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• The microplastics were surveyed and
the physical oceanographic parameters
in the Northwestern Pacific were mea-
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colors, sizes, shapes and chemical com-
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• The mechanisms for microplastic distri-
butionwere proposed by chemical com-
position and the physical oceanographic
data.
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Prevalence of microplastics (MPs) throughout the world's oceans has raised growing concerns due to its detri-
mental effects on the environment and living organisms. Most recent studies of MPs, however, have focused
on the estuaries and coastal regions. There is a lack of study of MPs pollution in the open ocean. In the present
study, we conducted field observations to investigate the abundance, spatial distribution, and characteristics
(composite, size, color, shape and surface morphology) of MPs at the surface of the Northwestern Pacific
Ocean. Samples of MPs were collected at 18 field stations in the Northwestern Pacific Ocean using a surface
manta trawl with a mesh size of ~330 μm and width of 1 m from August 25 to September 26, 2017. The MPs
were characterized using light microscopy, Micro-Raman spectroscopy, and scanning electron microscopy
(SEM). Our field survey results indicate the ubiquity of MPs at all stations with an abundance from 6.4 × 102

items km−2 to 4.2 × 104 items km−2 and an average abundance of 1.0 × 104 items km−2. The Micro-Raman
spectroscopic analysis of the MPs samples collected during our field survey indicates that the dominant MPs is
polyethylene (57.8%), followed by polypropylene (36.0%) and nylon (3.4%). The individual chemical composi-
tions of MPs from the stations within the latitude range 123–146°E are comparable with each other, with PE
being the dominating composition. Similar chemical fingerprints were observed at these field stations, suggest-
ing that theMPs originated from similar sources. In contrast, themajor MPs at the field stations adjacent to Japan
is polypropylene, which may originate from the nearby land along the coast of Japan. Physical oceanography
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parameters were also collected at these stations. The spatial distribution of MPs is largely attributed to the com-
bined effects of flow pattern, adjacent ocean circulation eddies, the Kuroshio and Kuroshio Extension system.

© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The world has seen explosive growth in the production and con-
sumption of plastic materials in the past decades due to their versatility,
lightweight, low cost, durability, and pliability. The annual plastic pro-
duction surged 20% in five years from 279 million tons in 2011 to
335 million tons in 2016 (PlasticsEurope, 2018; Zhang, 2017). The
sheer volume of plastic pollution in the environment owes largely to
the persistence of plastics. A substantial amount of plastics end up in
waterways, particularly in the marine environment. It was estimated
that 4.8–12.7 million tons of plastic wastes were pumped into the
ocean in 2010. This number is expected to grow by an order of magni-
tude by 2025 (Jambeck et al., 2015; Kooi et al., 2017). MPs were initially
defined as the microscopic plastic debris in the 20 μm scale (Thompson
et al., 2004) and later as the plastic particles b5 mm in diameter
(Andrady and Neal, 2009; NOAA, 2016), albeit not a standard definition.
MPs can be either primary or secondaryMPs (Li et al., 2018; Piñon-Colin
et al., 2018). Primary MPs comes from personal care products in the
form of microbeads (e.g., exfoliating facial cleansers, cosmetics.), plastic
products (e.g., resin pellet.), and synthetic textiles. A portion of MPs
comes from fiber-containing laundry effluents released into the envi-
ronment since wastewater treatment plants fail to retain and eliminate
MPs. For example, Browne et al. reported that ~1900 synthetic fibers
may be shed from one synthetic garment during each washing cycle
(Browne et al., 2011; Cauwenberghe et al., 2015). A large marine plastic
debris becomes brittle with time and breaks into small pieces, so-called
secondary MPs through various environmental processes such as bio-
logical activities, UV irradiations, mechanical abrasions, temperature
fluctuations, wind and wave actions (Auta et al., 2017; Barnes et al.,
2009; Bergmann et al., 2017; Ling et al., 2017).

The abundant andwidely spread floatingmarine plastics around the
globe introduce massive amounts of MPs into the marine environment,
which constitute the vast majority of buoyant marine plastics (Mauro
et al., 2017). MPs have been identified across the worldwide's oceans,
from nearshore to offshore and pelagic regions, at sea surfaces, in
water columns and seabed sediments, and from theArctic to the Antarc-
tic (Abayomi et al., 2017; Cauwenberghe et al., 2013; Isobe et al., 2017;
La Daana et al., 2017; Lots et al., 2017; Lusher et al., 2015; Waller et al.,
2017; Zhang et al., 2017). As the infinitesimal fragments of plastic, MPs
are expected to increase exponentially with shrinking size and time due
to its longevity (Cózar et al., 2014; Kooi et al., 2017). As a result, the MP
abundance is likely to grow dramatically in the future unless effective
mitigation measures are implemented in a timely fashion.

