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Abstract—In fifth generation (5G) wireless communications, high-
speed train (HST) communications is one of the most challeng-
ing scenarios. By adopting massive multiple-input multiple-output
(MIMO) and millimeter wave (mmWave) technologies into HST
communications, the underlying communication system design be-
comes more challenging and some new channel characteristics have
to be studied, such as the non-stationarities in space, time, and
frequency domains. This paper proposes a novel three-dimensional
(3D) space-time-frequency non-stationary mmWave massive MIMO
theoretical model, as well as a corresponding simulation model,
for 5G HST wireless channels based on WINNER II and Saleh-
Valenzuela (SV) channel models. Cluster evolutions in space, time,
and frequency domains are proposed and analyzed to ensure the
models’ non-stationarities in three domains. Moreover, based on the
proposed channel models, important time-variant channel statistical
properties are investigated, such as the time autocorrelation func-
tion (ACF), space cross-correlation function (CCF), delay power
spectrum density (PSD), angular PSD, and frequency correlation
function (FCF). Results indicate that the statistical properties of the
simulation model, verified by simulation results, can match well with
those of the theoretical model.

Index Terms—5G, HST channels, massive MIMO, mmWave,
space-time-frequency non-stationarity.

I. INTRODUCTION

W ITH the rapid development of information globalization,
wireless communications have penetrated into all aspects

of people’s life. Wireless communication systems have developed
from the first to the fourth generations so far. It is expected that by
2020, the fifth generation (5G) wireless communication systems
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with ultra-high user experience data rate, ultra-high connection
density, and ultra-high traffic density will be emerged [1]. As a
typical application scenario of 5G communications, high-speed
trains (HSTs) received much attention in recent years. Large
numbers of HST users demand huge communication data volume,
which is far beyond the capacity of current HST communication
systems. The widely used Global System for Mobile Communi-
cation Railway (GSM-R) is mainly for low-rate train communi-
cation and control, and cannot provide personal communications
for train users. Then, the Long-Term Evolution Railway (LTE-R)
system has been recommended to replace the GSM-R to provide
wideband HST communication services [2]. However, in both
systems, the HST users communicate directly with the outdoor
base stations (BSs). This results in the spotty coverage problem
and high penetration losses of wireless signals. HST wireless
communication systems also face various challenges, such as
frequent handovers, large Doppler spreads, and fast travel through
different scenarios. Moreover, the high mobility of trains with
a speed of over 500 km/h can make the communication link
between the mobile relay station (MRS) and outdoor BS unstable.

To solve the aforementioned problems, some potential 5G tech-
nologies, such as massive multiple-input multiple-output (MIMO)
and millimeter wave (mmWave), have been considered to provide
reliable wideband wireless communication services [3]. Massive
MIMO systems can significantly improve the spectrum efficiency
and energy efficiency by equipping a large number of antennas
at the transmitter (Tx) and/or receiver (Rx) side [4]. MmWave
systems cover frequency bands from 30 GHz to 300 GHz and
are able to provide large bandwidths in the order of 500 MHz
or larger [5]. They can provide high data rate transmissions
between MRSs and outdoor BSs. Furthermore, by combining
massive MIMO and mmWave technologies, some challenges
originating from the high speed of trains and conventional
network architectures can be overcome, and the unstable data
transmission services can be further improved [6]. For the design,
performance evaluation, and test of future HST communication
systems assembling massive MIMO and mmWave technologies,
an accurate and efficient channel model is essential [7], [8].

