetland
appears to maximise tagged sediment detention through the
use of dense and emergent vegetation growth. This vegeta-
tion appears to actively filter particles, lower flow velocity and
minimise the quantity of tagged sediment reaching the linear
wetland discharge point.

3.3. Swale REO tagged sediment retention

Tagged sediment moved through both monitored swales over
multiple rainfall-runoff events resulting in a decline in tagged
sediment retention over the 1 year monitoring period
(Figure 2(d–f)). In the short swale (Figure 2(d)), sediment
retention is noted to decline most in the initial 10 weeks and
final weeks (week 34 onwards). The long swale (Figure 2(f))
initially shows a shallow decline in tagged sediment retention
efficiency, with retention >80% over the first 12 weeks (aver-
age). Sediment retention was noted to decline after this initial
period, with retention <80% for all REO tagged sediment
experiments (release 1–4) after week 16, but with >50% reten-
tion at the end of the monitoring period (52 weeks). The short
swale shows a similar retention efficiency, retention >50%
across the monitored 52 weeks. Overall, the initial tagged

sediment retention efficiency of the swales, week 0–2, was
high – greater than 80%, followed by a general shallow
decline over cumulative rainfall-runoff events.

The long and short swales both illustrate strong (r ≥ ±0.8,
p-value <0.01) correlations to rainfall and runoff factors. The
short swale tagged sediment retention correlated most
strongly to rainfall intensity and the cumulative number of
hydrograph peaks; long swale results strongly correlated with
cumulative number of rainfall events, event duration, maxi-
mum rainfall, ADD and flow velocity trends (r ≥ ±0.8, p-value
<0.01). Regression analysis of swale rainfall-runoff factors high-
lighted: cumulative rainfall events, event duration, total rainfall
depth, duration, ADD, flow velocity, Fr and Re to be informa-
tive in describing sediment retention (r2 ≤ 0.8, p-values <0.01).

Sediment retention occurred at all monitored locations
within the swales, with notable deposition in the latter reach
of the swales (short and long swale location 2). The monitored
swale retention efficiency results suggest tagged sediment
deposition to increase moving downstream through the
swale. This is contrary to the findings of Nara and Pitt (2005)
who noted declining TSS moving downstream through a
swale (and therefore greater deposition or detention
upstream) and Barrett Walsh, Malina, and Charbeneau (1998)
who noted TSS to be relatively consistent along the swale
length. The increase in tagged sediment deposition may
occur due to swale design and the potentially cohesive prop-
erties of fine urban sediment (greater cohesion and therefore
deposition with greater residency time in the swale and there-
fore deposition further downstream in the swale). Long swale
vegetation is less dense and shorter (mown grass) than the
short swale (moderately grassed swale with mixed shrub vege-
tation planted within the flow path) and this may explain the
more notable difference between upstream and downstream
tagged sediment deposition seen in this long swale (similar to
vegetation density finding for a wetland by Hernandez-Crespo
et al. 2017). The short swale potentially provides greater flow
resistance and higher retention potential due to its design and
planting (therefore closer upstream and downstream deposi-
tion results). It is also noted that both swales have limited
maintenance, and the long swale especially has limited vege-
tation density within the main flow path. Both swales also
have discharge points that are on an angle (>45 degrees) so
have the potential, during high flow periods, to undergo
backup/back-flooding and therefore have an elevated down-
stream boundary condition that may support higher tagged
sediment deposition at the downstream sections of these
swales. The long swale is also greater than twice the length
of the short swale, providing a longer flow path over which to
retain and allow aggregation of tagged sediment. The design
of the swale, both vegetation density and flow path length,
may be significant influential factors in their short-term tagged
sediment retention.

3.4. Pond REO tagged sediment retention

Tagged sediment retention efficiency of the small pond
(Figure 2(e)) is initially functional (≥20%, but <80%) but
declines significantly over multiple events (week 8 onwards)
to below 20%. The pond surface: contributing catchment area
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ratio is 1:125 m2 ((substantially greater than the large pond).
Tagged sediment retention results suggest this pond may be
undersized if the findings of this short-term tagged sediment
retention are considered indicative of total sediment move-
ment. The outlet design uses a porous media (rock gabion)
uncontrolled outflow. It is suggested that fine sediment may
pass through this form of outlet easily (visually observed at
this site), potentially allowing tagged fine sediment to be
conveyed to the downstream waterway without significant
intervention.