Persistent organic pollutants (POPs), including polychlorinated
biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), and
polybrominated diphenyl ethers (PBDEs), have a great propensity to
cling to MPs, due to their hydrophobic nature (Mato et al., 2001;
Ogata et al., 2009). MPsmay also adsorb heavymetals such as lead, cop-
per and nickel (Brennecke et al., 2016; Rochman et al., 2014). It follows
thatMPs act as vehicles for transferring toxic chemicals through trophic
levels (Bakir et al., 2012; Browne et al., 2008; Teuten et al., 2007;Wessel
et al., 2016). MPs may be ingested by marine organisms and cause
blockage of metabolic channels (e.g., alimentary tract and gut), physical
damages, reduced appetite, altered feeding behavior and fatigue. MPs
may transfer their associated organic contaminants or toxic additives
to living organisms and hinder the growth, development, and reproduc-
tion ofmarine life (Cole et al., 2015; Hamlin et al., 2015; VonMoos et al.,
2012; Watts et al., 2015; Wegner et al., 2012; Wright et al., 2013a). En-
vironmental impacts of MPs have raised growing public concerns.
Furthermore, there is an increasing awareness of a growing threat
fromMPs to humanhealth due to humanexposures toMPs and their as-
sociated toxins via food chains or inhalation of MPs in the air (Vethaak
and Leslie, 2016; Wright and Kelly, 2017).

The growing concerns of adverse impacts of MPs have spurred a
wide array of studies of the abundance, distribution, fate, and transport
of MPs in the marine environment. Majority existing studies have fo-
cused on the widespread occurrence and distribution of MPs in the
aquatic environment, however, research on abundance, distribution,
and characteristics of MPs in the pelagic zone is currently lacking. The
objective of the present study is to conduct field observations to
investigate the abundance, distribution, and characteristics (composite,
size, color, shape and surface morphology) of MPs in the Northwestern
Pacific Ocean. MPs are characterized using light microscopy, Micro-
Raman spectroscopy, and scanning electronmicroscopy (SEM). Physical
oceanography parameters were also collected at these stations. The
sources, distributions, and generationmechanisms ofMPs in the pelagic
zone are evaluated based on the field observations at these 18 stations
across the Northwestern Pacific Ocean and link with flow patterns,
adjacent ocean circulation eddies, the Kuroshio Current and Kuroshio
Extension system.

2. Materials and methods

Although the benchmark methodology for MPs analysis has not
been established, the following procedure has been used widely:
(1) MPs collection; (2) MPs isolation (separation, digestion, filtration,
drying); (3) visual identification; (4) Characterization by Fourier Trans-
form Infrared Spectroscopy (FTIR)/Micro-Raman/Scanning Electron
Microscopy-Energy Dispersive Spectroscopy (SEM-EDS); (5) identity
assignment (Ribeiro-Claro et al., 2016). In the present study, a revised
National Oceanic and Atmospheric Administration (NOAA) protocol
(NOAA, 2015) is adopted for MPs sample collections and preparations.

2.1. Study area

SurfaceMPs samplingwere collected at 18 stations across theNorth-
western Pacific Ocean (cf. Fig. 1 and Table 1). Three stations XTW3-3,
XTW3-4, and XTW3-5 are located evenly along the same latitude in
the west of Luzon Strait (118–120°E). Six stations (XTW3-6, XTW3-7,
XTW3-8, XTW3-9, XTW3-10, and XTJ3-19) are located in the latitude
direction from 123 to 146°E. Another six stations (XTJ3-19, XTJ1-14,
XTJ1-6, XTJ1-4, XTJ1-3, and XTJ1-2) are located in the longitudinal di-
rection from 20 to 38°N. Four stations XTJ1-6, XTW2-1, XTW2-3, and
XTW2-5 span eastward from 146 to 151°E. Locations of MPs field sta-
tions, sampling dates, abundance, and chemical composition of MPs
are listed in Table 1 and illustrated in Fig. 1.

2.2. MPs sampling

A large volume of water samples are required during the MPs field
survey, due to low concentration of MPs in the ocean (Bergmann
et al., 2015), particularly in the pelagic zone. Floating MPs were col-
lected from 18 stations (Fig. 1) in the Northwestern Pacific using a sur-
face manta trawl with a mesh size of ~330 μm and width of 1 m from
August 25 to September 26, 2017. The manta trawl was deployed to
sea surface via a reel-operated lift on the side of the research vessel.
The angle between trawling and shipping route is about 20°. The MPs
at the ocean surface were sampled by trawling horizontally between

http://creativecommons.org/licenses/by-nc-nd/4.0/


Fig. 1. Sampling sites andMPs characterization in theNorthwestern Pacific. Blue dots represent the sampling locations. Size of pie charts reflects theMPs concentration. Colors of pie charts
indicate the compositions of MPs, Green: PE; Yellow: PP; Red: PS; Dark Burgundy: PVC; black: PET; Gray: PA; Light Burgandy: P.
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50 and 240 min at a speed of 1.0 to 3.0 knots at each field station. The
trawling distance is estimated using the GPS data recorded at the begin-
ning and end of trawling. The sampling area is estimated as the product
of trawling length and net width. When the net is clogged by debris
such as phytoplankton, the sampling is suspended and restarted using
a clean manta net. At the end of the trawling, the net was lifted at a
speed of 0.5 m s−1 and rinsed with natural seawater onsite to drive all
the samples inside the net down to the bottom of the sampling bottle
and wash away the impurities outside the net. The used net was col-
lected for further processing in the laboratory. Plastic and other debris
N5 mm in diameter were picked up by steel tweezers and put into
glass bottles. The sample in the collector attached to the bottom of the
Table 1
MPs sampling station, abundance, and chemical composition.