In the open literature, a variety of HST channel models have
been proposed and analyzed to describe various HST communi-
cation scenarios [2], [7]–[19]. In [11], a deterministic ray tracing
HST channel model was provided to mimic HST tunnel channels,
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and several channel characteristics, such as frequency selectivity
and Doppler spread, were studied. In [12], a three-dimensional
(3D) deterministic ray tracing HST tunnel channel model was
given, which studied Doppler frequency shift and time delay
when two trains met. Ray tracing channel models have high
accuracy by incorporating a large amount of channel information
but also result in high computational complexity. Both channel
models in [11] and [12] adopted the conventional communication
architecture that the users inside the train communicate directly
with the outdoor BS. In rural macrocell scenario of WINNER II
and moving networks of IMT-A channel models, MRSs are
deployed. Both channel models introduced the time evolution
concept and analyzed the channel non-stationarity. However, the
stationary intervals of both models are considerably larger than
those of real HST channels measured [13]. Hence, they cannot
describe real HST propagation environments precisely. In [14], a
two-dimensional (2D) non-stationary geometry-based stochastic
model (GBSM) was proposed for HST MIMO channels. All the
channel parameters, such as K-factor and propagation distances
between the Tx and Rx, are time-variant. Based on the proposed
model, some time-variant small-scale fading channel statistical
properties, such as autocorrelation function (ACF), space cross-
correlation function (CCF), and local scatterer function (LSF),
were investigated. Moreover, based on the IMT-A model, a 2D
non-stationary HST channel model was proposed in [15]. It
assumed that the mobility of both the MRS and clusters results
in the channel non-stationarity in the time domain. According to
the moving trajectories of clusters and MRS, a series of time-
variant small-scale parameters, such as the number of clusters,
delays, angle of arrival (AoA), and angle of departure (AoD),
were obtained. Then, the channel statistical properties were
studied, which were verified by the measurement data. In [16],
a 3D non-stationary wideband HST MIMO channel model was
proposed based on the WINNER+ channel model. The cluster
evolution in time domain was considered, and some key channel
statistical properties were investigated. In [17] and [18], the HST
channel models for tunnel scenarios were studied. In [19], a
novel geometry based random-cluster model for HST channels
was presented based on measurement data. The time evolution
of the clusters was described by random geometrical parameters.
The distributions of these parameters, as well as the path loss,
shadow fading, delay, and Doppler spread of each cluster can be
extracted from the measurement data. All the above models [2],
[9]–[19] focused on HST channels without considering massive
MIMO and mmWave technologies.

With more demanding HST communication requirements,
some promising 5G technologies such as massive MIMO and
mmWave technologies have been considered in HST communi-
cation systems to improve the network capacity and the reliability
of communication links. In [20], the performance analysis of
massive MIMO in HST communications was investigated. The
impacts of train speed, K-factor, and signal-to-noise ratio (SNR)
were discussed. It demonstrated that the massive MIMO tech-
nology can be applied to HST communications to improve the

communication link reliability. Moreover, in [21], a mmWave
communication network architecture between the train and BS
was presented. A series of simulation results demonstrated the
feasibility of mmWave in HST communication systems. Fu-
ture HST communication systems will devolop towards ultra-
wideband with mmWave bands and massive MIMO deployment.
Accurate channel models that can capture the new channel
characteristics are essential and necessary.

For the existing 5G channel models towards standardization,
some of them can support high mobility scenarios, such as COST
2100 [22], QuaDRiGa [23], mmMAGIC [24], and 5GCM [25].
COST 2100 channel model [22] can obtain the smooth time
evolution and spatial consistency, but cannot support massive
MIMO and mmWave. QuaDRiGa model [23] was evolved from
the WINNER+ model and can support some new characteristics,
such as 3D modeling, massive MIMO, and multi-user and multi-
hop networks. However, this model does not support mmWave
bands. The mmMAGIC channel model [24] can support larger
bandwidth (2 GHz) and wider frequency range (10–80 GHz). It
considered high mobility scenarios but no detailed information
was given. Based on some 6–100 GHz measurement data and
ray tracing results, 5GCM [25] was proposed which considered
the HST scenario but cannot support massive MIMO very well.
In [7], a general 3D non-stationary 5G channel model was pro-
posed, which can capture small-scale fading channel characteris-
tics of the HST, massive MIMO, and mmWave communication
scenarios. It can describe the non-stationarities of the channel in
space and time domains, but the frequency non-stationarity was
ignored.

To the best of the authors’ knowledge, space-time-frequency
non-stationary HST channel models considering massive MIMO
and mmWave technologies are still missing in the literature. This
paper aims to fill the gap. Overall, the major contributions and
novelties of this paper are summarized as follows.
(1) Based on the WINNER II and Saleh-Valenzuela (SV) channel
models, a novel space-time-frequency non-stationary massive
MIMO and mmWave channel model for HST communication-
s is first proposed. It involves several space-dependent, time-
dependent, and frequency-dependent parameters to reflect the
effect of massive MIMO and mmWave technologies.
(2) The corresponding space-time-frequency channel correlation
functions are derived and the space-time-frequency evolutions of
the proposed channel model are analyzed.
(3) From the proposed channel model, some statistical properties
such as ACF, space CCF, delay power spectrum density (PSD),
angular PSD, and frequency correlation function (FCF) are stud-
ied.

The remainder of this paper is structured as follows. In Sec-
tion II, a 3D non-stationary massive MIMO and mmWave channel
model for 5G HST communications is presented. Section III
analyzes the channel statistical properties. Results and discus-
sions are given in Section IV. Finally, conclusions are drawn in
Section V.
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Fig. 1. HST communications network architecture considering massive MIMO
and mmWave technologies.

