
To Stir or Not to Stir: Online Estimation of Liquid
Properties for Pouring Actions

Tatiana Lopez-Guevara1,2, Rita Pucci2, Nicholas Taylor1, Michael Gutmann2, Subramanian Ramamoorthy2, Kartic Subr2

1Heriot-Watt University, 2University of Edinburgh
{t.l.guevara}@ed.ac.uk

Abstract—Our brains are able to exploit coarse physical models
of fluids to solve complex manipulation tasks. There has been
considerable interest in developing such a capability in robots
so that they can autonomously manipulate fluids adapting to
different conditions. In this paper, we investigate the problem of
adaptation to liquids with different characteristics. We develop a
simple training task (stirring with a stick) that enables rapid in-
ference of the parameters of the liquid with relatively inexpensive
measurement equipment (standard webcams) that robots may be
assumed to have access to in the wild. We perform the inference
in the space of simulation parameters rather than on physically
accurate parameters. This facilitates prediction and optimization
tasks since the inferred parameters may be fed directly to the
simulator. First, we +demonstrate that our “stirring” learner
performs better than when the robot is trained with pouring
actions. Further, we show that our method is able to infer
properties of three very different liquids – water, glycerin and
gel – and improve spillage with increased training. We present
various experimental results performed by executing stirring and
pouring actions on a UR10. We believe that this decoupling
of the training actions from the goal task is a significant first
step towards simple and autonomous learning of the behavior of
different fluids in unstructured environments.

I. INTRODUCTION

Empowering robots with a capability to autonomously
manipulate liquids will lead to impact across sectors such
as engineering, medicine and the service industry. Existing
capabilities in industry are restricted to carefully instrumented
environments where all parameters are either controlled or
known precisely. For example, robots bottling wine or food
products require the receptacles to be located at specific
locations and are calibrated specifically using the physical
properties of the products they manipulate.

A number of exciting solutions have been proposed with re-
spect to learning to pour liquids. Recent approaches are broadly
based on reasoning using simulations of the liquid [18, 10] or
on optimization based on parametric assumptions (parabolic
trajectory) of the liquid [13]. The physical parameters of the
setup play an important role in both approaches. This includes
the shapes of the pouring and receiving containers, intrinsic
and extrinsic properties of the liquid, etc. Prior works have
focused on inferring specific subsets of these parameters via
sampling [18] or by feedback in closed-loop [19]. The latter
poses a technical challenge, of having to track particles of real
fluids.

A general class of methods, popularly known as intuitive
physics [2, 1, 21, 22, 16], argues that coarse representations

of physical processes are sufficient for many prediction tasks.
Inspired by this approach, Lopez-Guevara et al [10] used an
approximate (but real-time) fluid simulator NVIDIA Flex [11]
to represent the behavior of liquids. Although this enabled
fast prediction, their inference problem involves mapping real
world observations to the parameter space of the approximate
simulator via a cumbersome calibration step involving pouring.

In this paper, we focus on the problem of inferring the
behavior of different types of liquids using simple training
interactions and their observed effects. Rather than learning
physical properties, we parameterize liquids according to inputs
specified to NVIDIA Flex. The learning algorithm searches
this parameter space online. For this, the robot stirs the liquid
using a motion pattern and seeks simulation parameters that
match the inclination of the stick in simulation against its
observed values. Finally, we use the inferred parameters to
predict the optimized pouring action for a given liquid and
verify that it reduces spillage. The high-level contributions of
this paper, in the context of pouring liquids, are that we: (1)
decouple actions performed during training from the goal; (2)
propose an online, autonomous calibration action; (3) achieve
adaptability to different liquids.

II. RELATED WORK AND CONTRIBUTION

There is a large body of work that address problems in
using simulations for robotic control and path planning. There
is also a considerable amount of work on robots learning by
interacting with their environment. We restrict our review to
those works that are directly relevant to our goal of learning
the physical properties of liquids for manipulation.

