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Highlights

• A model for banded vegetation patterns is analysed
that includes non-local seed dispersal.

• Numerical continuation and bifurcation analysis is ap-
plied to map the stability of patterns.

• Non-local seed dispersal can increase the ecological
resilience of banded patterns.

• Coping strategies for critically low levels of rainfall are
oscillating band densities and non-migrating patterns.
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Long-distance seed dispersal affects the resilience of banded vegetation patterns in
semi-desertsI

Jamie J.R. Bennett1, Jonathan A. Sherratt

Department of Mathematics and Maxwell Institute for Mathematical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK

Abstract

Landscape-scale vegetation stripes (tiger bush) observed on the gentle slopes of semi-arid regions are useful indicators of
future ecosystem degradation and catastrophic shifts towards desert. Mathematical models like the Klausmeier model—a
set of coupled partial differential equations describing vegetation and water densities in space and time—are central to
understanding their formation and development. One assumption made for mathematical simplicity is the local dispersal
of seeds via a diffusion term. In fact, a large amount of work focuses on fitting dispersal ‘kernels’, probability density
functions for seed dispersal distance, to empirical data of different species and modes of dispersal. In this paper we
address this discrepancy by analysing an extended Klausmeier model that includes long-distance seed dispersal via a
non-local convolution term in place of diffusion, and assessing its effect on the resilience of striped patterns. Many
authors report a slow uphill migration of stripes; but others report no detectable migration speed. We show that long-
distance seed dispersal permits the formation of patterns with a very slow (possibly undetectable) migration speed, and
even stationary patterns which could explain the inconsistencies in the empirical data. In general, we show that the
resilience of patterns to reduced rainfall may vary significantly depending on the rate of seed dispersal and the width of
the dispersal kernel, and compare a selection of ecologically relevant kernels to examine the variation in pattern resilience.

Keywords: banded vegetation, non-local, seed dispersal, desertification, resilience, self-organisation, tiger bush,
reaction-diffusion-advection, periodic travelling wave

1. Introduction

1.1. Ecological background

The first scientific documentation of banded vegetation
(or “tiger bush”) was in Somalia in the 1950s [1]. Regu-
lar bands of vegetation alternating with near bare desert5

were observed to run parallel to the contours of gentle
slopes (0.2−2% incline [2]). Over the years, it has become
clear that banded vegetation is a global phenomenon with
recorded observations in the African Sahel [3, 4], the Mulga
Lands in East Australia [5, 6, 7], the States of Nevada [8]10

and Texas [9] in the United States, the Sonoran Desert in
northern Mexico/southern United States [10], the Negev
in Israel [11] and Ladakh in India [12]. The common theme
is a semi-arid climate where the heat and lack of rainfall
creates a hostile environment in which plants must com-15

pete for water—the limiting factor for vegetation growth.
When rainfall does occur, it is often torrential and runs
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off the bare, crusted ground downhill towards the vegeta-
tion where roots allow for increased infiltration; promot-
ing plant growth on the uphill edge and plant loss on the20

downhill edge. Sometimes called the “water redistribu-
tion hypothesis” [13], the process generates stripes (typi-
cally 20-200m in width [2]) that slowly migrate uphill at
reported speeds in the region of 0.2m to 1.5m per year
[14, 15, 16, 2].25

Banded vegetation patterns are not just a fascinating ex-
ample of landscape scale self-organisation; they are an im-
portant stage in the process of desertification in response
to climate change. Evidence of expanding deserts is clear,
with recent work [17] showing a substantial advancement30

of the Sahara desert over the last century. A common
school of thought is that desertification is a transition of
uniform steady states; from a vegetation rich state to a
barren ‘zero’ steady state where vegetation is scarce. In
this regard, mathematical modelling has been instrumen-35

tal in identifying the intermediate (heterogeneous) states
in between, and for devising early warning signals that
aid the management of expanding deserts [18, 19, 20].
For instance, the gradual changes in spatial characteris-
tics of bands can indicate an imminent regime shift [21]—40

reduced rainfall leads to narrowing bands and widening
gaps between them. Certain changes could be an indica-
tion that the current configuration is reaching a tipping

Preprint submitted to Journal of Theoretical Biology October 4, 2018
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Figure 1: An illustration of desertification in one space dimension. For simplicity, rainfall slowly decreases at a constant rate from A = 3.5 to
A = 0. At the beginning of the simulation uniform vegetation is sustainable but as rainfall is decreased, a pattern emerges at around t = 750.
Patterns then transition with longer wavelengths observed for lower levels of rainfall. A single island of vegetation develops near t = 3000
which vanishes suddenly into bare desert. Notice the slowing down of uphill migration before each pattern transition—a useful warning signal
of an imminent regime shift in practice. The numerical simulation approximates the non-local Klausmeier model (4) when seeds disperse
according to the Laplace kernel (6) with a = 1. Other model parameters are fixed: B = 0.45, v = 182.5, d = 1.

point, whereupon a switch to a new pattern of vegetation
will begin; a significant increase in rainfall is then needed45

to restore the previous state. This process can repeat itself
for a predictable sequence of patterns ending with a bare
desert state, as we demonstrate in Figure 1 in one space
dimension. Recent work has focused on the colonisation
of bare desert by vegetation [22], though in this paper we50

assume a starting point of uniform vegetation.
Experimental work on vegetation patterns is difficult

due to their large spatial scale and slow evolution which oc-
curs over decades. Moreover, banded patterns have never
been recreated under laboratory conditions. Mathematical
models are an inexpensive tool for investigating the affects
of environmental change, with models that focus on the
water redistribution hypothesis [23, 11, 24, 25] being pop-
ular for analysis. This paper is based on the Klausmeier
model [26] which when suitably non-dimensionalised is the
reaction-advection-diffusion system