II. NON-STATIONARY MMWAVE MASSIVE MIMO
CHANNEL MODELS FOR 5G HST COMMUNICATIONS
A. Description of HST Communication Network Architecture

In this section, a brief description of a HST network consid-
ering massive MIMO and mmWave technologies is provided. It
adopts a two-tiered network architecture to separate the indoor
and outdoor channels [14]. In outdoor channels, at least one MRS
is deployed on the top of each carriage, which can establish a
communication link with the indoor users and transfer all the
communication data inside train to the outdoor BS.

MRSs are deployed on the surface of train to improve the
quality of received signal, and mitigate high penetration losses
of signals traveling into train carriages. The massive MIMO
technology is adopted to improve the spectrum efficiency and
energy efficiency by installing large number of antennas at the
BS and/or MRS [26], [27]. Moreover, for the outdoor commu-
nications between the MRS and BS, the mmWave technology
is considered. The mmWave communications can bring huge
bandwidth and achieve high data transmission rate [5]. All these
technologies can be applied to increase communication capaci-
ty and improve system performance. The HST communication
network architecture considering the MRS, massive MIMO, and
mmWave is illustrated in Fig. 1.

B. The Massive MIMO and MmWave Channel Model for HST
Communications

Let us consider a massive MIMO system with P and Q antenna
elements at Tx (BS) side and Rx (MRS) side, respectively. The
carrier frequency is denoted by fc. By taking the elevation angles
into consideration, a 3D twin-cluster model is considered [7]. The
corresponding channel model framework is shown in Fig. 2. For
clarity, only the nth cluster pair (n = 1, 2, ..., N) is illustrated,
where N is the number of clusters. Each sphere in the figure
with several dots represents a cluster, which can be moving or
static with certain probability. Moreover, clusters are randomly
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Fig. 2. A 3D non-stationary twin-cluster HST channel model.

distributed in pairs. The nth twin-cluster can be denoted by Cn,A
and Cn,Z . Here, Cn,A is a representation of the first bounce at
the Tx side and Cn,Z is a representation of the last bounce at
Rx side. The propagation space between the two clusters can be
abstracted as a virtual link [16]. The inter-element spacings at
the Tx and Rx are denoted by ∆xT and ∆xR, respectively. It is
assumed that the Tx is fixed and Rx is in motion. The movement
of the Rx can be denoted by a velocity vector vR with speed vR.
The velocity vector of Cn,A is denoted by vn,A with speed vn,A
and the velocity vector of Cn,Z is denoted by vn,Z with speed
vn,Z . It should be noted that all the parameters are established
as time-variant.

1) The Theoretical Model: Based on the WINNER II and
SV channel models, the non-stationary space-time-frequency
HST channel model considering massive MIMO and mmWave
technologies is proposed. The complex channel transfer function
(CTF) consists of the line-of-sight (LoS) and non-LoS (NLoS)
components. The theoretical channel model can be expressed
as [7]

Hpq(t, f) = HLoS
pq (t, f) + lim

Mn→∞

N(t)∑
n=1

Mn∑
mn=1

HNLoS
pq,n,mn(t, f)

(1)

–In the LoS case

HLoS
pq (t, f) =

[
FTp,V (αTLoS(t), βTLoS(t))

FTp,H(αTLoS(t), βTLoS(t))

]T [
ejΘ

V V
LoS 0

0 ejΘ
HH
LoS

]
[
FRq,V (αRLoS(t), βRLoS(t))

FRq,H(αRLoS(t), βRLoS(t))

]√
Kpq(t)

Kpq(t) + 1
e−j2π

D̄LoS
pq (t)

λ

× ej2πf
LoS
pq (t)·t · e−j2πf ·τ

LoS
pq (t). (2)

For the LoS component, αTLoS(t) and βTLoS denote the azimuth
angle of departure (AAoD) and the elevation angle of departure
(EAoD) between the center of Tx array and Cluster Cn,A,
respectively. αRLoS(t) and βRLoS denote the azimuth angle of arrival
(AAoA) and the elevation angle of arrival (EAoA) between
the center of Cluster Cn,Z and Rx array, respectively. fLoS

pq (t)
is the Doppler frequency of LoS. τLoS

pq (t) is the LoS delay
between the Tx and Rx, and Kpq(t) is the K-factor. Here, V
and H denote vertical polarization and horizontal polarization,
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respectively. Here, ΘV V
LoS and ΘHH

LoS are the initial phases, which
follow the uniform distribution over the (0, 2π). Functions FTV (·),
FTH(·), FRV (·), and FRH (·) denote the antenna patterns in the global
coordinate system (GCS) with the origin at the center of Tx array.

