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Abstract: We give rigorous proofs of the existence of infinitely many (non-BPS) bound
states for two linear operators associatedwith theYang–Mills–Higgs equations at vanish-
ing Higgs self-coupling and for gauge group SU (2): the operator obtained by linearising
the Yang–Mills–Higgs equations around a charge one monopole and the Laplace oper-
ator on the Atiyah–Hitchin moduli space of centred charge two monopoles. For the
linearised system we use the Riesz–Galerkin approximation to compute upper bounds
on the lowest 20 eigenvalues.We discuss the similarities in the spectrum of the linearised
system and the Laplace operator, and interpret them in the light of electric–magnetic
duality conjectures.

1. Introduction

Developments in mathematical physics over the past decades have amply demonstrated
that, in order to fully understand a quantum field theory, one also needs to study the
corresponding classical field theory and its solutions. The simplest case, where one
quantises and studies fluctuations about the vacuum, turns out to be a rather special one;
in general there are other sectors where the vacuum is replaced by non-trivial classical
field configurations, often characterised by the non-vanishing of a topological invariant.

This is particularly true for gauge theories like Yang–Mills and Yang–Mills–Higgs
(YMH) theories. In the latter, the non-trivial classical field configurations are non-abelian
monopoles. They satisfy the non-linear YMH field equations and carry non-vanishing
winding numbers which physically manifest themselves as magnetic charges.

In this paper we are interested in two spectral problems which arise in the study of
fluctuations around monopole fields but which, a priori, are not related in any obvious
way.

One of them is obtained by linearising the YMH equations around a static monopole
solution. The second has its origin in a more subtle and intricate feature of the YMH
system in the so-called BPS limit, where the Higgs self-coupling vanishes. In that limit
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there exists a whole manifold of solutions, called the moduli space, which inherits
a Riemannian metric from the YMH kinetic energy functional [1]. Associated to this
metric there are naturally defined linear operators like the Laplace–Beltrami, Laplace–de
Rham and Dirac operators on the moduli space, with interesting spectral properties.

Examples of both sorts of problem have been studied in the physics literature, for
example in the papers [2,9,21] for the YMH system linearised about a single monopole
and in [10,14,22] for the Laplace–Beltrami operator on the moduli space of two centred
monopoles, also called the Atiyah–Hitchin manifold. A combination of analytical and
numerical methods has revealed a host of interesting spectral phenomena, including
infinitely many Coulomb-like bound states and Feshbach resonances, but there are very
few mathematically rigorous results in this respect.

The primary purpose of this paper is to begin to fill this gap by applying techniques
of spectral analysis to the linearised YMH equation and the Atiyah–Hitchin Laplacian.
We prove the existence of infinitely many bound states in both systems and give upper
bounds on the eigenvalues for the linearised YMH equations. In this way we also hope to
introduce two interesting problems to the spectral analysis community and, conversely,
useful analytical techniques to the community of theoretical physicists interested in
magnetic monopoles.

A further motivation of this paper is to exhibit the striking similarity in the spectra
of two operators which superficially look very different: the linearised YMH equation
is defined on Euclidean three-space while the Atiyah–Hitchin Laplacian is defined on a
non-compact Riemannian four-manifold. The similarities in their spectra are probably
related to electric–magnetic duality conjectures in YMH quantum field theory, but the
details are far from clear. We end this extended introduction with a summary of relevant
background on duality conjectures.

YMH theory involves an SU (2) gauge field and a Higgs field in the adjoint represen-
tation. The symmetry is spontaneously broken to U (1) either via a boundary condition
on the Higgs field (in the BPS limit) or by a Higgs potential (at generic coupling). In
the BPS limit and in suitable units, the perturbative particle spectrum after symmetry
breaking consists of a photon, amassless Higgs scalar, andmassiveW-bosons with equal
and opposite electric charges n = ±1.

In addition to the perturbative particles, the theory contains solitonic magnetic
monopoles [18,25], labelled by an integer magnetic charge m. When allowed to evolve
in time, classical magnetic monopoles may acquire electric charge, thus becoming dyons
(particles with both magnetic and electric charge). After quantisation, the electric charge
is characterised by another integer n so that states in quantum YMH theory fall into dif-
ferent sectors labelled by a pair of integer charges (m, n). A magnetic monopole belongs
to the sector (1, 0), a W-boson to the sector (0, 1) or (0,−1), the simplest dyon to the
sector (1, 1) and so on.