Estimation of physical properties: A few approaches focus
on estimating physical parameters such as volume [3, 12] and
viscosity [4, 17], These methods exploit special measurement
equipment such as RGBD cameras or tactile sensors for
parameter estimation. In our context, knowledge of the physical
parameters would only be useful if a high-fidelity simulation is
used to optimize decision-making during manipulation of fluids.
To remain practical, it is necessary to resort to approximate
simulators which typically face the model mismatch problem
since their input parameters do not coincide exactly with
physical attributes such as viscosity. Different approaches
have been proposed to learn simulator parameters from data
[22, 8, 5, 9]. Different to [22], we do not assume a Gaussian

Bayesian
Optimizer

Bayesian
Optimizer

simulation
real

MLEiterate N

iterate

inferred
params.
of liquid

optim.
pouring
action

one-shot pour

spillage as loss function

measured
spillage (%)

learning from stirring (this paper)

pouring (is used to evaluate learning)

loss function

motionrobot

Fig. 1. Left: This paper focuses on learning parameters of liquids by stirring. The efficacy of learning is evaluated by executing one-shot pouring and
measuring the percentage spillage z. Right: We compared percentage spillage achieved by our method (learning by stirring) against the baseline (learning by
pouring) as a function of the time spent in traning. Stirring is both quicker (solid green curve, 0.5 min per stir) as well as more efficient compared to learning
by pouring (solid blue curve, 4min per pour). The dashed curves are hypothetical training times if the stirring and pouring (numbers, in mins, shown in the
legend).

likelihood of the real observations given the simulated ones.
Rather, we learn a model of the discrepancy between real
and simulated data and use it to accelerate the search using
Bayesian Optimization[5][9].

Robots interacting with fluids: Existing methods that can
reason about fluids, use only simulations [23, 6, 14, 15] or
a combination of simulation and real observations [24, 7].
The latter categories of approaches suffer from the problem
that approximate simulations deviate over time from reality
complicating the envisioned effects of robotic manipulations [6].
An interesting solution, proposes to use simulations in closed-
loop [19], by periodically projecting the simulated particles onto
the real liquid tracked in image-space using thermal imaging.
There have been a few solutions on the use of supervised
learning [14, 20] and Bayesian Optimization [10] for pouring
liquids.

Summary: In summary, we are inspired to combine promising
directions of recent work that use supervision [20] for learning
to pour from, say video of pouring actions. Simultaneously,
we retain the benefits of using approximate simulation [18, 10]
since it allows a generalization to a variety of manipulations. We
decouple the training task from the manipulation so that it lends
itself to automation, is less messy for tasks such as pouring
liquids and is also more time-efficient. We avoid the need
for specialized equipment such as RGBD or thermal cameras,
allowing the training to be performed with two webcams which
mobile robots may plausibly be equipped with. Finally, we
perform parameter estimation in the space of inputs of the
approximate simulator rather than physical units. This enables
us to use these parameters directly for predictive tasks by
supplying them to the simulator during test execution.

III. PROBLEM DEFINITION

Let as ∈ As denote actions performed in training, where
the subscript abbreviates “stirring”. Let θ ∈ Θ define the
parameters controlling the behaviour of the liquid in the
simulation-based model. For each action as executed by the
robot, let the observable at time t be y(t), the inclination of the

stick used for stirring. When the same action is executed by the
simulator using the parameter θ, let the resulting inclination be
ỹθ(t). We define the observed discrepancy (for stirring) over
the duration T of action as as

∆θ = E

∫
T

(y(t)− ỹθ(t))2
dt

 (1)

Let ap ∈ Ap be a pouring action and let z denote the
corresponding spillage (as a percentage of the poured liquid)
observed when ap is executed. The relationship between the
variables is specified in the graphical model shown in Fig. 2.

Here, we analyze the problem of inferring parameters θ∗,∈Θ
of the liquid, given a space of training (stirring) actions As
that are different from the space of goal (pouring) actions
Ap. We quantify the suitability of As by measuring the
percentage of liquid spilled while performing optimized
one-shot pouring using a∗p ∈ Ap obtained from θ∗,.

Assumptions: We assume that the shapes (geometry) of the
containers are available, or can be estimated using sensors.
Also, we rely on the robot’s estimation of its end effector pose,
to synchronise simulation with reality.