–In the NLoS case

HNLoS
pq,n,mn(t, f) =

[
FTp,V (αTpn,mn(t), βTpn,mn(t))

FTp,H(αTpn,mn(t), βTpn,mn(t))

]T

 √κ−1
n,mne

jΘV Vn,mn ejΘ
VH
n,mn

ejΘ
HV
n,mn

√
κ−1
n,mne

jΘHHn,mn


[
FRq,V (αRqn,mn(t), βRqn,mn(t))

FRq,H(αRqn,mn(t), βRqn,mn(t))

]
·

√
Pn,mn(t)

Kpq(t) + 1
· ( f
fc

)rn,mn

× ej(ϕn,mn−2π
D̄TRpq,n,mn

(t)

λ ) · ej2πfpq,n,mn (t)·t

×e−j2πf ·(τpq,n(t)+τpq,n,mn (t)). (3)

For the NLoS component, N(t) is the time-variant cluster num-
ber. Mn is the ray number within nth cluster, τpq,n(t) is the delay
between the pth Tx antenna and qth Rx antenna via nth cluster,
τpq,n,mn(t) is the relative delay between the pth Tx antenna and
qth Rx antenna via the mnth ray with nth cluster, and κn,mn is the
cross polarization power ratio. Here, ΘV V

n,mn , ΘV H
n,mn , ΘHV

n,mn , and
ΘHH
n,mn are the initial random phases of the mnth ray of the nth

cluster in four polarization directions. It should be noted that the
phases follow the uniform distribution within (0, 2π) and rn,mn
is the frequency-dependent factor [28]. In the proposed HST
channel model, all the parameters are time-variant. Moreover,
the massive MIMO technology will bring spherical wavefront
and cluster birth-death process along the antenna array axis.
The mmWave will introduce the appearance and disappearance
of clusters in the frequency domain. The channel will exhibit
non-stationarities in space, time, and frequency domains. Our
proposed channel model has the capability to model the space-
time-frequency non-stationarities of HST channels. The Doppler
frequency fpq,n,mn(t) can be shown as

fpq,n,mn(t) = fTpn,mn(t) + fRqn,mn(t)

=
(vR − vn,Z) · φRqn,mn(t)− vn,Aφ

T

pn,mn(t)

λ
. (4)

It should be noted that the Doppler frequency fpq,n,mn(t) is
caused by the movement of Cluster Cn,A, Cluster Cn,Z , and
MRS. The wavelength is λ = c/fc. Moreover, the velocity vectors
of Cluster Cn,A, Cluster Cn,Z , and MRS can be expressed as

vn,A = vn,A ·

 cosϕn,A · cosϑn,A

cosϕn,A · sinϑn,A
sinϕn,A


T

(5)

vn,Z = vn,Z ·

 cosϕn,Z · cosϑn,Z

cosϕn,Z · sinϑn,Z
sinϕn,Z


T

(6)

vR = vR ·

 cosϕR · cosϑR

cosϕR · sinϑR
sinϕR


T

. (7)

The 3D AoD vectors between the pth Tx array element and mnth
ray of Cluster Cn,A can be expressed as

φ
T

pn,mn(t) =

 cosβTpn,mn(t) · cosαTpn,mn(t)

cosβTpn,mn(t) · sinαTpn,mn(t)

sinβTpn,mn(t)


T

. (8)

The AoA vectors between the mnth ray of Cluster Cn,Z and the
qth Rx array element can be expressed as

φ
R

qn,mn(t) =

 cosβRqn,mn(t) · cosαRqn,mn(t)

cosβRqn,mn(t) · sinαRqn,mn(t)

sinβRqn,mn(t)


T

. (9)

Moreover, the delay between the pth Tx and qth Rx via mnth
ray of nth cluster consists of the delay of first bounce, the delay
of last bounce, and the virtual link delay τ̃pq,n,mn(t). The total
delay can be expressed as

τpq,n,mn(t) =

∥∥D̄TR
pq,n,mn(t)

∥∥
c

+ τ̃pq,n,mn(t)

=
[
∥∥D̄T

pn,mn(t)
∥∥+

∥∥D̄R
qn,mn(t)

∥∥]

c
+ τ̃pq,n,mn(t).