Sampling station Sampling date Longitude (E) Latitude (N) Number
(0.3–5 mm)

Sampl
(m2)

CTRL-1 9/11/2017 146°29′51″ 40°00′01″ 9 3326.5
XTW3-6 8/28/2017 123°58′18″ 20°59′32″ 12 6700.5
XTW3-7 8/28/2017 125°58′51″ 20°59′40″ 17 1130.1
XTW3-8 8/29/2017 127°59′25″ 20°59′52″ 5 2639.7
XTW3-9 8/30/2017 129°59′26″ 20°59′59″ 26 615.92
XTW3-10 9/2/2017 139°59′45″ 20°59′53″ 42 1488.7
XTJ1-19 9/4/2017 146°27′34″ 20°59′35″ 12 7574.4
XTJ1-14 9/6/2017 146°32′48″ 26°59′43″ 112 9030.0
XTJ1-6 9/9/2017 146°30′05″ 34°57′42″ 32 7645.9
XTJ1-4 9/10/2017 146°29′24″ 36°59′42″ 1 1561.8
XTJ1-3 9/10/2017 146°31′22″ 37°59′55″ 3 4285.9
XTJ1-2 9/11/2017 146°30′50″ 38°59′24″ 82 2427.9
XTW2-5 9/15/2017 151°56′53″ 35°01′30″ 8 12,102
XTW2-3 9/15/2017 150°00′17″ 34°58′45″ 9 4789.9
XTW2-1 9/16/2017 147°59′34″ 35°00′30″ 55 3628.5
XTW3-5 9/24/2017 119°58′24″ 21°01′25″ 10 8976.6
XTW3-4 9/24/2017 119°29′21″ 20°59′49″ 44 4600.0
XTW3-3 9/24/2017 118°59′25″ 21°00′30″ 52 3596.2
Total 531
Percentage (%)
net was then transferred to a 500-mL glass vial. Meanwhile, the control
samples were taken by rinsing the collector attached to the bottom of
the cleaned nets with Milli-Q water. All samples were stored at 4 °C
prior to analysis.

2.3. Sample analysis

2.3.1. Wet sieving
Water samples in the sampling bottle were poured through stacked

stainless steel mesh sieves with mesh sizes of 5.0-mm and 0.3-mm, re-
spectively. Residues on the 5.0-mmsieveswere collected. Subsequently,
the glass sampling bottles were rinsed and then filtered through the
ing area Abundance
(items/km2)

PE PP PA (nylon) PVC PS Rubber PET

7 2705 9
1 1791 10 2
2 15,043 8 6 2 1
6 1894 5

42,213 20 4 2
0 28,213 31 11
8 1584 9 1 2
0 12,403 91 20 1
9 4185 8 17 7
3 640 1
8 700 3
0 33,774 43 37 1 1
.50 661 3 3 2
6 1879 5 3 1
4 15,158 8 45 2
2 1114 7 3
0 9565 14 28 2
2 14,460 41 11

187,982 307 191 18 6 3 5 1
57.8% 36.0% 3.4% 1.1% 0.6% 0.9% 0.2%
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Fig. 2.Microplastic abundance observed at 18 field stations in the Northwestern Pacific.
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sieves with Milli-Q water. Salt was also removed from the field samples
during this process. This procedure was repeated three times to ensure
complete removal of samples from the bottle. Then the 0.3-mm sieve
was rinsed thoroughly with Milli-Q water and all the material collected
was transferred to clean beakers. Finally, the sample in the beaker was
dried in the oven at 75 °C.

2.3.2. Digestion
20 mL aqueous 0.05 M Fe(II) solution was first added to the dried

beaker containing the 0.3 mm size fraction of the collected solids, and
then 20 mL 30% H2O2. The mixture covered with a watch glass was
kept at room temperature for 5 min and then heated at 75 °C on a
hotplate under the hood until bubbles appeared. The beaker was re-
moved and kept until the reaction is completed. Subsequently, it was
heated at 75 °C for another 30 min. Another 20 mL 30% H2O2 was
added and the above process is repeated to ensure a thorough oxidation
of organic matters.