∂u

∂t
=

plant growth︷︸︸︷
u2w −

plant loss︷︸︸︷
Bu +

local
plant dispersal︷︸︸︷

∂2u

∂x2
, (1a)

∂w

∂t
= A︸︷︷︸

rainfall

− w︸︷︷︸
evaporation

− u2w︸︷︷︸
water uptake

by plants

+ v
∂w

∂x︸ ︷︷ ︸
water flow
downhill

+ d
∂2w

∂x2︸ ︷︷ ︸
water

diffusion

, (1b)

where the plant density u(x, t) and surface water density
w(x, t) are functions of space x and time t. The one-
dimensional domain is perpendicular to the contours of the
slope, which we assume to be of constant gradient. A large55

amount of empirical evidence suggests that water infiltra-
tion in semi-arid regions is positively correlated with plant
coverage due to the presence of root networks. This pro-
cess forms a positive feedback loop—more vegetation leads
to increased infiltration of water, which stimulates further60

growth of vegetation. This justifies the non-linearity in (1)
which is one of the main drivers for pattern formation. Of
course, on its own this would lead to unbounded growth
and spread of vegetation, however, surface water is limited
and acts as an inhibitor over long range via advection and65

diffusion terms. These actions are responsible for pattern
formation in (1). The original Klausmeier model did not
include water diffusion but this has now become a com-
mon addition since it allows the formation of patterns on
flat ground as reported by some authors [7]. The param-70

eters A > 0, B > 0, v > 0, d > 0 are rates that represent
the extent of rainfall, plant loss due to natural death and
herbivory, the gradient of the slope, and water diffusion,
respectively. We refer to (1) throughout the text as the
“local Klausmeier model”.75

1.2. Modelling non-local seed dispersal

Recent modelling studies have focused on better under-
standing the role of long-range dispersal in ecological pat-
tern formation [27, 28, 29], for instance, it was recently
shown that movement of mussels via a Lévy walk creates80

patterns that increase ecological resilience [30]. Almost
all model analysis for patterned vegetation assumes local
dispersal of plants via a diffusion term, which is rarely
an accurate representation of a particular plant species,
but a convenient mathematical simplification. Diffusion is85

widely believed to be inadequate for modelling plant dis-
persal due to frequent long range dispersal events. The
distance a seed can travel from its source is influenced by
external factors such as wind, as well as species specific
characteristics, e.g. height of plant, seed weight—some90

plant species can even disperse seeds ballistically [31]. Sec-
ondary dispersal via animal or water transport can also
affect the distance a seed can travel from its source [32].

This long range reproductive behaviour can be modelled
using a ‘dispersal kernel’, which is a probability density
function, φ(x, t), describing the distribution of distances
travelled by seeds originating from a single parent. As be-
fore, we let u(x, t) describe the plant density at location
x at time t. Suppose individual plants (seeds) disperse
instantaneously from their current location x to a new lo-
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cation y at rate C > 0. We can describe this process via
convolution of φ and u and formulate the non-local ana-
logue of the classical diffusion equation:

∂u

∂t
(x, t) = C (I(x, t)− u(x, t)) , (2)

where I(x, t) = (φ ∗ u)(x, t) =

∫ ∞

−∞
φ(x− y)u(y, t)dy.

(3)

One can derive (2) in a stochastic setting as a point jump
or kangaroo process—see for example, [33]. The probabil-95

ity density function φ(x) has the property
∫∞
−∞ φ(x)dx =

1, and since (2) has no births or deaths, we expect the total
plant population to be conserved across the domain: the
second term in (2), −Cu, ensures ∂

∂t

∫∞
−∞ u(x, t)dx = 0.

This gives us a non-local description of seed dispersal
and so we now define the non-local Klausmeier model,

∂u

∂t
=

plant growth︷︸︸︷
u2w −

plant loss︷︸︸︷
Bu +

non-local
plant dispersal︷ ︸︸ ︷
C(I − u), (4a)

∂w

∂t
= A︸︷︷︸

rainfall

− w︸︷︷︸
evaporation

− u2w︸︷︷︸
water uptake

by plants

+ v
∂w

∂x︸ ︷︷ ︸
water flow
downhill

+ d
∂2w

∂x2︸ ︷︷ ︸
water

diffusion

, (4b)

by replacing the diffusion term in (1) with the non-local100

convolution term in (2). In this paper, our primary con-
cern is the rainfall parameter, A, and so we fix B = 0.45,
v = 182.5, d = 1 throughout the paper. Also of interest
is the effect that seed dispersal has on pattern formation
via variation of parameters a and C. We shall see that105

varying C appropriately with a allows the local and non-
local Klausmeier models to be easily compared for special
dispersal kernels. All parameter choices are in accordance
with recent work [28] deriving analytic results on pattern
existence in (4).110

1.3. Pattern existence

We begin by examining the stability of the homogeneous
steady states—those relevant for pattern formation are lin-
early stable to homogeneous perturbations and unstable to
heterogeneous perturbations. The non-local Klausmeier
model has either one or three homogeneous steady states:
a bare desert state (0, A) that is always linearly stable, and
two coexistence steady states