Electric–magnetic duality conjectures relate the properties of sectors with different
magnetic and electric charges. In the simplest version, due to Montonen and Olive [15],
a sector with label (m, n) is conjectured to be equivalent, in a suitable sense, to the
sector (n,−m), with electric and magnetic charge being exchanged. In the more general
S-duality conjecture [24], sectors related by an SL(2, Z) action are conjectured to be
equivalent. This applies in particular to the SL(2, Z) orbit of theW -boson sector (0, 1),
which includes all sectors (m, n) with co-prime integers m and n.

For various reasons, S-duality can, at best, hold in supersymmetric versions of YMH
quantum field theory [17]. The evidence to support the conjecture has therefore mostly
come from the consideration of BPS quantum states, whose energy can be computed
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exactly even with semiclassical or perturbative methods since higher order corrections
vanish on account of the supersymmetry [24].

Returning to the linear spectral problems addressed in the current paper, we note that
both the linear fluctuations around a monopole and eigenmodes of the Laplace opera-
tor on the moduli space are, in fact, semi-classical approximations of dyonic states in
quantum YMH theory. In particular, after quantisation of an angular collective coordi-
nate which we review in Sect. 3.1, fluctuations around a single monopole (m = 1) may
describe states with arbitrary electric charge n ∈ Z. Eigenstates of the Laplace operator
on themoduli space of twomonopoles (m = 2)may have arbitrary electric charge n ∈ Z.
Since (1, n), n ∈ Z and (2, n), n odd, all lie on the SL(2, Z)-orbit consisting of co-prime
pairs (m, n), the corresponding sectors of YMH theory are related by S-duality.

Since we are not working in an explicitly supersymmetric setting and are looking at
bound states which are not of the BPS-type, we do not expect the spectra in these sectors
to be related in any simple way. Nonetheless, we find striking qualitative similarities. At
the end of this paper, we will discuss them in the light of duality conjectures.

The paper is organised as follows. In Sect. 2 we establish general results on a self-
adjoint extension and the number of bound states of a class of second order differential
operators on the half-line 0 ≤ ρ < ∞. The class of Schrödinger operators we consider
contains a Calogero (1/ρ2) potential near ρ = 0 and a Coulombic (1/ρ) tail for ρ → ∞.
The technical assumptions we make are designed to cover the radial operators obtained
from the linearised YMH equations and the Laplace operator on the Atiyah–Hitchin
manifold after separation of variables, and require a generalisation of results available
in the literature. In Sect. 3 we apply our results to a channel of the linearised YMH
equations previously studied in [21] and [2], and prove the existence of infinitely many
bound states. Bymeans of suitable trial functions,wegive numerical upper bounds for the
lowest 20 eigenvalues. In Sect. 4 we turn to the Laplace operator on the Atiyah–Hitchin
manifold. Following [14] and [22] to separate radial and angular variables, we focus on
three single channels of the Laplace operator. We prove the existence of infinitely many
bound states in each of them, compute the eigenvalues numerically, and compare with
previous numerical results in the literature. Section 5 contains a discussion of our results
and our conclusions.

2. Coulombic Bound States on the Half-Line

Our strategy for showing that the linearised YMH equations around the BPS monopole
and the Laplace operator on the Atiyah–Hitchin manifold have infinitely many eigen-
values is to find an orthonormal family of states with energy below the bottom of the
essential spectrum. In both cases the associated Hamiltonians reduce to one-dimensional
Schrödinger operators on the half-line whose potentials have, as leading terms, a com-
bination of a Calogero and a Coulombic potential.

Schrödinger operators on the half-line have been studied extensively in the literature
since they arise as the radial part of Schrödinger operators in two- or three-dimensional
Euclidean space, see for example [19, Appendix to X.I]. Denoting the radial coordinate
by ρ (the more conventional r is reserved for a different radial coordinate below), the
identity

− 1

ν2
∂ρν2∂ρ = 1

ν

(
−∂2ρ +

ν′′

ν

)
ν, (1)

for an arbitrary non-vanishing and differentiable function ν of ρ, implies that, in any
dimension, one can bring the radial derivative appearing in the Laplace operator on
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Euclidean space into the ‘flat’ form ∂2ρ at the expense of introducing the effective potential
ν′′/ν. In the most familiar three-dimensional case, ν(ρ) = ρ, and the effective potential
vanishes. In two dimensions, however, ν(ρ) = √

ρ, and so the effective potential is the
attractive Calogero potential −1/4ρ2.

The unusual feature of the potentials we encounter in this paper is that they combine
small ρ behaviour which is typical of two-dimensional problems (involving attractive
Calogero potentials) with large ρ behaviour which is characteristic of three dimensions
(for example a 1/ρ Coulombic potential and a repulsive or ‘centrifugal’ Calogero poten-
tial). In this section we establish the framework for studying the selfadjointness and the
spectrum of Hamiltonians of this type.