2.3.3. Density separation
About 6 g NaCl was added to a 20 mL sample to increase the density

of the solution. The mixture was transferred to a glass funnel after the
complete dissolution of NaCl (~300 g L−1). The beaker was rinsed sev-
eral times with Milli-Q water to ensure that the solid was completely
transferred to a density separator which was loosely covered with an
aluminum foil and settled overnight. Most plastics would float to the
surface the next day. Further MPs screening was conducted through a
visual inspection of any settled solids. The identified MPs were drained
and collected using forceps. The supernatant was filtered through a
glass fiber filter (GF/F Whatman, 47 mm diameter and 0.7 μm pore
size) using a vacuum system. The funnel was rinsed several times
with Milli-Q water and the solution was poured through the glass
fiber filter as well. Finally, all solids including the suspected MPs in the
settled solids from the filter were collectively placed in a clean petri
dish covered with aluminum foil and air dried overnight for further
analysis to obtain the type, abundance, shape, color, and size of MPs.

2.4. Visual identification

The collected solids were further inspected visually under a micro-
scope (Olympus CKX 41, Japan) for MPs screening. The composition of
discernable solids was identified using Micro-Raman spectroscopy.

2.5. Chemical classification

Micro-Raman Spectroscopic analysis was conducted using a Senterra
II Compact Raman Microscope (Bruker Optics Inc., Billerica, MA) coupled
with an optical microscope with a grafting of 1200 lines/mm with 20×
and 50× objectives (Infinity, USA). All the MPs samples were excited
with visible 532 nm and near-infrared 785 nm diode lasers of 1–60 mW
focused onto the sample for 10–60 s. Raman spectra were recorded as
line measurements (N4 points) on various parts of the focused particle
to avoid any contaminationof impurities. All spectrawith a frequency res-
olution of ~3–5 cm−1 and range of 400–4000 cm−1 were analyzed using
theOPUS 7.5 software (Opus software Inc., San Rafael, CA). Both commer-
cial library and self-created library references of main plastic polymers
(Table S2) were adopted for identifying the composition of MPs.

2.6. Surface morphology

The samples were coated 3 nm layer of Au using a sputter coating
system (Leica EM ACE200, Germany) to enhance their conductivity.
The surface topography and element analysis of MPs were conducted
by a SEM unit (Zeiss EVO 18, Germany) with an energy dispersive X-
ray analysis (EDS) system,which are controlled by the SmartSEM® soft-
ware operated via a graphical user interface and Aztec One software,
respectively.
2.7. Physical oceanography parameters

Oceanography parameters including temperature, conductivity, and
pressure were measured using a SBE 917 Plus CTD (Sea-Bird Scientific,
USA). The sea state was measured using a vessel-mounted Acoustic
Doppler Current Profiler (ADCP) and the automatic weather reporting
system operated by the Marine Technology Center, State Oceanic Ad-
ministration of China. The sea state parameters, such as wind speed,
wind direction are listed in Table S1 in the Supporting Information
(SI). The vertical distribution of MPs concentration is more closely
related to wind-driven and wave-induced mixing. As pointed by
Kukulka et al. (2012), the MPs concentration at surface and subsurface
is correlated with wind speed throughwind-induced mixing. However,
we only collected MPs samples at the surface in this study. Therefore,
the effect of wind speed on the vertical distribution of MPs is not well
resolved in the present measurements.

The underway current was measured by a vessel-mounted Acoustic
Doppler Current Profiler (ADCP). Maps of surface dynamic topography
were derived from the satellite altimetry data from AVISO website
(https://www.aviso.altimetry.fr/en/home.html) and the deduced abso-
lute geostrophic velocities. The global daily sea surface temperature
(SST) data was given by global high-resolution SST remote sensing.

3. Results and discussion

3.1. Abundance

The surface abundance ofMPs at 18 stations in theNorthwestern Pa-
cific is illustrated in Fig. 1. MPs are present at all stations, suggesting the
pervasiveness of MPs pollution in the Northwestern Pacific. A total of
531 counts of MPs were detected at the 18 stations across the pelagic
zone during the field survey. The concentration of MPs differs signifi-
cantly among 18 stations. Fig. 2 shows that the MPs abundance at the
ocean surface ranges from 6.4 × 102 to 4.2 × 104 items·km−2, which
is represented by the size of pie charts in Fig. 1 with a median and
mean value of 3.4 × 103 and 1.0 × 104 items·km−2. Approximately
39% of the observed MPs abundance is over 1.0 × 104 items·km−2.
MPs accumulation is visible west of the Luzon Strait and changes from
1.1 × 103 items·km−2 in the east to 1.4 × 104 items·km−2 in the west
as shown in Fig. 1. We believe that MPs were conveyed to and
accumulated at XTW3-3, located at the west side of the Luzon Strait
by the westward intrusion of the Kuroshio Current into the South

https://www.aviso.altimetry.fr/en/home.html


Table 2
MPs abundances of sea surface waters across the world.