(u±, w±) =

(
A±
√
A2 − 4B2

2B
,
A∓
√
A2 − 4B2

2

)
, (5)

that exist only when A ≥ 2B, i.e. when the rate of rainfall
is sufficient to support the ecosystem. The steady state
(u−, w−) is always unstable, while (u+, w+) is locally sta-
ble to homogeneous perturbations when B < 2. It is there-115

fore the (in)stability of (u+, w+) that is of primary interest
when studying pattern formation. Note that when B > 2,
oscillatory dynamics can occur that are not observed in
practice. Here, we assume B < 2 to analyse Turing-
like patterns that are generated in response to (u+, w+)120

becoming unstable. Specifically, pattern solutions of (4)
(and (1)) develop in response to a “Turing-Hopf” bifurca-
tion which, unlike the classic (stationary) Turing pattern,
gives rise to a constant uphill migration of the pattern—a
standard feature of models with directed transport.125

To investigate how rainfall influences pattern formation,
we take A to be a control parameter. Suppose the rain-
fall is sufficient to support a uniform covering of vegeta-
tion, i.e. (u+, w+) is stable to heterogeneous (and homo-
geneous) perturbations. Suppose also that climate change130

causes the rainfall in our model ecosystem to gradually de-
cline. At some critical value of A ≥ 2B, (u+, w+) becomes
unstable to heterogeneous perturbations despite remaining
stable to homogeneous perturbations. This critical rain-
fall rate, ATH , is a Turing-Hopf bifurcation. In general for135

both (1) and (4) an analytic expression for ATH in terms of
model parameter alone cannot be derived, however, lead-
ing order expressions for large v (steep slopes) have been
calculated. In the local model a result of this type can be
found for d = 0 in [34], while recent work yields an ex-140

pression for the non-local Klausmeier model for the case
when φ is the Laplacian kernel [28]. These calculations rely
on expansions of the ‘dispersion relation’ which associates
spatially heterogeneous perturbations with their respec-
tive growth rates. The difficulty with the non-local case145

is that one obtains the Fourier transform of the dispersal
kernel within the dispersion relation. The Fourier trans-
form of the Laplace kernel is simple enough algebraically
to permit further analysis, but this is not the case for the
vast majority of ecologically relevant kernels.150

The existence of patterns for A < 2B, i.e. when a uni-
form covering of vegetation is no longer sustainable, re-
flects the increased resilience of pattern forming vegeta-
tion. The minimum rainfall supporting patterned vege-
tation, Amin, cannot be calculated analytically, though a155

leading order expression for large v and d = 0 in the local
model can been found in [35]. In this paper we calculate
the boundaries of pattern existence numerically, and our
results for ATH are in agreement with the leading order
expressions in [28].160

1.4. Aims

In this paper we are concerned with existing striped
patterns and their resilience to ecological change. Previ-
ous work with respect to pattern stability and resilience
has focused on the local Klausmeier model and is well165

understood thanks to the numerical continuation meth-
ods developed in [36]. The basis of this method is to be
able to reduce the model to a set of ordinary differential
equations. In general, the complication when considering
non-local seed dispersal is that the convolution integral170

makes (4) non-reducible in this sense, and obtaining re-
sults similar to the local case for general φ is still an open
problem. That being said, kernels with certain properties
are reducible and this is the focus of Section 2, where we
analyse (4) when φ is the Laplace kernel—an ecologically175

relevant kernel [37, 31]. In this special case we can gain

4
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insight into the effects that long range seed dispersal has
on the resilience of patterns.

Although rigorous results for general φ are beyond the
scope of this paper, we attempt to compare kernels in Sec-180

tion 3 by discretising the non-local Klausmeier model in
space. The size of the resulting system of ordinary differ-
ential equations would be too large for accurate results to
be computationally feasible using similar methods to those
employed in Section 2. To facilitate computation, we use185

a fixed coarse spatial grid for our discretisation, and anal-
yse the resulting system for various φ. The assumption is
that the error associated with the discretisation should be
roughly the same regardless of the specified kernel, mak-
ing the qualitative results comparable. We will show that190

our results in this section are surprisingly accurate by run-
ning the computations for the known diffusion and Laplace
cases.

2. Laplace kernel

2.1. Local equations for a non-local model195

There are numerous studies on the analysis of pattern
solutions of the local Klausmeier model, with the method
of Rademacher [36] being a powerful tool to test pattern
stability. A prerequisite for this method is a local PDE
model which one can reduce to a set of first order ordinary200

differential equations. This means that analysis of the non-
local Klausmeier model calls for a different approach when
considering the convolution integral in its full generality.
That being said, dispersal kernels with special properties
allow the non-local problem (4) to be recast as a set of205

local equations, facilitating the use of existing methods.
The Laplace kernel, often presented as the equivalent

negative exponential kernel in the ecology literature [37],
is given by

φ(x) =
a

2
exp (−a|x|), a > 0, (6)

and has frequently been used to fit empirical data on seed
dispersal [31]. For this choice of kernel we can reduce (4)
to a local PDE model, following work by other authors
[38, 39, 40, 41]. First, note that the Fourier transform of

φ is φ̂(ξ) = a2/(a2 + ξ2). Taking the Fourier transform of
the second derivative of I(x, t) and then rearranging gives,

∂̂2I

∂x2
(ξ, t) = −ξ2(̂φ ∗ u)(ξ, t)

= − a2ξ2

a2 + ξ2
û(ξ, t)

= a2
(

a2

a2 + ξ2
− 1

)
û(ξ, t)

and now taking the inverse Fourier transform of this equa-
tion yields,

∂2I

∂x2
(x, t) = a2(I(x, t)− u(x, t)).