We write

〈 f, g〉 =
∫ ∞

0
f (ρ)g(ρ)dρ

for the inner product of the space L2(0,∞) and

‖ f ‖ = √〈 f, f 〉
for the corresponding norm. We are interested in potentials on the open half-line which
are real continuous and have the following behaviour near 0 and ∞:

V (ρ) =
{ c2

ρ2 + O(1), ρ → 0,

C0 +
C1
ρ

+ o
(
1
ρ

)
, ρ → ∞,

(2)

for a constant c2 ∈ R characterising the asymptotics for small ρ and constants C0,C1 ∈
R characterising the asymptotics for large ρ.

Let the differential expression corresponding to the Hamiltonian be given by

H̃ = − d2

dρ2 + V (ρ), (3)

with domain C∞
0 (0,∞). Then H̃ is a densely defined symmetric operator acting on

L2(0,∞). Below we will fix a specific selfadjoint extension of H̃ . We begin by deter-
mining conditions on V which are sufficient to ensure that H̃ is semi-bounded.

Lemma 1. Suppose the potential V in (3) can be written as V (ρ) = c2
ρ2 + W (ρ) where

c2 ≥ − 1
4 and the function W : [0,∞) → R is bounded. Then the symmetric operator

H̃ is semi-bounded below.

Proof. Let

cmin = inf
0≤ρ<∞ W (ρ) > −∞.

so that

V (ρ) ≥ c2
ρ2 + cmin ∀ρ > 0.
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Consider u ∈ C∞
0 (0,∞). By virtue of Hardy’s inequality [4, Lemma 5.3.1], we deduce

〈(H̃ − cmin)u, u〉 ≥
∫ ∞

0

(
|u′(ρ)|2 − |u(ρ)|2

4ρ2

)
dρ +

∫ ∞

0

|u(ρ)|2
ρ2

(
1

4
+ c2

)
dρ

≥
∫ ∞

0

|u(ρ)|2
ρ2

(
1

4
+ c2

)
dρ.

The condition c2 ≥ − 1
4 ensures that the right hand side is non-negative. �

Remark 2. If the potential V in (3) can be written in the slightly more general form

V (ρ) = c2
ρ2 +

c1
ρ

+W (ρ), c1, c2 ∈ R,

with W as in Lemma 1, then the corresponding operator H̃ is also semi-bounded below
if either c2 > −1/4 and −∞ < c1 < ∞ or c2 = −1/4 and c1 ≥ 0. As we will only
be concerned with the case c1 = 0 in our applications below, we omit the proof of this
statement, which is an elementary extension of the proof given for Lemma 1.

Let us now turn to the question of selfadjoint extensions of H̃ . We follow [3], [11,
§7.2.3], [8] and [5]. We will identify and fix such a selfadjoint extension which, depend-
ing on the parameters occurring in V particularly on c2, may or may not be unique.
Throughout we suppose that the potential satisfies the following.

Assumption 3. The potential V : (0,∞) → R can be written in terms of a continuous
and bounded function W : [0,∞) → R as

V (ρ) = c2
ρ2 +W (ρ),

for some constant c2 ≥ − 1
4 , where

1. the limit limρ→∞ W (ρ) =: C0 exists and
2.

∫ ∞
1 (W (ρ) − C0)

2dρ < ∞.

We now set

c2 = m2 − 1

4
, m ≥ 0, (4)

and denote the Hamiltonian which comprises the leading term of H̃ for small ρ by

H̃0 = − d2

dρ2 +
m2 − 1

4

ρ2 , m ≥ 0,

in the same domain C∞
0 (0,∞). Then, H̃0 is essentially selfadjoint for m ≥ 1 and has

deficiency indices (1, 1) for 0 ≤ m < 1.We briefly review the reason for this and explain
why one of the extensions for 0 ≤ m < 1 is natural in the present context.

As already mentioned after (1), the differential operator H̃0 arises as the radial part
of the Laplacian on the two-dimensional Euclidean space R

2. For Cartesian coordinates
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(x1, x2), and polar coordinates ρ =
√
x21 + x22 ∈ (0,∞) and ϕ ∈ [0, 2π), we explicitly

have

� = ∂21

∂x21
+

∂2

∂x22
= 1

ρ
∂ρρ∂ρ +

1

ρ2 ∂2ϕ.

Therefore, solving −�ψ = 0 with the ansatz

ψ = u(ρ)eimϕ (5)

leads to the radial equation

− 1

ρ

(
ρu′)′ + m2

ρ2 u = 0.

Here m has to be an integer for (5) to be a single-valued function, but this does not
affect the essence of the following argument and we will continue to assume that m is a
non-negative real number. The identity (1) shows that the new radial function

η(ρ) = √
ρu(ρ) (6)

then satisfies

H̃0η = 0.