(10)

The distance between the pth Tx and mnth ray in Cluster Cn,A
can be expressed as

D̄T
pn,mn(t) = D̄T

pn,mn(t0) + v̄n,A · t (11)

D̄T
pn,mn(t0) = D̄T

pn,mn(t0) · φ̄Tpn,mn(t0). (12)

The distance between the mnth ray in Cluster Cn,Z and qth Rx
can be expressed as

D̄R
qn,mn(t) = D̄R

qn,mn(t0) + v̄n,Z · t (13)

D̄R
qn,mn(t0) = D̄R

qn,mn(t0) · φ̄Rqn,mn(t0). (14)

The mean power of mn rays within nth cluster can be obtained
by

Pn,mn(t) = e
(−τn,mn (t))(χ−1)

E[τn,mn (t)] · 10−
Zn,mn

10 (15)

where χ denotes the delay scaling parameters, E[τn,mn(t)] is the
mean relative delay via the mnth ray of the nth cluster, and Zn,mn
is the shadowing of each ray per cluster following a Gaussian
distribution.

The generation process of the space-time-frequency non-
stationary 5G HST channel model is shown in Fig. 3. It takes
the array, time, and frequency evolutions into consideration. All
the aforementioned parameters are listed as Table I.
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TABLE I
DEFINITION OF PARAMETERS.

Parameters Definition
αT
LoS(t), βT

LoS(t) AAoD and EAoD in the LoS case, respectively
αR
LoS(t), βR

LoS(t) AAoA and EAoA in the LoS case, respectively
fLoS
pq (t) Doppler frequency of the LoS case between the pth Tx and the qth Rx
fTpn,mn (t), fRqn,mn (t) Doppler frequencies of the pth Tx (qth Rx) via the mnth ray of the nth cluster
Pn,mn (t) Mean power of the mnth ray of the nth cluster
v̄R 3D velocity vector of Rx array
v̄n,A, v̄n,Z 3D velocity vectors of Cluster Cn,A and Cluster Cn,Z , respectively
αT
pn,mn

(t), βT
pn,mn

(t) AAoD and EAoD of the Tx via the mnth ray of the nth cluster in the NLoS case, respectively
αR
qn,mn

(t), βR
qn,mn

(t) AAoA and EAoA of the Rx via the mnth ray of the nth cluster in the NLoS case, respectively
ϕn,A, ϑn,A Azimuth and elevation angles of Cluster Cn,A, respectively
ϕn,Z , ϑn,Z Azimuth and elevation angles of Cluster Cn,Z , respectively
ϕR, ϑR Azimuth and elevation angles of Rx array, respectively
DLoS

pq (t) Distance between the pth Tx and the qth Rx
DTR

pq,n,mn
(t) Distance between the pth Tx and the qth Rx via the mnth ray with the nth cluster

DT
pn,mn

(t) Distance between the pth Tx and the nth cluster via the mnth ray
DR

qn,mn (t) Distance between the nth cluster via the mnth ray and the qth Rx
τLoS
pq (t) LoS delay between the pth Tx antenna and the qth Rx antenna
τpq,n(t) Delay between the pth Tx antenna and the qth Rx antenna via the nth cluster
τpq,n,mn (t) Delay between the pth Tx antenna and the qth Rx antenna via the mnth ray with the nth cluster
τ̃pq,n,mn (t) Delay of virtual link
Kpq(t) Rice K-factor
N(t) Number of observable clusters
Mn(t) Number of rays within the nth cluster
λG, λR Generation rate and recombination rate of cluster, respectively
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Fig. 3. The generation process of the HST channel model.

2) The Simulation Model: Based on the proposed theoretical
HST channel model, the simulation model can be developed
by using the discrete angles. Here, the method of equal area
(MEA) is used to obtain the discrete AAoDs, EAoDs, AAoAs,
and EAoAs. The simulation model can be expressed as

H̃pq(t, f) = H̃LoS
pq (t, f)+

N(t)∑
n=1

Mn∑
mn=1

H̃NLoS
pq,n,mn(t, f). (16)

C. Cluster Evolution in Space, Time, and Frequency Domains for
HST Channel Model

The non-stationarities of our proposed HST channel model
result from two mechanisms, i.e., the time-variant parameters
and the birth-death process of clusters in space/time/frequency
axes. The clusters in a specific HST scenario can exist over a
certain time period [2]. During this period, the number of clusters
can be seen as unchanged. When it is over the period, some of
previous clusters disappear and some new clusters appear [7].
In this section, the space, time, and frequency cluster evolutions
for the proposed HST channel model are developed, as shown
in Fig. 4. The flowchart in Fig. 4 can be described in details as
follows.

Firstly, a series of initial cluster sets are generated at time
t [16]. Some parameters, such as number of rays in a cluster,
delays of rays, power, angular parameters, and virtual link delay,
need to be assigned. These parameters are generated random-
ly and different parameters follow different distributions. The
number of rays follow a Poisson distribution. The virtual link
delays of clusters and the delays of rays are assumed to follow
exponential distributions. Moreover, the angular parameters, such
as AAoAs, AAoDs, EAoAs, and EAoDs, are assumed to be
wrapped Gaussian distributions [7].