The convolution integral (3) with φ(x) given by (6) can
therefore be represented instead by the addition of a third
equation so that we can write (4) as the local PDE model:

∂u

∂t
= u2w −Bu+ C(I − u), (7a)

∂w

∂t
= A− w − u2w + v

∂w

∂x
+ d

∂2w

∂x2
, (7b)

0 = a2(u− I) +
∂2I

∂x2
. (7c)

Solutions of (7) are in direct correspondence with the so-
lutions of (4).

In the interest of model comparison with (1), we can set
C = a2 = 2/σ(a)2, where σ is the standard deviation of210

(a)

(b)

(c)

(d)

Figure 2: Travelling wave solution profiles of (8) as rainfall is de-
creased, along with the rightmost part of their spectra. Solutions
all have a wavelength of 40 and are depicted in Figure 3(c) as green
points along the constant wavelength contour. In (a) c = 1.7 and the
pattern is unstable due to an Eckhaus instability. In (b) c = 1 and
the pattern is stable. In (c) c = 0.1 and the pattern becomes unsta-
ble again but this time due to a Hopf-type instability. In (d) c = 0.01
and the pattern becomes stable again. Our results suggest that as c
approaches its minimum value along the contour, u approaches a δ
function. Other model parameters are fixed: B = 0.45, v = 182.5,
d = 1.
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the Laplace kernel. This ensures that in the limit a→∞,
the non-local Klausmeier model with φ given by (6) will
converge to the local Klausmeier model. This is because
Cφ approaches a δ function as a becomes large, i.e. seed
dispersal becomes progressively more locally concentrated.215

This assumption requires the restriction a >
√
B to ensure

the existence of a maximum rainfall level for pattern for-
mation.

2.2. Methods

The key to understanding desertification is the transi-
tion of patterns due to instability driven by low rainfall
rates, and in this section we show how one can create a
map of stability using numerical continuation and bifurca-
tion analysis. This enables us to assess the differences in
the critical rainfall thresholds in the presence of non-local
dispersal. The study of pattern solutions of (7) is made
significantly easier with a coordinate transformation to a
moving frame of reference z = x − ct, so that travelling
waves u(x, t) = U(z), w(x, t) = W (z), I(x, t) = J(z) are
solutions of

0 = U2W −BU + a2(J − U) + cU ′ (8a)

0 = A−W − U2W + (c+ v)W ′ + dW ′′ (8b)

0 = a2(U − J) + J ′′. (8c)

Here, prime denotes differentiation with respect to z, and220

c is the wave speed of the pattern. Using the numeri-
cal continuation software package AUTO 07p [42] one can
vary a model parameter, c say, and detect Hopf bifurca-
tions in (8)—the birth of periodic patterns. In Figure 2
we show some solution profiles along a branch emanating225

from a detected Hopf bifurcations. Note that the reduc-
tion of (7) to (8) greatly simplifies analysis, but in doing
so introduces an extra parameter c so that, instead of a
pattern forming interval A ∈ (Amin, ATH) described in
Section 1.3, we must consider a pattern forming region in230

the A–c parameter plane.
Though we are able to numerically generate patterns of

different wave speeds using (8), they may or may not be
stable as solutions of (7). To test the stability of patterns
consider the perturbed travelling waves

u(ξ, t) = U(ξ) + ū(ξ, t) exp(λt),

w(ξ, t) = W (ξ) + w̄(ξ, t) exp(λt), (9)

I(ξ, t) = J(ξ) + Ī(ξ, t) exp(λt).

Substitution of (9) into (7) and linearising about the trav-
elling wave solution yields the eigenvalue problem:

λū = (2UW − b)ū+ U2w̄ + a2(Ī − ū) + cū′, (10a)

λū = −2UWū− (1 + U2)w̄ + a2(Ī − ū)

+ (c+ v)ū′ + dū′′, (10b)

0 = a2(ū− Ī) + Ī ′′ (10c)

Here, λ and the associated eigenvectors ū, w̄, Ī are com-
plex valued. The values of λ that satisfy (10) determine
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,
c

(a) local dispersal
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d

,
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(b) non-local dispersal, a = 1

rainfall, A

m
ig
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ti

o
n
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ee

d
,
c

(c) non-local dispersal, a = 0.75

Figure 3: Existence and stability of striped vegetation patterns for
(a) the local Klausmeier model, (b), (c) the non-local Klausmeier
model with Laplace kernel and C = a2. Thick black curve: Turing-
Hopf locus. Thick grey curve: locus of homoclinic solutions. Thin
grey curves: contours of constant wavelength. Blue curve: Eckhaus
instability boundary. Red curve: Hopf instability boundary. Green
curve: locus of folds. Yellow/grey regions indicate stable/unstable
solutions. Green points represent solutions in Figure 2. Other model
parameters are fixed: B = 0.45, v = 182.5, d = 1.
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a = 1

a = 0.75

Figure 4: Resilience of patterns in the non-local Klausmeier model. The figure shows time simulations of two initially unstable patterns for
different a. When a = 1 the initial pattern of wavelength 20 quickly destabilises to form a pattern of wavelength 40; this is because of an
Eckhaus instability. When a = 0.75 temporal oscillations due to a Hopf instability are visible but the wavelength of the pattern remains
the same and a small increase in rainfall regenerates a stable pattern with the same initial wavelength. Other model parameters are fixed:
B = 0.45, v = 182.5, d = 1.