A basis of solutions for this equation is given by

η1(ρ) = ρ
1
2 , η2(ρ) = ρ

1
2 ln(ρ) if m = 0,

η1(ρ) = ρ
1
2 +m, η2(ρ) = ρ

1
2−m if m > 0. (7)

When m ≥ 1 only one of these solutions is square integrable with respect to dρ near
ρ = 0, and so ρ = 0 is a limit point for H̃0 in that case.

When 0 ≤ m < 1, however, both η1 and η2 are square integrable with respect
to dρ near ρ = 0, so that ρ = 0 is a limit circle for the differential expression H̃0,
and an additional boundary condition is required. Both functions u obtained from the
fundamental solutions (7) via (6) in this case are square integrable with respect to the
radial measure ρdρ on R

2, but u2(ρ) = η2(ρ)/
√

ρ is singular at ρ = 0 and does not lie
in the domain of the Laplacian. Thus, the requirement that solutions are in the domain
of � naturally provides the boundary condition that we set below.

Due to the asymptotic behaviour of the potential, ρ = ∞ is a limit point for all values
of m. We thus fix a selfadjoint extension of H̃0 as follows. Let ζ ∈ C∞([0,∞)) be such

that ζ(ρ) = 1 for ρ ≤ 1 and ζ(ρ) = 0 for ρ ≥ 2 and set ζm(ρ) = ζ(ρ)ρ
1
2 +m . Let H̃0 be

the closure of the operator H̃0, the minimal operator associated to H̃0, and let

D = D
(
H̃0

)
+ Cζm . (8)

We define H0 to be the extension of H̃0 with domain D(H0) = D . By virtue of [3, Prop.

4.17], H0 is selfadjoint. Moreover D(H0) = D
(
H̃0

)
if and only if m ≥ 1, and in this

case H̃0 is essentially selfadjoint.
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Lemma 4. Suppose the potential V satisfies the conditions of the Assumption 3. Then
the potential W (ρ) − C0 is relatively compact with respect to H0.

Proof. Let

Jm(ρ) =
∞∑
j=0

(−1) j (ρ/2)2 j+m

j !�( j + m + 1)

be the Bessel function of the first kind. Let

Im(ρ) = i−m Jm(iρ),

Km(ρ) =
⎧⎨
⎩

π
2
I−m (ρ)−Im (ρ)

sin(mπ)
, m �= 0, 1, . . .

(−1)m−1

2

(
∂ Iν (ρ)

∂ν

∣∣∣
ν=m

+ ∂ Iν (ρ)
∂ν

∣∣∣
ν=−m

)
, m = 0, 1, . . .

be the modified Bessel functions. Then the resolvent (H0 + 1)−1 is given by the Green’s
function [3, §4.2]

Gm(ρ, σ ) = √
ρσ Im(min{ρ, σ })Km(max{ρ, σ }).

Decompose

Gm(ρ, σ ) =
4∑

k=1

Gk
m(ρ, σ ),

where

G1
m(ρ, σ ) = Gm(ρ, σ )1(0,1](ρ)1(0,1](σ ),

G2
m(ρ, σ ) = Gm(ρ, σ )1(0,1](ρ)1(1,∞)(σ ),

G3
m(ρ, σ ) = Gm(ρ, σ )1(1,∞)(ρ)1(0,1](σ ),

G4
m(ρ, σ ) = Gm(ρ, σ )1(1,∞)(ρ)1(1,∞)(σ ).

Then [3, (4.10)]

|G1
m(ρ, σ )| ≤

{
a10(min{ρ, σ }) 1

2 | ln(max{ρ, σ })|, m = 0,

a1m(min{ρ, σ }) 1
2 +m(max{ρ, σ }) 1

2−m, m > 0,

|G2
m(ρ, σ )| ≤ a2mρ

1
2 +me−σ1(0,1](ρ)1(1,∞)(σ ),

|G3
m(ρ, σ )| ≤ a3me

−ρσ
1
2 +m1(1,∞)(ρ)1(0,1](σ ),

|G4
m(ρ, σ )| ≤ a4me

−|ρ−σ |1(1,∞)(ρ)1(1,∞)(σ ),

where aim > 0 are constants depending on m.
Let

Jk =
∫ ∞

0

∫ ∞

0
|(W (ρ) − C0)G

k
m(ρ, σ )|2dρdσ,
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so that

∫ ∞

0

∫ ∞

0
|(W (ρ) − C0)Gm(ρ, σ )|2dρdσ =

4∑
k=1

Jk .