Location Time Sampling method MPs abundance (items km−2) References

Arabian Bay December 2014–March 2015 Surface neuston net (300 μm) 4.4 × 104–1.5 × 106 (Abayomi et al., 2017)
Arctic Ocean June 5–15, 2014 Manta net (330 μm) 2.8 × 104 (Lusher et al., 2015)
South Pacific Ocean March 23–April 21, 2011 Manta trawl (330 μm) 0–4.0 × 105 (Eriksen et al., 2013)
East Asian seas around Japan July 17–September 2, 2014 Neuston net (350 μm) 1.7 × 106 (Isobe et al., 2015)
Western North Atlantic Ocean Surface plankton net tows (330 μm) 0–5.8 × 105 (Law et al., 2010)
Caribbean Sea 1986–2008 1.4 × 103 ± 1.1 × 102a

Gulf of Maine 1.5 × 103 ± 2.0 × 102a

Mediterranean July 9–August 6, 2010 Manta trawl (330 μm) 0–9.0 × 105 (Collignon et al., 2012)
Northeastern Pacific Ocean August–September 2012 Saltwater intake system of the vessel 8 to 9.2 × 103 (items/m3) (Desforges et al., 2014)
Kuroshio Current area April 2000–April 2001 Surface neuston net (330 μm) 1.7 × 105 ± 4.7 × 105a (Yamashita and Tanimura, 2007)
Northwestern Pacific Ocean August 25 to September 26, 2017 Manta trawl (330 μm) 6.4 × 102–4.2 × 104 This study

a Average ± standard deviation.
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China Sea through the Luzon Strait. This current is mainly generated
by the wind stress curl off the southwest Taiwan (Yuan et al., 2014).
At the east of the Luzon Strait, the MPs abundance increases from
1.8 × 103 items·km−2 to 4.2 × 104 items·km−2 in the eastward direc-
tion. The relatively high MP abundance at the XTJ1-2 may be attributed
to its geographic proximity to the densely populated coastlines and in-
dustrialized Japanese coast of Pacific. Dynamic human activities along
the Japan coast of Pacific increase the terrestrial effluents of plastic de-
bris into the ocean. The station XTW3-9 has the highest MP abundance
of 4.2 × 104 items·km−2 (Fig. 2). Particularly high MP concentrations
have been reported in the convergent zones of subtropical ocean
gyres due to accumulation and persistence of MPs in these regions
(Cózar et al., 2014; Eriksen et al., 2014; Mauro et al., 2017; Moore
et al., 2001). As shown in Fig. 5, station XTW3-9 is located close to an
ocean current gyre.

There are no standardized sample acquisition protocols to monitor
MPs. Different sampling gears (e.g., plankton trawls, neuston nets,
bongo nets, manta trawls) with various mesh sizes have been adopted
in previous studies. Therefore, various units for MPs abundance
(e.g., items m−2, items m−3, g m−2, items kg−1 sediment, etc.) have
been utilized. Inconsistency in the sampling approach, extraction
technique, and reporting unitmakes it difficult to compareMPsmeasure-
ment results. Table 2 shows comparisons of our field survey results with
other studies with similar sampling methods and reporting units. Our
observed MPs abundance is at least one order of magnitude smaller
than that at the Arabian Bay observed by Abayomi et al. (2017). This
may be due to the fact that the Arabian Bay is a marginal sea bordering
the Indian Ocean and receives more plastic debris from the land. Also,
the enclosed ecosystem in the Arabian Bay has a limited exchange with
the pelagic zones, therefore, subject to accumulation of MPs close to the
coast in the bay (Mauro et al., 2017). Similar to Arabian Bay, theMediter-
ranean Sea is a semi-enclosed ocean surrounded by continents, which
discharge large amounts of plastic debris into the ocean, therefore, has a
relatively high MP abundance (Table 2). The mean MPs abundance in
the South Pacific Ocean and Western North Atlantic Ocean is about one
order of magnitude higher than that observed during our field survey in
the Northwestern Pacific (Table 2). The MPs level in the East Asian sea
around Japan is even higher (1.7 × 106 items km−2, Table 2) (Isobe
et al., 2015), about 50 times what we observed in the Northwestern
Pacific. Again, this may be due to the proximity of the East Asian seas to
the highly urbanized and industrialized land. Furthermore, relatively
high averaged MP abundance (1.7 × 105 items km−2, Table 2) was
identified in the Kuroshio Current region indicated by the arrow in
Fig. 1, suggesting that the Kuroshio Current plays an important role in
transporting and retaining plastics from nearby terrestrial sources.

3.2. Chemical fingerprints

Fig. 3 shows the distinct Micro-Raman spectral characteristics for
plastic polymers that can be used as reference spectra to identify the
composition of this type of MPs. Fig. 4 shows the Micro-Raman spectra
for selected samples of MPswith various color, shape and type collected
from the Northwestern Pacific. The MP polymer type was determined
by matching the characteristic peaks of recorded Micro-Raman spectra
(Fig. 4) with the reference spectra of known plastics illustrated in
Fig. 3. Overall, seven conventional plastic polymers (PE, PP, PA, PVC,
PS, rubber, and PET) were detected in our field survey samples. PE
accounted for the largest proportion of MPs (~58%), followed by PP
(36%) and PA (3%). The Micro-Raman spectral results show that PE
and PP are the two predominant plastic polymers in our MPs samples,
consistent with earlier findings (Cózar et al., 2014; Ghosal et al., 2017;
Hidalgo-Ruz et al., 2012).