whether small disturbances will grow or decay, and is
known as the spectrum. It is common practice to visu-235

alise spectra in the complex plane as we do in Figure 2
for different travelling wave solutions of (8). We use the
method of Rademacher to plot the spectra associated with
(10)—for details we refer the reader to [36, 43]. Note that
the method involves discretising the eigenvalue problem in240

order to find approximate initial values of λ from which
a numerical continuation can be started. For this, a mi-
nor complication is that (10) is a ‘generalised’ eigenvalue
problem since (8c) has no time derivative. This is easily
dealt with using a simple reformulation to the ‘ordinary’245

case [43].

All spectra of travelling waves go through the origin in
the complex λ plane (reflecting the neutral stability of
the wave to translation) and so we must omit λ = 0 in
the following definition of stability: if Re(λ) < 0 for all250

λ 6= 0 the solution is linearly stable; if there exists a λ
with Re(λ) > 0 the solution is unstable. Figures 2(b,c)
show stable solutions of 7, whereas Figures 2(a,c) show
unstable solutions. The transition in Figures 2(a-d) is ob-
tained by decreasing A; this affects the shape and stability255

of solutions. Consider the solution in Figure 2(b). In-
creasing the rainfall will eventually result in the solution
in Figure 2(a) which is unstable as a result of an ‘Eck-
haus’ (or ‘sideband’) instability—a change of curvature at
the origin of the spectrum. This is a standard and well260

documented feature of the Klausmeier model and is the
key to explaining the transition of vegetation patterns. A
banded pattern that becomes unstable via Eckhaus insta-
bility switches to a pattern of longer/shorter wavelength.
Decreasing the rainfall eventually gives the solution in Fig-265

ure 2(c) which is unstable due to a ‘Hopf’ type instability.
This has interesting implications on the future of an un-

stable pattern—for instance, instead of a transition to a
different wavelength pattern as with an Eckhaus instabil-
ity, the wavelength is preserved and temporal oscillations270

can be observed [44]. We address the ecological signifi-
cance of this in the following section.

Using the ideas described so far we are able to map out
existence and stability boundaries for banded vegetation
patterns in the A–c parameter plane in Figure 3. We cal-275

culate stability boundaries via continuation of marginally
stable solutions in parameter space. For an Eckhaus insta-
bility boundary, this involves finding a solution with zero
curvature at λ = 0 in the spectrum. In contrast, a Hopf
instability boundary is calculated via continuation of so-280

lutions with a double root for Re(λ) = 0 away from the
origin.

2.3. Results

We have discussed the methods employed in this section
for determining the existence and stability of solutions.285

We now examine the ecological implications of Figure 3.
Results for the local Klausmeier model in Figure 3(a) are
not novel, but we include them so a comparison may be
made with results for the non-local Klausmeier model in
Figure 3(b) and (c). As mentioned, when C = a2 the non-290

local model approaches the local in the large a limit. We
have repeated our numerical analysis for large a and obtain
results indistinguishable from Figure 3(a), validating the
predicted convergent behaviour.

In Figure 3(b,c) we map out pattern existence and sta-295

bility in the A–c parameter plane for moderate values of
a. Previous work [28] has focused only on the existence of
patterns, concluding that the tendency for pattern forma-
tion increases as a decreases (with C = a2). The Turing-
Hopf bifurcation locus, from which patterns of constant300

7
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wavelength emanate, bounds the right-hand side of the
pattern forming region; with a locus of homoclinic orbits
bounding the left. Patterns can either be stable or unsta-
ble and we divide the pattern forming region accordingly.
Suppose one has a stable pattern; as one varies A the pat-305

tern evolves following a contour of constant wavelength
(see Figure 1 for an illustration of this in a numerical sim-
ulation of the model). The pattern can become unstable
as a result of either an increase, or a decrease in rainfall.
In this paper, we refer to a pattern becoming unstable310

due to increased rainfall as a ‘transition towards uniform
vegetation’, and decreased rainfall as a ‘transition towards
desert’. Our numerical analysis in Figure 3 shows that the
parameter region for stable patterns grows as a decreases.
Additionally, one can see that a transition towards desert315

occurs at lower rainfall levels along the wavelength con-
tours. Interestingly, a transition towards uniform vegeta-
tion remains largely unchanged relative to the Turing-Hopf
bifurcation locus. This reflects the increased resilience of
patterns at low rainfall when a is small, and a preference320

of the system to transition towards uniform vegetation as
soon as the rainfall is sufficient to permit it.