Then

J2 ≤ a22m

∫ 1

0
|W (ρ) − C0|2ρ1+2mdρ

∫ ∞

1
e−2σdσ < ∞,

sinceW is continuous on [0,∞). The square integrability ofW −C0 on [1,∞) ensures
that

J3 ≤ a23m

∫ 1

0
σ 1+2mdσ

∫ ∞

1
|W (ρ) − C0|2e−2ρdρ < ∞,

and

J4 ≤ a24m

∫ ∞

1

∫ ∞

1
|W (ρ) − C0|2e−2|ρ−σ |dσdρ

= a24m

∫ ∞

1
|W (ρ) − C0|2

(
e−2ρ

∫ ρ

1
e2σdσ + e2ρ

∫ ∞

ρ

e−2σdσ

)
dρ

≤ a24m

∫ ∞

1
|W (ρ) − C0|2dρ < ∞.

Finally, using |W (ρ) − C0|2 < B for ρ ∈ [0, 1] and some positive real number B, we
consider the term for k = 1. If m > 0 we have

J1 ≤ a21m

∫ 1

0
|W (ρ) − C0|2

(
ρ1−2m

∫ ρ

0
σ 1+2mdσ + ρ1+2m

∫ 1

ρ

σ 1−2mdσ

)
dρ

≤ a21mB
∫ 1

0

(
ρ1−2m

∫ ρ

0
σ 1+2mdσ + ρ1+2m

∫ 1

ρ

σ 1−2mdσ

)
dρ

= a21mB

4(m + 1)
.

The computation of the integral in the last step is elementary, but has to be carried out
separately for the case m = 1. However, the answer agrees with the general formula
given above. If m = 0 we have

J1 ≤ a210

∫ 1

0
|W (ρ) − C0|2

(
ln2(ρ)

∫ ρ

0
σdσ + ρ

∫ 1

ρ

ln2(σ )dσ

)
dρ

≤ a210B
∫ 1

0

(
−1

2
ρ2 ln2(ρ) + 2ρ2 ln(ρ) + 2ρ − 2ρ2

)
dρ

= 2a210B

27
,

where we have again omitted steps in an elementary integration.
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Summing up, for m ≥ 0 we have Jk < ∞ under the assumptions of the lemma.
Therefore, the operator

(W − C0)(H0 + 1)−1

is Hilbert–Schmidt and hence compact. This ensures that indeed W − C0 is relatively
compact with respect to H0. �
Definition 5. With H̃ of the form (3) and V satisfying the Assumption 3, we denote by
H the extension of the operator H̃ to the domain D(H) = D defined in (8).

By virtue of [20, Corollary 2 to TheoremXIII.14], H is always selfadjoint.Moreover,
H is semi-bounded below and

σess(H) = [C0,∞).

We now establish conditions for H to have infinitely many bound states.

Theorem 6. If Assumption 3 is satisfied, and moreover V has the asymptotic expansion

V (ρ) = C0 +
C1

ρ
+ o

(
1

ρ

)
, for ρ → ∞,

with C1 < 0, then H has infinitely many eigenvalues below C0.

Proof. We use a similar argument to the one considered in [12, § 8.3]. By assumption,
we can write the potential as

V (ρ) = C0 +
C1 + f (ρ)

ρ
,

in terms of a continuous function f on (0,∞) satisfying

lim
ρ→∞ f (ρ) = 0.

We pick a u ∈ C∞
0 (0,∞), such that supp(u) ⊂ (1, 2) and ‖u‖ = 1, and set

un(ρ) = 2−n/2u(2−nρ), n = 0, 1, ... .

Then the un have non-overlapping support and satisfy the orthonormality condition

〈un, um〉 = δmn .

Changing variables to σ = 2−nρ, we calculate

〈(H − C0)un, un〉 =
∫ 2n+1

2n

(∣∣∣∣dundρ
(ρ)

∣∣∣∣
2

+
C1 + f (ρ)

ρ
|un(ρ)|2

)
dρ

= 2−2n
∫ 2

1
|u′(σ )|2dσ + 2−n

∫ 2

1

C1 + f (2nσ)

σ
|u(σ )|2dσ. (9)
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Now we can pick n0 so that, for all σ ∈ [1, 2] and n > n0, we have | f (2nσ)| < C1. If
C1 < 0, it follows that

∫ 2

1

C1 + f (2nσ)

σ
|u(σ )|2dσ < 0 for n > n0.