Identifying the type ofMPs provides clues about their origins. For ex-
ample, chemical compositions of MPs at the same latitude of 21°N from
123°E to 146°E are comparable, with 83% PE and 17% PP, 77% PE and 15%
PP, 74% PE and 26% PP, and 81% PE and 18% PP for sample stations
XTW3-6, XTW3-9, XTW3-10, and XTJ1-14, respectively (Fig. 1). The
MPs in the east stations may originate from the neighboring land-
based regions. Unlike the stations mentioned above at 21°N, the major
MPs in the stations adjacent to Japan (e.g., XTJ1-2, XTJ1-6, XTW2-1,
etc.) is PP. The MPs sample at XTJ1-6 and XTW2-1 consists 25% PE and
53% PP, 15% PE and 82% PP, respectively. The large variations in the
MPs compositions are due to the large variations in the origin of MPs.
Due to the geographic proximity to Japan, MPs at these stations are
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likely originated from the coast of Japan. In addition, the MPs at the
sampling station XTJ1-2 are composed of comparable fractions of PE
(52%, Table 1) and PP (45%, Table 1), which is in good agreement
with the latest statistics report of plastics production materials in
2016–2017 provided by the Japan Plastics Industry Federation. Accord-
ing to that report, similar amounts of PE and PP materials (4.53 and
4.37 million tons, respectively) were produced from January 2016 to
September 2017 (JPIF, 2017). These results suggest that the Pacific
coast of Japan may be the geographic origin of the marine plastic debris
in the Northwestern Pacific. However, futurework is required to further
verify this hypothesis.

3.3. Spatial patterns

Physical oceanographic parameters, including vessel-mounted
ADCP measurements of underway current, satellite altimetry data, and
sea surface temperature were analyzed to examine the mechanisms
for the MPs distribution patterns in the studied area. Fig. 5 illustrates
the Kuroshio and the Kuroshio Extension in the Northwestern Pacific.
A large-scale recirculation gyre is formed at the southeast of the
Kuroshio adjacent to the coast of Japan (130.7–136.0°E). The Kuroshio
Extension path south of Japan oscillates southeastward and northeast-
ward in a meandering manner, resulting in a double gyre (141–151°E)
centered around (143.10°E, 36.35°N) and (149.19°E, 36.41°N). During
the survey, the observed anomaly of Southern Recirculation Gyre
south of the Kuroshio Extension manifested as two warm eddies at rel-
atively stable locations, south of the eddy centers. Fig. 5 also shows the
presence of numerous mesoscale eddies in the east of the Kuroshio and
south of the Kuroshio Extension, where multiple MP sampling stations
(e.g., XTW3-6, XTJ1-2, XJT1-6, XTW2-1, Fig. 1) are located. Ocean circu-
lation in this area is closely linked to the intensity and trajectory of these
mesoscale eddies which therefore influences the abundance and spatial
distribution ofMPs in this region. For example, the intensivewarm eddy
east of the Kuroshio near Taiwan (21.9–25°N) in Fig. 5 would modulate
the MPs transport at the nearby field stations such as XTW3-6.

The overall flow direction at the latitude range of 21–30°N is be-
tween northeastward and northward. The transect of 21.8–24.3°N has
a flow velocity N30 cm s−1 near the warm eddy and the confluence of
cold and warm eddies leads to an intensive current of 88.80 cm s−1

around 146.50°E, 22.41°N. The overall northeastward directed currents
with higher velocity south of 24.3°N may carry MPs towards the
northeast, and cause the relatively high MPs abundance at the station
XTJ1-14. In addition, the source-specific distribution may be obtained
based on the subtle differences in the MP chemical fingerprints along
XTW3-5, XTW3-6, XTW3-7, XTW3-9, XTW3-10, and XTJ1-14 (Fig. 1).