Inference:
Given a specific As, say stirring using a motion pattern, the

goal of the inference step is to estimate the best θ∗ in simulation
such that the discrepancy ∆θ is minimal. At each iteration
k, an action as is executed by the robot and in simulation
using a hypothesized parameter θ. The resulting discrepancy
∆k
θ , calculated using Eq. 1, together with the parameter θ are

provided to a Bayesian Optimizer [9] that learns a regression
of θ over ∆θ using a Gaussian process, where the goal is to
optimize:

∆k(θ) ∼ GP(µk(θ), κk(θ, θ
′
))

θ∗,k = argmin
θ∈Θ

µk(θ)

An approximation of the likelihood [5] can be computed
using the cdf of the standard Normal distribution Φ as
(visualized in Fig. 2-Right):

∆ z

as θ ap

Fig. 2. Left: Graphical model showing relationships between variables: as
and ap are stirring and pouring actions respectively; ∆ is the discrepancy
in measured and simulated inclination; z is the measured relative spillage
(percentage); and θ is the parameter that characterizes the property of the
simulated liquid. By stirring, we wish to obtain a maximum likelihood estimator
for θ∗,. During pouring, we use θ∗, to determine an optimum a∗p which reduces
z. Right: Contour plots of the posterior belief on the fluid parameters after
stirring water (left), glycerin (middle) and gel (right).

L̂n(θ) ∝ Φ

(
ε− µ(θ)

σn(θ)

)
Evaluation: We quantitatively evaluate the suitability of As
for the problem by measuring percentage spillage using an
optimized action a∗p ∈ Ap. This is due to the lack of an
existing ground truth of the parameters in the simulator given
its approximate nature. Since our contribution concerns the
training task, we use a pouring strategy exactly as proscribed
by previous work [10]. They use a simulator to identify a∗p, by
defining the loss function to be the ratio of the spilled particles
to the total number of particles simulated. The jth iteration of
their method therefore involves executing the simulator with
action ajp ∈ As and θ∗,. The minimization results in a∗p after a
finite number (15 in our case) of iterations. Finally, we execute
a∗p using the robot and measure the percentage of liquid spilled.

IV. EXPERIMENTS AND RESULTS

A. Experimental setup

Stirring: For all our experiments, we used a UR10 robot
equipped with a gripper holding a stick so that it is free to
pivot at the gripping point. Before stirring begins, the stick is
vertical and partly submerged in the liquid. The motion of the
end effector is limited to a plane P parallel to the ground plane.
Due to this motion, and the the resistance encountered by the
stick due to the liquid, at any instant t, the stick might deviate
from its vertical position to y(t). The inclination is intricately
dependant on the velocity of the end effector and the physical
properties of the liquid and the stick. y(t) is estimated using
simple computer vision on the video feed from two Logitech
HD Pro C920 webcams with image planes orthogonal to P .
The position of the end effector of the robot is queried, at 30Hz,
and supplied to the simulator which replicates the executed
action. The inclination produced in simulation at instant t is
recorded as ỹθ(t). The space of stirring actions As is discrete
and determined by the stirring pattern. In this work we used
a cyclic sequence, As = {ais}, i = 1, · · · ,m that visually
follows an m−point star with m = 9.

Pouring: We replicate the one-shot pouring solution in existing
work [10]. For completeness, we review their method here
using our notation. The space of pouring actions Ap is two

Fig. 3. Left: Effect of two calibration methods in the deployment task
measured as the decrease of spillage with respect to the number of iterations.
Right: Effect of the parameters inferred after performing the stirring action
10 and 20 times on three liquids.

dimensional and continuous. The 2D space is parameterized by
a constant angular velocity and the relative distance between
source and target containers aip =

(
ωi, pi

)
. After 15 iterations

of the optimizer over ap given θ∗, the robot obtains an estimate
for the optimal pouring action a∗p, which it then executes. We
measure the percentage of liquid spilled by the robot over 5
repetitions of the above experiment.

B. Discussion

Learning by stirring vs learning by pouring: We compared
the percentage spillage z achieved by our algorithm which
learns by stirring against the method proposed in [10] which
calibrates by pouring using a training cup. Although it would
seem intuitive that applying the same task to train must result
in lower spillage under test conditions, our results indicate the
contrary. Fig. 3-Left plots z vs N , where N is the number of
iterations of the B.O. used to estimate θ∗,. Using our stirring
approach, the spillage is less than 5% even with only 10
iterations, under half the corresponding figure when the robot
was trained with pouring. At N = 20 iterations, our approach
almost achieves zeros spillage (which is lower than learning
from pouring at N = 60 iterations).