For very long range dispersal (still with C = a2), the
mechanism of destabilisation can change completely from
an Eckhaus instability to a Hopf instability, though only325

in the region relevant to a transition towards desert. The
ecological implications of this can be observed in numeri-
cal simulation of (4). Figure 4 shows time simulations of
two initially unstable striped patterns for different a and
otherwise identical parameter values. The first is unsta-330

ble because of an Eckhaus instability and quickly transi-
tions to a longer wavelength pattern corresponding to a

Figure 5: Stationary patterns in the non-local Klausmeier model.
Initially we have a stable pattern. As the rainfall is reduced the
pattern becomes unstable due to a Hopf type instability. This causes
the pattern to halt its migration up the slope and stationary, high
density peaks are observed. As rainfall increases back to its initial
value, the initial stable pattern returns, highlighting the increased
resilience of the system. This simulation was done with a = 0.75
and d = 100.
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(a) Varying a with C = 1

a = 0.3
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(b) Varying C with a = 1

C = 3

C = 1
C = 0.7

C = 0.5

Figure 6: The variation in the Eckhaus stability boundary for (a)
varying kernel width with fixed dispersal rate; (b) varying dispersal
rate with fixed kernel width. The range of stable striped patterns
grows as the Eckhaus boundary moves to the right. In (a) the Eck-
haus boundary recedes to the left as the width of the kernel increases.
In (b) the Eckhaus boundary grows to the right as the seed disper-
sal rate increases. All curves terminate at a point on the locus of
homoclinic orbits (not shown) to the left of the plot, except for the
curves in (b) with C = 0.7 and C = 0.5 which turn around and move
towards the right. Here, a Hopf instability (not shown) becomes the
primary destabilisation mechanism similarly to that shown in Figure
3(c). Other model parameters are fixed: B = 0.45, v = 182.5, d = 1.

shift towards the desert state. This behaviour is a key
component of the original Klausmeier model and is well
established in the literature. The second is unstable be-335

cause of a Hopf-type instability and as time evolves, the
peaks of vegetation begin to oscillate in time. The wave-
length of the pattern is preserved and a modest increase in
rainfall allows a stable pattern to emerge. Intuitively, this
seems a valid ecological strategy: if the amount of rainfall340

cannot sustain the pattern, peaks of vegetation alternate
their density to compensate for the lack of water in the
overarching ecosystem. This ensures its structure is not
lost so that when rainfall is increased, a stable pattern of
the same (shorter) wavelength may persist.345

In Figure 5 we show a similar time simulation of a pat-
tern becoming unstable, again due to a Hopf type instabil-

8



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

ity, though with slightly different parameters. In this case
we have an initially stable pattern that migrates uphill at
a constant speed. As the rainfall is reduced the pattern350

begins to slow as expected close to destabilisation, and
becomes unstable at approximately A = 0.5. This results
in high density, stationary peaks of vegetation that re-
main at the same wavelength as the initial stable pattern.
This is an unusual prediction for a model with directed355

transport. The most important feature for both of these
observations—oscillating peaks and stationary patterns—
is the ability of the ecosystem to endure the same arid
conditions that would normally lead to catastrophe, ac-
cording to the local Klausmeier model.360

Finally in this section we comment that we are not
aware of any ecological evidence for choosing C = a2 =
2/σ(a)2—we did so simply because of the associated con-
vergence properties of (4) in the large a limit that allow
for model comparison. Therefore, for completeness we per-365

formed our calculations for varying a with a fixed value of
C, and vice versa. The Eckhaus stability boundary is par-
ticularly informative because it not only bounds the right
hand side of the stable pattern forming region, but it must
necessarily pass through the maximum A supporting pat-370

tern formation, and so for brevity we compare Eckhaus
curves for various combinations of a and C in Figure 6.
We discuss the separate cases: for fixed C, increasing the
width of the dispersal kernel limits the range of stable pat-
terns, with uniform vegetation being sustainable at much375

lower levels of rainfall. When patterned vegetation is ob-
served for small a it is likely to have a faster migration
speed, in contrast to large a values; for which vegetation
is likely to have a low migration speed. For a fixed kernel
width, a decreased dispersal rate will yield greater pattern380

forming tendencies, and in some cases the Eckhaus bound-
ary may be replaced by a stability boundary of Hopf-type,
changing the behaviour of unstable solutions as previously
discussed. A comprehensive statistical assessment [31] of
various ecological datasets suggests a range of C and a385

combinations that may occur for different plant species
and dispersal modes. Although the relationship C = a2

cannot in general be assumed, the parameter choices in
Figure 3(c) along with subsequent conclusions are still rel-
evant.390

3. A comparison of kernels

3.1. Methods

The analysis of the non-local Klausmeier model for gen-
eral seed dispersal kernels is very difficult and we are not
aware of any methods that allow the insight and accu-395

racy gained in Section 2, though efficient numerical simu-
lations of integro-differential equation models are still pos-
sible (when the non-local term is a convolution) via use of
fast Fourier transforms (FFTs)—see, for instance, [45, 46].
One approach used in the past has been to discretise the400

system in space in order to obtain a large system of ordi-
nary differential equations [47]. The immediate drawback

of this is the increased computational expense of any nu-
merical analysis, and in particular, testing the stability
along solution branches is time consuming. The compu-405

tation is, however, feasible on a coarse spatial grid at the
expense of numerical accuracy. Therefore, the results in
this section are qualitative and are intended for the pur-
poses of comparison. In 2007, the local Klausmeier model
was analysed in the same way [47], with the computation410

being implemented with a grid spacing of ∆x = 2. With
an increase in computational power since then, we are able
to use ∆x = 1, and with a more complicated set of equa-
tions. As technology advances it will become possible to
employ this method with a finer grid spacing to obtain415

more accurate results.
The spatial discretisation of the non-local Klausmeier

model gives the following system of ODEs:

∂ui
∂t

= u2iwi −Bui + C(Ii − ui), (11a)