The transect of 34.6–36.4°N passed through the Kuroshio Extension
pathwith a strongnortheastward current. Themaximumcurrent veloc-
ity of 188.90 cm s−1 in the northeastward directionwas observed at the
Kuroshio extension path near (146.54°E, 35.73°N) as shown in Fig. 5,
which carry the MPs northeastward towards the XTW 2-1 at
(147.59°E, 35.00°N). This explains the observed higher MPs abundance
(1.5 × 104 items km−2) at the station XTW2-1 than its neighboring sta-
tion XJT1-6. The transect of 36.4–37.8°N is located near the south edge
of awarm eddy north of the Kuroshio Extension (cf. Fig. 5)with a steady
southwestward flow. The transect of 37.8°N passes by the warm eddy
(Fig. 5) with a stable southeastward current. Fig. 5 shows that ocean
current south of the Kuroshio Extension (south of 34°N) is distinctly
weaker than that north of the Kuroshio Extension. The northward



Fig. 5.Map of ocean surface dynamic topography (color) and geostrophic currents (arrows) in the present study area from Aug 25–Sep 26, 2017. Note that current b10 cm s−1 is excluded
from this figure.
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current with a relative higher magnitude in the north implies that the
MPs influx from the Japanese coast may travel northward rather than
accumulate in the south of the Kuroshio Extension. This circulation pat-
tern is consistent with our observation that the MPs abundance in the
stations XTJ1-6, XTW2-1 south of the XTJ1-2 is relatively lower than
that at XTJ1-2 (Fig. 1).

3.4. Size

Microplastic size was analyzed using the method developed by the
National Oceanic and Atmospheric Administration (NOAA, 2015). Our
analysis results show that the size of ~50% of the detected MPs spans
from 0.5 to 1.0 mm. 29.8% of MPs are medium size (1–2.5 mm), while
17.6% of MPs are large size (2.5–5.0 mm) (cf. Fig. 6A). Our observations
are consistent with the recent findings that relatively small size of
particles dominates in the MPs (Isobe et al., 2015; Isobe et al., 2017;
Song et al., 2014; Zhang et al., 2017). The proportion of MPs of certain
size increases with decreasing particle size. It was proposed that the
plastic aging process and weather forcing help to break large marine
plastic debris into small fragments, resulting in a decrease in the size
of MPs (Isobe, 2016).

3.5. Color

Awide spectrum of colors was observed for theMPs during our field
survey. Fig. 6B indicates that the dominant color of MPs in the North-
western Pacific is white (~57.4%), followed by transparent (22.8%),
green (6.6%), black (6.4%), blue (2.8%), yellow (2.4%), and purple
(1.5%). Note that the pale MPs (white and transparent) accounts for
80.2% of the observed MPs, whereas the other colors are b20%. Our
findings agree well with previous findings that the translucent and
light colored floating marine debris account for 94% of all MPs in the
Sargasso Sea (Carpenter et al., 1972), 82–89% in the South Atlantic
(Ryan et al., 2009), and 72% in the North Pacific (Day et al., 1985). The
large variety of colors for MPs implies that MPs may have colors similar
to natural marine food, therefore, may confuse natural prey and preda-
tor behaviors and lead to color-specific ingestion by marine biota
(Wright et al., 2013b). For instance, some visual predators may mistake
MPs of similar physical appearance (e.g., white, tan, and yellow plastics)
as food (Wright et al., 2013b).

Color has also been recognized as a good indicator of residence time
at the ocean surface and degree of weathering (Rodríguez-Seijo and
Pereira, 2016). The degree of yellowing or darkening is largely due to
the increased carbonyl index, therefore the extent of aging or degrada-
tion (Stolte et al., 2015). In lieu of bright and fresh colors, nearly all the
observedMPs from our field survey displays dull and faded hues, which
indicates that they were transported across the ocean and underwent
various aging processes, e.g. weathering and degradation over a long
period of time. This result is consistent with the previous finding that
the discoloration of the plastic polymer is the visual indicator of degra-
dation (Gewert et al., 2015).

3.6. Shape

Fig. 6C shows that the MPs in the Northwestern Pacific has a broad
range of irregular shapes, including fragments, lines, granules and
films. Granules account for 39.7% of all our collected MPs samples.
Sheets, films, and lines represented 26.7%, 24.7%, and 8.9% of theMPs re-
spectively. The shape of MPs may be affected by (1) the initial form of
primary plastics, (2) surface degradation and erosion processes such
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as mechanical abrasion, photodegradation and biological activities,
(3) residence time at the sea. Surface roughness, cracks, and brittleness
are also good indicators of residence time. Sharp edges may suggest a
short residence time of plastics, whereas smooth ones may indicate
that the MPs have resided at the sea for an extended time of period
(Hidalgo-Ruz et al., 2012; Rodríguez-Seijo and Pereira, 2016). However,
smooth/rough edges may not be a good proxy for plastic age in some
cases. For example, brand new resin pellets possess smooth surfaces,
but they are not the aged plastic particles. In addition, plastics do not
weather in the same manner as rocks or sediments.

Previous studies showed that the origins and pathways of MPs may
be inferred based on their shapes (Cheung and Fok, 2016; Lenz et al.,
2015; Murray and Cowie, 2011). For instance, lines (fibers) are an indi-
cation of sewage sources (Browne et al., 2011) and prevail in the near
shore region (Cózar et al., 2014). Line MPs occasionally appear in the
open sea after a longmigration from continents. Our field survey results
reveal that b10% of MPs are lines in the Northwestern Pacific, while the
majority of MPs are sheets, granules, and films (Fig. 6C) in this region.
The relatively low content of lines observed by our field survey is due
to the fact that our study area is located in the pelagic zone, far away
from the land. The majority of MPs pervasive in the remote ocean are
fragments of larger plastic debris. Accordingly, our field survey data
shows that fragments such as sheets and films account for ~51.4% of
the total MPs.