Thus, the last line of (9) is a sum of a positive and a negative termwhenC1 < 0, n > n0.
Since the positive term decreases with n faster than the negative term, we can make the
sum negative by choosing n big enough. Then 〈(H − C0)un, un〉 < 0 and therefore
〈Hun, un〉 lies below the essential spectrum for sufficiently large n. This is enough to
ensure that we have an infinite number of negative eigenvalues as a consequence of the
Rayleigh–Ritz principle, cf. [12, §8.3]. �

3. Bound States in the Linearised YMH Equations

3.1. BPSmonopoles and dyons. The first example of a Schrödinger operator on the half-
line to which we apply the results of the previous section arises in YMH theory in 3+1
dimensionalMinkowski space. Our main reference for the derivation of this Schrödinger
operator is the paper [21], to which we refer for details and background.

The YMH model consists of a non-abelian gauge potential A = A0dt + A1dx1 +
A2dx2 + A3dx3 coupled to a Higgs field φ, both taking values in the Lie algebra su(2).
Writing x = (x1, x2, x3) ∈ R

3, and ∂i = ∂/∂xi , i = 1, 2, 3, we only require the spatial
covariant derivatives Di = ∂i + e [Ai , ·] and the spatial components of the Yang–Mills
field strength tensor Fi j = ∂i A j − ∂ j Ai + e

[
Ai , A j

]
, where [·, ·] is the Lie algebra

commutator, e is the Yang–Mills coupling constant and i, j = 1, 2, 3.
In the following we set the coupling constant e to one and consider a particular limit

of the theory, called the BPS limit, where the self-coupling of the Higgs field vanishes.
In that limit, the second order static YMH equations are implied by the first order BPS
equations

Diφ = 1

2
εi jk Fjk,

where i, j, k = 1, 2, 3 and repeated indices are summed over.
In terms of the a basis t1, t2, t3 of the su(2) Lie algebra satisfying [ti , t j ] = εi jk tk , a

particular solution of the BPS equations is the spherically symmetric BPS monopole:

Ai (x) =
(
1

r2
− 1

r sinh(r)

)
(x × t)i , φ(x) = 1 − r coth(r)

r2
x · t, (10)

where r =
√
x21 + x22 + x23 and we have denoted Euclidean vectors by bold letters. The

invariance of the BPS equations under Euclidean symmetries implies that translating
this solution in space gives an R

3 worth of solutions. Gauge invariance of the equations
means that SU (2) gauge transformations map solutions to solutions. In gauge theories,
solutions related by gauge transformations which are the identity at infinity are generally
considered equivalent, but gauge transformations which are non-trivial at infinity may
have a physical significance. Such gauge transformations are often called ‘large’, and
will play a role in the interpretation of our results. We therefore review them briefly.
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As discussed and explained in [10], for monopoles in SU (2) YMH theory, there is
essentially a circle of large gauge transformations, generated by the Higgs field itself
and parameterised by an angle χ ∈ [0, 2π):

gχ (x) = exp(χφ(x)). (11)

Note that, for large r , φ(x) ≈ −x̂, so that gχ (x) is asymptotically a rotation about x.
Acting with translations and the large gauge transformations (11), and dividing out by
small gauge transformations yields the moduli space of monopoles of magnetic charge
one:

M1 = R
3 × S1. (12)

Thephysical significance of the angular variableχ on S1 becomesmanifestwhen it varies
in time. The monopole then acquires an electric charge proportional to the angular speed
χ̇ , thus turning into a dyon. Quantum states are given by wave functions on the moduli
space [10]. A wave function of the form exp(inχ), with n ∈ Z describes a dyon of
electric charge n.

3.2. Linearising around the BPS monopole. The Schrödinger operator we would like
to study is obtained by linearising the general, time-dependent YMH equations around
the static configuration (10). The stationary ansatz

Ai (t, x) = Ai (x) + ai (x)eiωt , φ(t, x) = φ(x) + ϕ(x)eiωt ,

considered in [21], leads to the following coupled partial differential equations on
Euclidean R

3:

Di Diϕ + [ai , Diφ] + Di [ai , φ] = −ω2ϕ,

Di Dia j − Di D jai +
[
ai , Fi j

] = [
φ, Djϕ

]
+

[
ϕ, Djφ

]
+

[
φ,

[
a j , φ

]] − ω2a j .

Exploiting the (suitably defined) rotational symmetry of the BPS monopole and
focusing on the vanishing total angular momentum, the ansatz

ϕ(x) = 0, ai (x) = 1

r

(
v(r)((x̂ · t)x̂i − ti ) +

√
2α(r)(x̂ · t)x̂i

)
, (13)

involving two unknown functions of the radial coordinate r , leads to the following set
of ordinary differential equations

(
− d2

dr2
+

3

sinh2(r)
− 2 coth(r)

r
+ coth2(r)

)
v +

2
√
2 coth(r)

sinh(r)
α = ω2v,

(
− d2

dr2
+

2

sinh2(r)
+

2

r2

)
α +

2
√
2 coth(r)

sinh(r)
v = ω2α. (14)