Secondly, to describe the cluster evolution more accurately,
two types of sampling intervals can be used in the evolution pro-
cess [16]. The first type is the channel sampling intervals, such as
∆i in space (antenna array) domain, ∆t in time domain, and ∆f
in frequency domain. The channel parameters should be updated
continuously during these periods. The other type of sampling
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Fig. 4. The flowchart of space-time-frequency cluster evolution of the proposed
HST channel model.

intervals are the periods in which the clusters are needed to be
updated. These intervals can be described by ∆ie, ∆te, and ∆fe.
During ∆ie, ∆te, and ∆fe, the birth and death of clusters occur.
Here, we take the cluster evolution in time domain as an example.
For the proposed channel model, it will generate some clusters
initially. These clusters can be updated during the aforementioned
sampling intervals. Some of these clusters disappear and others
survive. Moreover, some new clusters appear. Each cluster has its
own survival probability Psurv(∆te), which is calculated by the
relative velocities of clusters. By extending time domain to space-
time-frequency domain, the survival probability of a cluster in the
proposed space-time-frequency channel model should consist of

three parts. The final survival probability is jointly influenced by
space, time, and frequency domains, which can be calculated as

Psurv(∆ie,∆te,∆fe)

= Psurv(∆ie) · Psurv(∆te) · Psurv(∆fe)

= e
−λR·A(p,q,p′,q′,∆ie)

Di · e−λR·
T (v̄R,∆te)

Dt · e−λR·
F (∆fe)
Df .

(17)

Note that Di, Dt, Df , and F (∆fe) can be determined by
channel measurements. Meanwhile, a lot of new clusters need
to be generated. Let us assume that the birth rate is λG and the
death rate is λR. The number of newly generated clusters can be
expressed as

E[Nng(i+ ∆ie, t+ ∆te, f + ∆fe)]

= λG
λR

(1− Psurv(∆ie,∆te,∆fe)).
(18)

Thirdly, the newly generated clusters and the survival clusters
need to be updated. For the newly generated clusters, some
parameters such as delay, power, and angular parameters are
assigned randomly just as the initialization process. For the
survival clusters, the corresponding delay, power, and angular
parameters are updated from the previous time instant. Following
the steps above, the space-time-frequency non-stationarity of the
channel model can be guaranteed.

III. STATISTICAL PROPERTIES ANALYSIS
In this section, we will derive typical statistical properties of

the proposed non-stationary simulation HST channel model.

A. The Delay PSD
The time-variant delay PSD Υ(t, τpq) of channel between the

pth Tx antenna and the qth Rx antenna can be expressed as

Υ(t, τpq) =

N(t)∑
n=1

Mn∑
mn=1

|hpq,n,mn(t)|2δ(τpq − τpq,n(t)− τpq,n,mn(t)).

(19)

The time-variant delay PSD is influenced by the time-dependent
mean powers of rays with clusters and delays of rays parameters.
The cluster power can be obtained from the channel impulse
response (CIR) hpq,n,mn(t), which is the inverse Fourier trans-
form of CTF. All these parameters are related to the continuously
updated geometrical relationship.

B. Space-Time-Frequency Correlation Function
The correlation function of two arbitrary CTF of H̃pq(t, f)

and H̃∗p′q′(t, f) can be defined as the summation of all the
clusters with no inter-correlation. To investigate the correla-
tion properties, the space-time-frequency correlation function
RH(∆t,∆f,∆xT ,∆xR) can be calculated as

RH(∆t,∆f,∆xT ,∆xR)

= E[H̃pq(t, f) · H̃∗p′q′(t−∆t, f −∆f)]

= RLoS
H (∆t,∆f,∆xT ,∆xR) +RNLoS

H (∆t,∆f,∆xT ,∆xR)
(20)
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where E[·] denotes the expectation operator, and (·)∗ denotes the
complex conjugate operation. The propagation channel consists
of two parts: the LoS and NLoS components. The LoS component
is calculated by the locations of the Tx and Rx. The NLoS
components are generated randomly. Assuming that the LoS and
NLoS components are independent with each other. (20) can
be expressed as the summation of LoS component correlation
and NLoS components correlation. The detailed space-time-
frequency correlation function RLoS

H (∆t,∆f,∆xT ,∆xR) and
RNLoS
H (∆t,∆f,∆xT ,∆xR) can be rewritten as
–In the LoS case,

RLoS
H (∆t,∆f,∆xT ,∆xR) =
Kpq(t)
Kpq(t)+1H̃

LoS
pq (t, f) · H̃LoS∗

p′q′ (t−∆t, f −∆f)
(21)

–In the NLoS case,

RNLoS
H (∆t,∆f,∆xT ,∆xR) =

1
Kpq(t)+1

N(t)∑
n=1

Mn∑
mn=1

H̃NLoS
pq,n,mn(t, f) · H̃NLoS∗

p′q′,n,mn
(t−∆t, f −∆f).