The large pond shows high retention (all results >80%) but
indicates a slow decline over the monitoring period (3%
decline after 12 months) (Figure 2(c)). This pond is significant
in size and volume (16,240 m2 surface area, 1:20 m2 ratio of
pond surface to contributing catchment area); negligible sedi-
ment was expected to pass through this pond (photographs
provided in Appendix 6). The small decline in sediment reten-
tion efficiency is consistent in all experimental repetitions. This
suggests this large SuDS pond to be highly efficient in tagged
sediment retention.

Correlation and simple linear regression analysis sug-
gests the small SuDS pond tagged sediment retention
over monitoring period correlates with both intermediate
(between sample time steps, i.e. 2 weeks for the large
pond, 4 weeks for the small pond) and cumulative rain-
fall-runoff characteristics. Rainfall-runoff characteristics
showing strong (r ≥ ±0.8, p-value <0.01) correlation to
pond retention results include: intermediate rainfall total,
cumulative rainfall intensity, duration and number of
events, Re, flow discharge and the cumulative number of
hydrograph peaks.

The large pond’s internal tagged sediment deposition pat-
tern was not sampled in detail due to access (pond depth
>1.0 m) but comparison of tagged sediment deposition near
the inlet and outlet of the pond illustrates a decline in tagged
sediment deposition. Minimal tagged sediment was found to
deposit downstream of the pond (location 5) suggesting lim-
ited tagged sediment conveyance through the pond.
Preferential tagged sediment deposition within the small
pond occurred at the inlet and open water sections (location
3). This pond does not rely on vegetation to detain or filter
sediment but on residency time, flocculation through mixing
and boundary effect sediment settling. Tagged sediment
deposition is noted to decline through the pond, along the
pond flow path, resulting in lower deposition adjacent to the
pond outlet (pond outlet US).

4. Conclusions

An REO tracer methodology and tagged sediment dataset
have been used to identify a single sediment release move-
ment through four monitored SuDS devices over a 12 month
monitoring period. Initial tagged sediment retention was high,
>80% for all monitored devices. Short-term results show a
shallow declining trend in tagged sediment retention, sug-
gesting that cumulative rainfall-runoff may influence the
deposition, movement and potentially retention of tagged
sediment from this single release within these monitored
SuDS devices.

Fassman (2012) found bioretention and grass swales to be
the most effective TSS removal SuDS devices (60–90% TSS
removal for events), followed by constructed wetland and
detention basins (comparative to pond function). The tagged
sediment monitoring aligns with these results, suggesting the
linear wetland and swales to show a deposition trend >60%
after 12 months (with exception of the large pond). The initial
detention (>80%) of tagged sediment in the monitored SuDS
supports published findings of high sediment mitigation by
SuDS devices, while the final monitored tagged sediment
detention (>50% with exception of the small pond) generally
aligns within multiple event mean concentration and deposi-
tion results (Fassman 2010, Heal, Hepburn, and Lunn 2006).
The correlation and regression analysis suggest the number of
rainfall events (cumulative), ADD and total rainfall occurring
are key meteorological factors in understanding the tagged
sediment deposition and movement, similar to findings in
Brodie and Dunns’ (2010) review of rainfall characteristics on
TSS wash-off concentrations from urban surfaces.

The purpose of this study was to increase the understand-
ing of sediment deposition of a single sediment release
through four selected SuDS devices. It is acknowledged that
the tagged sediment retention trends are not indicative of
total sediment retention over the long-term. The study does
highlight the influence of cumulative rainfall-runoff events on
the deposition of a single (tagged) sediment release, suggest-
ing that the tagged sediment deposition is not static after the
initial influx but potentially moves (to some degree) within
and through the monitored SuDS devices.
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Appendix 3. REO elements and ICP-MS analysis parameters as relevant to the REO methodology used in the
present thesis

Appendix 4

Sketch of sample hoses and floats for perennially wet SuDS asset sampling. Hoses were 10 mm diameter. Hoses were flushed before and after each
sample occurrence. The hoses were placed in the wet assets as static sampling measures to ensure samples were collected from the same location and
depth at every sample occurrence.