As explained in [21], this system of equations can be decoupled when ω �= 0, and
brought into the form
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(
− d2

dr2
+

1

sinh2(r)
+

2

r2
− 2 coth(r)

r
+ coth2(r)

)
ξ = ω2ξ,

(
− d2

dr2
+

2

sinh2(r)

)
ζ = ω2ζ, (15)

via the (invertible) transformation

ωα = dζ

dr
− ζ

r
+

√
2

sinh(r)
ξ,

ωv = −dξ

dr
− 1 − r coth(r)

r
ξ −

√
2

sinh(r)
ζ, (16)

provided ω �= 0. We note that the equations (14) also have a zero-energy solution which
can easily be given explicitly, see e.g. [21]. Since ω = 0 for this solution, it cannot be
obtained from solutions of the system (15) which we study here.

As also explained in [21], the equation for ζ does not have bound states, andmoreover
gauge invariance requires that ζ = 0. Therefore, we focus on the equation for ξ , which
is a Sturm–Liouville problem for the Schrödinger operator

H̃YMH = − d2

dr2
+ VYMH (17)

with the potential

VYMH(r) = 1

sinh2(r)
+

2

r2
− 2 coth(r)

r
+ coth2(r).

This potential has the asymptotic expansion

VYMH(r) =
{ 2

r2
+ O(1), r → 0,

1 − 2
r + 2

r2
+ O

(
1
r3

)
, r → ∞,

so, in particular, is of the form (2) with c2 = 2, C0 = 1 and C1 = −2. It is easy to check
that it satisfies the assumptions of Theorem 6 (and a fortiori those of Lemmas 1 and 4).
As m = 3/2 > 1 in (4), we have the following result.

Corollary 7. The closure HYMH of H̃YMH acting on L2(0,∞) is selfadjoint, its essential
spectrum is the segment [1,∞) and it has infinitely many eigenvalues below 1.

The infinitely many eigenstates of the Schrödinger operator (17) define radially sym-
metric fluctuations around the BPS monopole via substitution into the equations (16)
and (13). They therefore belong to the sector with magnetic change m = 1. However,
as explained in [21], the fluctuations do not have well defined electric charge.

To obtain eigenstates of the electric charge operators, one needs to include the col-
lective angular coordinate χ for large gauge transformations (11) in the discussion.
These gauge transformations act on the underlying BPS monopoles (10) but also, by
conjugation, on the fluctuations (13), rotating them to ϕ(x)χ = 0 and
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ai (x)χ =
(

v(r) +
√
2α(r)

r

)
(x̂ · t)x̂i + cos(χ |φ|(x̂))

(
v(r)

r

)
((x̂ · t)x̂i − ti )

+ sin(χ |φ(x̂)|)(t × x̂)i .

Quantum states of definite electric charge are obtained by taking superpositions of these
states, weighted with the dyonic wave function exp(inχ). This is essentially a Fourier
transform from the angular variable χ to the integer label n, and entirely analogous to the
standard interpretation of the moduli space wave functions, which describe superposi-
tions of BPS monopoles. The electric charge n is arbitrary, so we replicate the infinitely
many eigenstates of the Schrödinger operator (17) in each of the dyonic sectors (1, n),
n ∈ Z.

3.3. Upper bounds on the eigenvalues. Having shown that HYMH has infinitely many
negative eigenvalues we would like to find good numerical approximations to the first
few of them, improving on previous numerical work in [2] and [21] which relied on
shooting methods. For this purpose, we employ the Riesz–Galerkin method with a basis
which exploits the fact that the potential VYMH approaches at infinity the potential

VC (r) = α

r
+
l(l + 1)

r2
+ 1,

which combines a Coulomb potential with a centrifugal potential for orbital angular
momentum quantum number l. In order to match the asymptotic form of VYMH we pick
α = −2 and l = 1, so that

VYMH(r) = VC (r) +

(
1 + cosh2(r)

sinh2(r)
+
2 − 2 coth(r)

r

)
.

The eigenfunctions of the radial Coulomb Hamiltonian with differential expression

HC = − d2

dr2
+ VC

are well-known. They are defined in terms of the associated Laguerre polynomial LN
k (r)

LN
k (r) = (−1)N

dN

dr N
Lk+N (r)

where Lk(r) = er dk

drk
(
rke−r

)
is the k-th Laguerre polynomial. The eigenfunctions of

HC with l = 1 and α = −2, satisfying

HCξn = Enξn, En = − 1

n2
, (18)

are

ξn(r) = N−1/2
n r2e− r

n L3
n−2

(
2r

n

)
.