(22)

According to the above equations, the time-variant space CCF
can be obtained by imposing ∆t = 0 and ∆f = 0 in (20) and
can be expressed as

ρH(∆xT ,∆xR) = RH(∆xT ,∆xR, 0, 0)

= ρLoS
H (∆xT ,∆xR) + ρNLoS

H (∆xT ,∆xR). (23)

By setting ∆xT , ∆xR, and ∆f in (20) as 0, the space-time-
frequency correlation function can be reduced as the time-variant
ACF, which can be expressed as

rH(∆t) = RH(∆t, 0, 0, 0) = rLoS
H (∆t) + rNLoS

H (∆t). (24)

C. The FCF

By setting ∆xT , ∆xR, and ∆t in (20) as 0, the time-variant
frequency correlation function (FCF) can be obtained, which can
be expressed as

κH(t,∆f) = E[H̃pq(t, f) · H̃∗pq(t, f −∆f)]

= RH(∆f, 0, 0, 0) = κLoS
H (t,∆f) + κNLoS

H (t,∆f). (25)

D. The Doppler PSD

By taking the Fourier transform of ACF with respect to ∆t,
the time-variant Doppler PSD can be obtained, which can be
illustrated as

S̃H(t, fD) =
∞∫
−∞

rH(∆t)e−j2πfD∆td∆t

=
∞∫
−∞

(rLoS
H (∆t) + rNLoS

H (∆t)) · e−j2πfD∆td∆t.
(26)

E. The Angular PSD
The time-variant angular PSD Λ(t,Ω) of channel can be

acquired by the CIR hpq,n,mn(t). It describes the distribution of
power spectrum in the angular domain, which can be expressed
as

Λ(t,Ω) =

N(t)∑
n=1

Mn∑
mn=1

|hpq,n,mn(t)|2δ(Ω− Ωpq,n − Ωpq,n,mn)
(27)

where Ω denotes the AoAs or AoDs, Ωpq,n is the mean angle of
the nth cluster, and Ωpq,n,mn is the angle offset of the mnth ray
in the nth cluster.

F. The Stationary Intervals in Space-Time-Frequency Domain
The stationary interval is the period during which the channel

can be seen as unchanged compared with the neighbor channel.
To obtain the stationary interval in space-time-frequency domain,
the time-variant correlation matrix distance (CMD) can be ap-
plied [29]. The CMD can be calculated in space-time-frequency
domain as follows

dcorr(∆ts,∆fs,∆is) =

1− tr{RH(t;f ;i)RH(t+∆ts;f+∆fs;i+∆is)}
‖RH(t;f ;i)‖F‖RH(t+∆ts;f+∆fs;i+∆is)‖F

(28)

where RH(t; f ; i) is the correlation function of channel transfer
function. ∆ts is the time stationary interval, ∆fs is the frequency
stationary, and ∆is is the space stationary interval. The above
stationary intervals can be used to evaluate the non-stationary
behaviors of HST channels in space/time/frequency domains.

IV. RESULTS AND DISCUSSIONS

In this part, the statistical properties of the proposed HST
channel models are studied and analyzed. The related simulation
parameters are listed as follows. The generation rate λG = 80/m,
and the recombination rate λR = 4/m. The moving speed of MRS
is vR = 100 m/s, and the BS is fixed. The moving speeds of
Cn,A and Cn,Z are selected as vn,A = 30 m/s and vn,Z = 30
m/s, respectively. The carrier frequency is set as fc = 58 GHz,
and the antenna elements at Tx and Rx are both set as 32. The
number of rays in each cluster is set as 20. The percentage
of moving clusters is PF = 0.3 [30]. The initial AAoD ϕn,A
and EAoD ϑn,A of the nth twin cluster at the Tx side are
ϕn,A = π