Limits of detection

Element Analytical mass
Minimum

(part per trillion, ppt)
Maximum

(parts per billion, ppb)
Variance or errors in analysis

(RSD%)

Ho 165Ho 0.02 100 0.56–1.46%
Pr 141Pr 0.008 100 0.69–1.16%
Sm 147Sm 0.07 100 0.7–1.72%
Nd 145Nd 0.03 100 0.77–1.1%
Gd 157Gd 0.03 100 0.89–1.23%
Yb 173Yb 0.06 100 0.86–1.43%
Er 167Er 0.08 100 0.44–1.11%
Dy 163Dy 0.09 100 0.39–1.22%
Tb 159Tb 0.01 100 0.38–1.45%
Y 89Y 0.01 100 0.61–1.41%
La 139La 0.01 100 0.77–1.31%
Ce 140Ce 0.01 100 0.63–1.16%
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Appendix 5

Sketch of sediment traps in the field. Left hand photo shows the sediment trap flush with the swale bed. Right hand photos show the sediment trap full
(bottom) and being reset with clean gravel (top). Similar designs of trap (300 × 200 × 100 mm) are also used in e.g. Lawler (2006), IAEA (2003) and Fraley
(2004).

direction of flow

Sediment 
trap with 
gravel

swale 

bed
swale bank

swale bank
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Appendix 6. Photographs of monitored SuDS devices

*The linear wetland photograph was taken after vegetation maintenance (reed and grass cutting). The reeds were approximately + 0.5 m in growth
during the monitoring period.

Short Swale Long Swale

Large Pond

Large Pond

Small Pond

Wetland Linear wetland*
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Appendix 7

Particle size distributions for car park and road samples from the Edinburgh and Newcastle study sites.

Appendix 8. Rainfall characteristics for the Edinburgh and Newcastle general locations

Edinburgh.

Rainfall since last sample Most recent event

Rainfall
(mm)

Number of
rainfall events

Average inten-
sity (mm/hr)

ADD during sample
period (hrs)

Dry period prior to
sample (hrs)

Intensity
(mm/hr)

Rainfall
duration
(hrs)

Rainfall
(mm)

week 0 11.4 5 0.43 0 4 1.7 4 7

week 2 25 10 1.02 216 2 2.2 2 4.4
week 4 17.4 22 0.43 264 0 12 0.03 0.4

week 6 6.4 12 0.77 312 1.5 0.7 0.9 0.6
week 8 9.6 19 1.89 240 5 12 0.03 0.4
week 10 56.6 15 3.94 264 8 12 0.03 0.4

week 12 66.8 24 1.77 240 7.5 4.3 1.3 5.4
week 14 51.6 15 1.9 96 0 1.6 1.9 3

week 16 11.2 4 1.45 144 47 12 0.03 0.4
week 18 51.4 8 2.1 264 26.5 12 0.03 0.4

week 20 0.4 1 12 120 7.5 12 0.03 0.4
week 22 51.4 10 2.56 240 90.5 12 0.03 0.4
week 24 19 7 1.46 96 1 1.2 9 10.4

week 26 98 8 1.96 96 2.5 1.8 23 42
week 28 65.6 11 2.47 240 16.5 9.8 0.4 3.6

week 30 0 0 0 72 88.5 0 0 0
week 32 6.8 4 1.48 288 43.5 0.6 3 1.8

week 34 18 5 0.26 168 41.5 30 0.03 1
week 36 5.6 3 0.7 288 41.5 1.4 0.8 1.2
week 38 85.2 7 1.43 288 42.5 1.1 6 6.8

week 40 38.2 19 1.61 144 1.5 12 0.03 0.4
week 42 1.6 4 12 288 39 12 0.03 0.4

week 44 15 9 1.76 264 5.5 1.1 4 4.4
week 46 90.2 8 2.42 216 15 2.1 0.6 1.2

week 48 46.8 13 1.59 264 4 2.7 1 2.8
week 50 85.6 22 1.93 192 2 3 2 5.4

week 52 39.4 13 1.62 264 31 7.2 0.1 0.6
Average 36.1 10 2.3 206 21 6.7 2.2 4.0
Minimum 0.0 0 0.0 0 0 0.0 0.0 0.0

Maximum 98.0 24 12.0 312 91 30.0 23.0 42.0
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Newcastle

Rainfall since last sample Most recent event

Rainfall
(mm)

Number of
events

Average intensity
(mm/hr)

ADD during sample
period (hrs)

Dry period prior to
sample (hrs)

Intensity
(mm/hr)

Rainfall dura-
tion (hrs)

Rainfall
(mm)

month 1 40 42 0.4 627 0 0.2 4 2.0

month 2 59.8 24 0.6 646 6 0.2 5 1.2
month 3 35.8 20 0.6 669 14 0.2 1 0.2

month 4 32 22 0.4 679 92 0.2 1 0.2
month 5 18.8 25 0.4 676 52 0.2 1 0.2

month 6 37.8 22 0.5 653 18 0.9 3 2.6
Average 37.4 26 0.5 658 30 0.3 3 1.1

Minimum 18.8 20 0.1 627 0 0.2 1 0.2
Maximum 59.8 42 2.25 679 92 0.9 5 2.6
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