∂wi

∂t
= A− wi − u2iwi + v

wi+1 − wi

∆x

+ d
wi+1 − 2wi + 2wi−1

∆x2
(11b)

for i = (1, ..., N) and where Ii is an approximation of the
infinite integral. We consider periodic boundary condi-
tions u0(t) = uN (t), uN+1(t) = u1(t), w0(t) = wN (t),
wN+1(t) = w1(t) for simplicity. If one truncates the inte-
gral to be evaluated on the interval [−L,L], we can work on
the same grid as (11) and define M points for the integral
approximation as yj = −L+ (j−1)∆x with j = (1, ...,M)
and M = 2L/∆x+ 1. The set of points yj is then a subset
of xi and we can use, for example, the trapezoidal rule to
obtain the following approximation:

Ii(t) =
∆x

2

M∑

j=1

(φ(yj−1)u(xi − yj−1, t)

+ φ(yj)u(xi − yj , t)) . (12)

Some kernels we studied required Simpson’s rule for a more
accurate approximation. L must be carefully chosen—not
too large so as to needlessly increase computational cost,
and not too small so that one obtains a poor approxima-420

tion of the infinite integral. For instance, if the width of the
kernel in question is small in comparison with the length
of the spatial domain, one can take M to be significantly
less than N , reducing the computation time.

Our approach to balance accuracy and efficiency was425

as follows: we chose a dispersal kernel and calculated an

accurate ‘true’ evaluation of
∫ L

−L φ(x)dx to verify that the
truncation is sufficiently close to 1, keeping L as small as
possible. We then calculated the numerical approximation
on our coarse grid spacing and compared it with the true430

result. Clearly one can choose a kernel which is not well
approximated with such a course grid spacing, though the
kernels and parameters we used were ‘nice’ enough for this
method. Assuming a well approximated kernel is obtained,
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(c) Gaussian kernel
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(d) Power law kernel
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Figure 7: Existence and stability results for various dispersal kernels using (11) are plotted in orange with solid/dashed curves representing
stable/unstable solutions. Known results for the Hopf locus (black) and Eckhaus stability boundary (blue) obtained using the methods in
Section 2.2 are superimposed in (a) and (b). The standard deviation and dispersal rates in (b)-(d) were kept constant: σ2 = 2, C = 1. Other
model parameters are fixed: B = 0.45, v = 182.5, d = 1.

one can begin the analysis of (11) which we do, again, by435

numerical continuation with AUTO 07p [42].

Our analysis begins with the stable homogeneous steady
state of uniform vegetation. For the spatially discretised
system of equations, as one decreases the rainfall param-
eter the homogeneous steady state becomes unstable, and440

one detects a number of Hopf bifurcations corresponding
to a selection of specific pattern modes which depend on
the size of the spatial domain—in this paper we take the
domain size to be 60, and with a grid spacing of ∆x = 1
this gives us 120 equations to analyse. One then numeri-445

cally continues periodic solutions from each detected Hopf
bifurcation allowing AUTO to test stability as the rainfall
parameter varies along the solution branch.

We study (4) for three ecologically relevant kernels,
along with the diffusion case (1), for which this analysis

was applied for d = 0 in [47]. Together with the Laplace
kernel (6) we consider a Gaussian kernel

φ(x) =
ag√
π
e−a

2
gx

2

, ag > 0, (13)

and a power law kernel

φ(x) =
(b− 1)ap

2(1 + ap|x|)b
, ap > 0, b > 3. (14)

The standard deviations for the Laplace, Gaussian and
power law kernels are σ(a) =

√
2/a, σ(ag) = 1/(

√
2ag) and450

σ(ap) = (
√
b2 − 5b+ 6ap), respectively. Since the power

law kernel is a two-parameter kernel we fixed b = 10. For
comparison we take C = 1 and choose kernel parameters
such that σ =

√
2 in each case, so that a = 1, ag = 0.5

and ap ≈ 0.134. AUTO will not distinguish between an455
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Eckhaus or a Hopf type instability so we choose C not
too small so as not to generate a Hopf-type instability
(see Figure 6(b)). To be clear, we are now comparing
between the shape of the kernel, as opposed to its width
as in Section 2.460

3.2. Results

The functional form of the dispersal kernel has a min-
imal influence on the formation and evolution of striped
patterns as seen in Figure 7, and more significant differ-
ences are observed when one varies the width of the kernel465

and the rate of dispersal. Consequently, the conclusions
set out in Section 2 become more important; now being
relevant to a wider variety of plant species that disperse
seeds according to a range of dispersal kernels. We do
however discuss the small variations that occur when one470

changes φ.
We overlay the known results for diffusion and Laplace

kernel cases in Figure 7(a,b), allowing one to gauge the
accuracy of the discussed spatial approximation. We re-
tain surprising levels of accuracy despite the coarseness475

of the spatial grid, especially when φ is the Laplace ker-
nel. Note that the maximum rainfall for pattern forma-
tion (the intersection of Eckhaus and Hopf-locus curves)
is only relevant for periodic boundary conditions when
the domain size is divisible by the pattern wavelength—a480

quasi-periodic solution would be unstable as a solution of
the underlying model and patterns would not be observed.
Qualitatively, the existence and stability of patterns is the
same regardless of the shape of the dispersal kernel, as-
suming a fixed kernel width. The main difference is the485

existence of additional pattern modes when one considers
non-local dispersal as opposed to local dispersal, though
these are mostly unstable and therefore irrelevant in ap-
plications. There is also a difference in this respect when
one changes the shape of the kernel, with the least pattern490

modes being observed for a Gaussian kernel, and the most
for a power law kernel.