Pouring other liquids: We observed a similar trend across
three different liquids Fig. 3-Right: as N is increased, the
spillage reduces. However, the degree of spillage is significantly
higher for more glycerin and gel. On further investigation of the
video and the simulator, we realized that the excessive spillage
for glycerin is due to the unusually high adhesive effect that
makes glycerin stick to the pouring container. Unfortunately,
this adhesive behaviour cannot be modelled by the simulator on
a particle-particle interaction. We conclude that the choice of
the approximate simulator, combined with potentially different
behavior across training and pouring actions might be a source
of error during spillage. However, the capability to infer
parameters within a limited gamut of expressibility is still a
valuable addition to the toolkits proposed by existing methods.

Training times: Each iteration of the stirring method takes
about 0.5 minutes. On the other hand, for training by pour-
ing [10], the time taken per training iteration is 4 minutes.
Even if stirring was only as efficient as pouring in terms of the
number of optimization iterations, this already offers a saving

of about 8× in training time. This gap is evident in the plot
shown in Fig. 1-Right, which compares the spillage during
testing resulting from the two different training approaches. The
solid curves represent optimistic times taken per training task
for the two approaches. The dashed curves show the maximum
expected time per iteration for the two training approaches.
Even if stirring took 7 mins per stirring (which is heavily
exaggerated), the spillage (dashed red curve) is comparable to
that achieved by “learning by pouring” (solid blue curve). The
plot also shows that the total training time can be hundreds of
minutes for learning by pouring.

V. CONCLUSION

We have presented the first supervised learning algorithm
for robotic manipulation of liquids that decouples the training
action (stirring) from the final task (pouring) while adapting to
liquids with widely different properties. Learning by stirring is
preferable to learning by pouring because it is easy to automate,
it is time efficient and avoids the mess involved due to spillage.
We demonstrated that stirring leads to reduced spillage for
water compared to state of the art and also presented results for
adapting the pouring to other liquids. We discussed the several
design decisions involved, along with quantitative justification
and recommendations for prospective use-cases.

REFERENCES

[1] Christopher Bates, Peter Battaglia, Ilker Yildirim, and
Joshua B Tenenbaum. Humans predict liquid dynamics
using probabilistic simulation. In CogSci, 2015.

[2] Peter W Battaglia, Jessica B Hamrick, and Joshua B
Tenenbaum. Simulation as an engine of physical scene
understanding. Proceedings of the National Academy of
Sciences, 110(45):18327–18332, 2013.

[3] Chau Do, Tobias Schubert, and Wolfram Burgard. A
Probabilistic Approach to Liquid Level Detection in Cups
Using an RGB-D Camera. In IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS),
2016.

[4] Christof Elbrechter, Jonathan Maycock, Robert Haschke,
and Helge Ritter. Discriminating liquids using a robotic
kitchen assistant. In Intelligent Robots and Systems
(IROS), 2015 IEEE/RSJ International Conference on,
pages 703–708. IEEE, 2015.

[5] M.U. Gutmann and J Corander. Bayesian optimization
for likelihood-free inference of simulator-based statistical
models. Journal of Machine Learning Research, 17(125):
1–47, 2016.

[6] Lars Kunze and Michael Beetz. Envisioning the
qualitative effects of robot manipulation actions using
simulation-based projections. Artificial Intelligence, jan
2015. ISSN 00043702. doi: 10.1016/j.artint.2014.12.
004. URL http://www.sciencedirect.com/science/article/
pii/S0004370214001544.

[7] Yoshifumi Kuriyama, Ken’ichi Yano, and Masafumi
Hamaguchi. Trajectory planning for meal assist robot
considering spilling avoidance. Proceedings of the IEEE

International Conference on Control Applications, pages
1220–1225, 2008. doi: 10.1109/CCA.2008.4629665.

[8] J. Lintusaari, M.U. Gutmann, R. Dutta, S. Kaski, and
J. Corander. Fundamentals and recent developments in
approximate Bayesian computation. Systematic Biology,
66(1):e66–e82, January 2017. ISSN 1063-5157.

[9] Jarno Lintusaari, Henri Vuollekoski, Antti Kangasrsi,
Kusti Skytn, Marko Jrvenp, Michael Gutmann, Aki
Vehtari, Jukka Corander, and Samuel Kaski. Elfi: Engine
for likelihood free inference, 2017.