3.7. Surface morphology

Fig. 7 shows the SEM images for the surface morphology of selected
MPs. By comparisons with virgin plastic polymers, the SEM images of
surface roughness, cracks, and brittleness are evidence of the aged
MPs surfaces and edges from their transport and residence at the sea.
Fig. 7A shows transparent particles are filled with cracks. Fig. 7B
illustrates a green sheet with a netlike structure full of bumps and hol-
lows. Fig. 7C indicates a white ball with apparent hollows, while
Fig. 7D shows aMP ruptured as pronounced transverse and longitudinal
cracks developed on the surface of the green fragment. Weathering,
photodegradation, prolonged physical wearing, or biological activity
may contribute to the evolution of surface topography of MPs during
their journey across the ocean (Andrady et al., 1998; Corcoran et al.,
2009; Morét-Ferguson et al., 2010). The increased surface roughness
may affect the biofilm formation on the surface of MPs. Nauendorf
et al. (2016) reported that the surface roughness influences microbial
colonization more than surface wettability. Verran and Boyd (2001)
also stated that the surface roughness plays an important role in bio-
attachment processes (Verran and Boyd, 2001). Furthermore, surface
cracking increases the exposure of the interior plastic structure to
the environment, so that MPs are more vulnerable to further decompo-
sition, embrittlements and disintegrations over time (Vasile and
Dekker, 2000). Based on these findings, a large number of very small
MPs (e.g., nanoscale plastic particles) may be generated from the
breakdown of large pieces of plastics, nonetheless, these countless plas-
tic particleswere not considered in this study due to themethodological
constraints.

Our element analysis revealed that strong nitrogen peaks appear on
the surface of all MPs samples for EDS measurements (Tables S3–S6).
Nitrogen is not a constituent of virgin plastic polymers except for
nylon, such as polyethylene, polypropylene and polystyrene. The
Micro-Raman spectroscopic analysis further confirmed that these MPs
were primarily composed of PE and PP rather than nylon. Based on
these results, we choose nitrogen as a proxy for biomass. The pervasive
occurrence of nitrogen in the sampledMPs is an indicator of bioaccumu-
lation, consistent with earlier studies (Law et al., 2010; Morét-Ferguson
et al., 2010). Nonetheless, we found that biofilms were formed on the
surface of MPs samples processed through H2O2 digestion, as indicated
by the presence of nitrogen (Tables S3–S6) and the attachments of bio-
mass (Fig. S1). These results suggest the strong interactions between
MPs and biota.

4. Conclusions

Field observations of Microplastics (MPs) in the Northwestern Pa-
cific Ocean were conducted to investigate the abundance, chemical



Fig. 7. The scanning electron microscope (SEM) images of MPs surface morphology of representative samples. A: Transparent film (polyethylene, PE); B: green sheet (polyethylene +
polypropylene, PE + PP); C: white ball (polyethylene, PE); D: green fragment (polypropylene, PP).
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composition, spatial pattern, color, shape, and surface morphology of
MPs and to provide new insights for the potential sources, pathways,
distributions and generation mechanisms of MPs in the pelagic zone.
Our observation results indicated the pervasiveness of MPs in the
open ocean surfacewith an average abundance of 1.0 × 104 items km−2.
The Micro-Raman spectroscopic analysis results indicate that themajor
compositions of MPs are polyethylene (57.8%), polypropylene (36.0%)
and nylon (3.4%). The chemical fingerprints of MPs at stations XTW3-
5, XTW3-6, XTW3-7, XTW3-9, XTW3-10, and XTJ1-14 are similar to
each other, which indicates that the origin of the MPs at these stations
are the same, namely, the nearby land in Philippines, Taiwan, and
China Mainland. In contrast, the major composition of MPs at the sta-
tions adjacent to Japan, XTJ1-2, XTJ1-6 and XTW2-1, is polypropylene,
which indicates that the sources of the MPs are different for this region,
namely, the Japanese coast. Our observations indicate that 52.2% of the
MPs are between 0.5 and 1.0 mm in size, 39.7% of the MPs are granules
in shape and 80.2% of the MPs are white and transparent color. The
observed underway current and sea surface temperature by vessel-
mounted ADCP and CDT, satellite altimetry data, and the chemical
fingerprints of MPs, indicate that the spatial distribution of MPs is
attributed to the combined effects of ocean circulation pattern, adjacent
eddies, the Kuroshio and Kuroshio Extension. Our observational results
provided a holistic view of the abundance, distribution, and characteris-
tics of MPs in the Northwestern Pacific Ocean. This would improve the
assessments and mitigations of the hazards and risks posed by MPs to
the marine environment and human health.
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