3 , ϑn,A = π
4 . Moreover, the initial AAoA ϕn,Z and

EAoA ϑn,Z of the nth twin cluster at the Rx side are ϕn,Z = π
3 ,

ϑn,A = π
4 . All the angular parameters are randomly generated by

the Gaussian distribution. The initial distance between the pth Tx
antenna element and mnth ray of nth cluster Cn,A is DT

pn,mn(t0)
= 50 m, and the initial distance between the mnth ray of nth
cluster Cn,Z and qth Rx antenna element is DR

qn,mn(t0) = 100
m. The length of railway between the Tx and Rx is set as D
= 200 m [14]. All the simulations are conducted in the NLoS
case. The rest parameters are randomly generated refer to the
WINNER II channel model [31]. The MEA is employed to obtain
the discrete AoA and AoD angular parameters, respectively. The
k value of the von Mises distribution is selected as 6.
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Fig. 5. The delay PSDs of the non-stationary HST simulation channel model at
(a) t = 2 s and (b) t = 4 s (DT

pn,mn (t0) = 50 m, DR
qn,mn (t0) = 100 m, λG =

80/m, λR = 4/m, vn,A = 30 m/s, vn,Z = 30 m/s, vR = 100 m/s).

A. Time-Variant Delay PSD

By imposing the time-dependent mean powers and delays of
clusters, the cluster delay PSD can be acquired. Moreover, using
the mean delays of rays within one cluster and the corresponding
powers of rays, the ray delay PSD can also be exhibited as in
Fig. 5. From this figure, we can observe the profile of power
along with the delay at different time instants. The delay PSDs
are different at time instants t = 2 s and t = 4 s .

B. Time-Variant ACF

Based on the massive MIMO and mmWave HST channel
model, the non-stationarity of the proposed channel model can
be described effectively. By adopting ∆xT = 0, ∆xR = 0,
and ∆f = 0, the ACF of theoretical model can be obtained.
Then, using the MEA method, the ACF of simulation model
can be acquired. The comparisons of time ACFs of theoretical
model and simulation model are illustrated in Fig. 6. From this
figure, we can see that the simulation model provides a good
approximation of the theoretical model. Moreover, the absolute
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Fig. 6. The time-variant ACFs of the theoretical model and simulation model
(fc = 58 GHz, DT

pn,mn (t0) = 50 m, DR
qn,mn (t0) = 100 m, λG = 80/m, λR =

4/m, vn,A = 30 m/s, vn,Z = 30 m/s, vR = 100 m/s).

values of ACFs at different time instants, i.e., t = 2 s and t =
4 s can be obtained. At different time instants, there are different
ACFs of proposed HST channel model, which demonstrates that
the proposed model can capture the non-stationarity of channel.
To validate the accuracy of the proposed HST channel model,
the ACFs of simulation model and the corresponding simulation
results for both Cluster1 and Cluster2 are compared in Fig. 7. It
should be noted that both of ACFs are normalizated by Cluster1.
It can be observed from Fig. 7 that the simulation model can
match well with the simulation results. The simulation model
align well with simulation results for Cluster1 and Cluster2

cases.

C. The FCF

The absolute values of the FCFs of the 3D massive MIMO
and mmWave HST channel model are illustrated in Fig. 8. From
this figure, we can notice that the FCFs are different at fc =
38 GHz, 58 GHz, and 78 GHz, which show the frequency non-
stationarities of the proposed channel model.

D. Angular PSD

The simulated normalized angular PSD at the moving Rx of
the 3D massive MIMO and mmWave channel model is illustrated
in Fig. 9. It can be observed that the clusters show appearance
and disappearance properties on the massive MIMO array axis,
which exhibit the clusters birth and death from space domain.
Moreover, the angular shifts can be obtained, which result from
the spherical wavefront effect of massive MIMO.
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V. CONCLUSIONS

In this paper, a novel 3D space-time-frequency non-stationary
mmWave massive MIMO theoretical channel model for 5G HST
communication channels has been proposed. The corresponding
simulation channel model has been developed using the MEA.
Based on the proposed theoretical and simulation models, their s-
tatistical properties have been investigated, including time-variant
ACF, space CCF, delay PSD, angular PSD, and FCF. Numerical
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Fig. 9. The angular PSD of the proposed simulation channel model
(DT

pn,mn (t0) = 50 m, DR
qn,mn (t0) = 100 m, vn,A = 30 m/s, vn,Z = 30 m/s,

vR = 100 m/s).

and simulation results have shown that the statistical properties of
the simulation model can match well with those of the theoretical
model. Moreover, due to the movements of clusters and MRS,
the statistical properties experience different behaviors at different
time instants, which has demonstrated that our proposed models
can mimic the non-stationarity of HST channels. By introducing
the model parameters in space, time, and frequency domains, the
joint space-time-frequency non-stationarity of the proposed HST
channel model has been investigated.
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