[10] Tatiana Lopez-Guevara, Nicholas K. Taylor, Michael U.
Gutmann, Subramanian Ramamoorthy, and Kartic Subr.
Adaptable pouring: Teaching robots not to spill using fast
but approximate fluid simulation. In 1st Annual Con-
ference on Robot Learning, CoRL 2017, Mountain View,
California, USA, November 13-15, 2017, Proceedings,
pages 77–86, 2017. URL http://proceedings.mlr.press/
v78/lopez-guevara17a.html.

[11] Miles Macklin, Matthias Müller, Nuttapong Chentanez,
and Tae-Yong Kim. Unified particle physics for real-time
applications. ACM Transactions on Graphics (TOG), 33
(4):104, 2014.

[12] Roozbeh Mottaghi, Connor Schenck, Dieter Fox, and Ali
Farhadi. See the Glass Half Full: Reasoning about Liquid
Containers, their Volume and Content. arXiv:1701.02718,
2017. URL http://arxiv.org/abs/1701.02718.

[13] Zherong Pan and Dinesh Manocha. Motion Planning
for Fluid Manipulation using Simplified Dynamics. In
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), volume 0, 2016. URL http://arxiv.
org/abs/1603.02347.

[14] Zherong Pan and Dinesh Manocha. Feedback Motion
Planning for Liquid Pouring Using Supervised Learning.
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), 2017.

[15] Zherong Pan, Chonhyon Park, and Dinesh Manocha.
Robot Motion Planning for Pouring Liquids. In The
International Conference on Automated Planning and
Scheduling (ICAPS), 2016.

[16] Vivian C Paulun, Takahiro Kawabe, Shinya Nishida, and
Roland W Fleming. Seeing liquids from static snapshots.
Vision research, 115:163–174, 2015.

[17] Hannes Saal, Jo-Anne Ting, and Sethu Vijayakumar.
Active sequential learning with tactile feedback. In
Proceedings of the Thirteenth International Conference
on Artificial Intelligence and Statistics, pages 677–684,
2010.

[18] Connor Schenck and Dieter Fox. Reasoning About
Liquids via Closed-Loop Simulation. In Robotics: Science
and Systems (RSS), 2017. URL http://arxiv.org/abs/1703.
01656.

[19] Connor Schenck and Dieter Fox. Visual Closed-Loop
Control for Pouring Liquids. In International Conference
on Experimental Robotics (ICRA), 2017. URL http://arxiv.
org/abs/1610.02610.

[20] Pierre Sermanet, Corey Lynch, Jasmine Hsu, and Sergey

http://www.sciencedirect.com/science/article/pii/S0004370214001544
http://www.sciencedirect.com/science/article/pii/S0004370214001544
http://proceedings.mlr.press/v78/lopez-guevara17a.html
http://proceedings.mlr.press/v78/lopez-guevara17a.html
http://arxiv.org/abs/1701.02718
http://arxiv.org/abs/1603.02347
http://arxiv.org/abs/1603.02347
http://arxiv.org/abs/1703.01656
http://arxiv.org/abs/1703.01656
http://arxiv.org/abs/1610.02610
http://arxiv.org/abs/1610.02610

Levine. Time-Contrastive Networks: Self-Supervised
Learning from Multi-view Observation. IEEE Computer
Society Conference on Computer Vision and Pattern
Recognition Workshops, 2017-July:486–487, 2017. ISSN
21607516. doi: 10.1109/CVPRW.2017.69.

[21] Tomer D Ullman, Elizabeth Spelke, Peter Battaglia, and
Joshua B Tenenbaum. Mind games: Game engines as
an architecture for intuitive physics. Trends in cognitive
sciences, 21(9):649–665, 2017.

[22] Jiajun Wu, Joseph J Lim, Hongyi Zhang, Joshua B
Tenenbaum, and William T Freeman. Physics 101:
Learning physical object properties from unlabeled videos.
In BMVC, volume 2, page 7, 2016.

[23] Akihiko Yamaguchi and Christopher G Atkeson. Differen-
tial Dynamic Programming for Graph-Structured Dynam-
ical Systems : Generalization of Pouring Behavior with
Different Skills. In IEEE-RAS International Conference
on Humanoid Robots, number 2, 2016.

[24] Akihiko Yamaguchi and Christopher G Atkeson. Stereo
Vision of Liquid and Particle Flow for Robot Pouring. In
IEEE-RAS International Conference on Humanoid Robots,
number c, 2016.

	Introduction
	Related work and contribution
	Problem definition
	Experiments and results
	Experimental setup
	Discussion

	Conclusion