Because the differences are slight, it is more convenient
to view the threshold existence and stability values as a
function of the pattern wavelength, as we show in Figure495

8 for the relevant stable patterns only. We find that the
power law and Laplace kernels in particular increase the
pattern forming tendencies as well as resilience. For the
Laplace, Gaussian and diffusion cases the onset of pattern
formation generates a mode 4 pattern but for the power500

law kernel, a mode 5 pattern becomes relevant at onset. In
ecological terms, plants that disperse their seeds according
to a power law distribution are more likely to form shorter
wavelength patterns with increased resilience. The un-
fortunate downside of the increased resilience observed in505

the Laplace and power law cases is the additional rainfall
needed for ecosystem restoration. For instance, consider
the mode 1 pattern corresponding to an oasis on the pe-
riodic domain of length 60. It is true that the Laplace
and power law distributions allow the pattern to persist at510

lower rainfall levels than the Gaussian and diffusion cases.

mode 4

mode 3

mode 5

mode 2

mode 1

Figure 8: A comparison of the relevant stable patterns according
to their wavelength for a range of dispersal kernels. Parameters are
C = 1, σ2 = 2 with other model parameters given in the main body
of the text. Solid/dashed lines represent stable/unstable patterns.
Other model parameters are fixed: B = 0.45, v = 182.5, d = 1.

However, upon increasing the rainfall the system is more
easily restored in the Gaussian and diffusion cases mean-
ing a trade off exists, with a price to pay for increased
resilience.515

4. Discussion

Striped patterns are strongly influenced by non-local
seed dispersal. Our findings in Section 2 reveal that non-
local dispersal can increase the resilience of striped vege-
tation in two ways: the first by permitting stable patterns520

at levels of rainfall that would otherwise be unsustainable
if seeds dispersed locally. The second is more interesting;
patterns undergo the usual slowing down when rainfall ap-
proaches critically low levels, but in certain instances pat-
terns that become ‘unsustainable’ do not lead to a sudden525

shift of the ecosystem towards desert, as previous theory
suggests. Instead the model predicts alternative coping
strategies such as fluctuations of vegetation peak densities
in time (see Figure 4) and even stationary patterns (see
Figure 5). In both cases a small increase in rainfall regen-530
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erates the previous stable pattern, which demonstrates the
increased resilience of the vegetation as a consequence of
long-distance seed dispersal.

A key finding of our work is the existence of slow mov-
ing and stationary patterns as a result of non-local dis-535

persal. There is much evidence to support the uphill
migration of vegetation stripes, both mathematical [34]
and empirical [48, 34]. However, contradictory field ob-
servations also exist that suggest patterns can be station-
ary on slopes [15, 49] with the local Klausmeier model540

being inconsistent with such evidence. Other theoreti-
cal models have been proposed that do permit station-
ary solutions [50, 51]—they include the transport of seeds
via run-off water in the downhill direction. It has also
been posited that stationary patterns could be explained545

by compacted, weathered bands of soil that make coloni-
sation difficult [7]. The original Klausmeier model was
deemed to be in order-of-magnitude agreement with field
observations [26] and gave predictions of migration speeds
in the range 0.4 − 1.9 m year−1. With the addition of550

non-local dispersal, patterns may be permitted at c < 0.2
in some cases (see Figure 6(a)) corresponding to speeds
of < 0.1 m year−1—the movement of vegetation would be
practically undetectable over the time span of the available
data. Although (4) is not intended to be quantitatively ac-555

curate, we believe the model provides a good explanation
for why patterns may be observed as stationary in practice.

The motivation for studying the affects of dispersal ker-
nel shape was the wide extent of factors affecting disper-
sal distance (e.g. vegetation species, habitat, dispersal560

mode). Certainly a single kernel cannot be fitted to ev-
ery dataset across all plant species. In particular, a main
feature of many ecologically relevant dispersal kernels are
their ‘fat’ tails—these are often called ‘leptokurtic’ kernels.
The power law kernel can be viewed as fat tailed due to its565

algebraic decay away from the mean, contrary to the ex-
ponential decay of the ‘thin’ tailed Gaussian and Laplace
kernels. In general, however, we find that existence and
stability are very similar regardless of kernel which sug-
gests that kernel width and seed dispersal rate are more570

relevant in the study of patterned vegetation, and the ker-
nel shape can be neglected for qualitative studies. This
strengthens our results that assume Laplace distributed
seed dispersal in Section 2.

A direction for further studies could be the (possible)575

existence of stable stationary patterns in the non-local
Klausmeier model as suggested by Figure 3(c). For the
local model the homoclinic orbit locus terminates at the
Hopf bifurcation locus, though despite our efforts we were
unable to determine whether this non-occurrence in Fig-580

ures 3(b-c) was a numerical issue or a genuine feature of
the model; wavelength contours do appear to terminate
very close to a zero migration speed. One can observe
similar behaviour for the spatially discretised system in
Figure 7. We were unable to verify the behaviour in time585

simulations of the model due to the sharpness of the veg-
etation peaks which lead to a poor approximation in our

numerical scheme—a more sophisticated algorithm is re-
quired here, e.g. dynamically varying mesh. Furthermore,
an interesting direction would be to try and estimate the590

kernel parameters and dispersal rate in a specific instance
of banded vegetation as a case study. In particular, one
could estimate the parameters for vegetation that has been
shown to exhibit uphill migration, and vegetation shown
to be stationary. Feeding these parameters into the model595

could help verify our theory as to why some patterns move,
and some do not.
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