Here Nn is a normalisation constant ensuring ‖ξn‖ = 1 and the principal quantum
number takes the values n = 2, 3, ....
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Table 1. The values of λn for d = 20, the extrapolated values for d = 1000 and the approximation based on
(18)

n λn for basis d =
20

Extrapolated value
of λn for d = 1000

Coulomb approximation
of 1 − 1

(n+1)2

1 0.773243 0.772215 0.750000
2 0.897117 0.896315 0.888889
3 0.941347 0.940714 0.937500
4 0.962124 0.961609 0.960000
5 0.973529 0.973099 0.972222
6 0.980458 0.980094 0.979592
7 0.984983 0.984669 0.984375
8 0.988100 0.987825 0.987654
9 0.990179 0.990096 0.990000
10 0.990339 0.991761 0.991736
11 0.993265 0.993174 0.993056

The set {ξn}∞n=2 is an orthonormal basis for L2(0,∞). In order to implement the
Riesz–Galerkin method, we pick a finite-dimensional subspace

Span{b̃n}dn=1 ⊂ D(H)

of dimension d, where

b̃n(r) = N 1/2
n+1ξn+1(r) =

⎛
⎝n−1∑

p=0

dn+1p r p+2

⎞
⎠ e− r

n+1 (19)

for suitable coefficients dn+1p ∈ R. We then compute the mass matrix

M = [M(i, j)]di, j=1 = diag(N2, . . . , Nd), M(i, j) =
∫ ∞

0
b̃i (r)b̃ j (r)dr,

and the stiffness matrix

S = [S(i, j)]di, j=1, S(i, j) =
∫ ∞

0
HYMHb̃i (r)b̃ j (r)dr. (20)

According to theRayleigh–Ritz principle, the kth negative eigenvalue of Su = νMu is an
upper bound for the kth negative eigenvalue of HYMH. Further details on the computation
of the entries of S are given in “Appendix” A.

For a basis of dimension d = 20 we obtain the results shown in Table 1 for the first
eleven eigenvalues. We saw convergence of our computations up to single precision as
we increased the size of d from 1 to 20. Additionally, we have the extrapolated results
obtained for the first eleven eigenvalues for a basis of dimension d = 1000 via linear
interpolation. In [21], approximation to these eigenvalues were found via a shooting
method and they appear to be below those found in Table 1. There is no guarantee that
the former are above the true eigenvalues of HYMH, whereas the latter certainly are, due
to the Rayleigh–Ritz principle.
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4. The Laplace Operator on the Moduli Space of Two Monopoles

4.1. The Atiyah–Hitchin metric and its asymptotic forms. The BPS monopole (10) and
the moduli space (12) of charge one magnetic monopoles have remarkable generalisa-
tions for higher magnetic charges. Following the discovery of the charge one solution,
there was rapid progress in constructing various solutions of highermagnetic charge. It is
now well-understood that, for given magnetic charge k, there is in fact a 4k-dimensional
family of staticmonopole solutionswhich constitute the so-calledmoduli space of charge
k monopoles [1].

The basic, physical reason for the existence of so many static solutions is that, in
the BPS limit, monopoles do not exert any forces on each other so that they can be
‘superimposed’ with arbitrary values of the individual positions and phases. The inter-
pretation of the 4k parameters in the moduli space as giving the positions and phases of
k monopoles works well for well-separated monopoles. However, when the monopoles
are close together they deform each other and become bound states with a rich and
complicated geometry. All of this is captured by the moduli spaces.

The moduli spaces inherit a Riemannian metric from the kinetic energy functional of
YMH theory. It was first argued by Manton in [13] that geodesic motion on the moduli
space, equippedwith this metric, is a good approximation to the dynamics of monopoles,
provided they are moving sufficiently slowly. This is essentially an adiabatic approxi-
mation, where the time evolution is via a sequence of static equilibrium configurations.
It was subsequently shown by Atiyah and Hitchin [1] that the moduli space metric is
hyperkähler. Combined with symmetry considerations, this is sufficient to determine the
moduli space metric for monopoles of charge two. In that case, the moduli space is eight
dimensional, and has the form

M2 = R
3 × M0

2 × S1

Z2
. (21)

The R
3- and S1- factors describe the centre-of-mass motion of the two monopoles and

carry flat metrics. The manifold M0
2 describes the interesting, relative motion of the two

monopoles, and we refer to it as the Atiyah–Hitchin manifold in the following. However,
the reader should be aware that some authors reserve this name for the quotient M0

2/Z2.
The manifold M0

2 is simply-connected and homotopic to a 2-sphere. The metric on M0
2

is also hyperkähler. In four dimensions, the hyperkähler property is equivalent to self-
duality of the Riemann tensor so that the Atiyah–Hitchin manifold is an example of a
gravitational instanton.

The group SO(3) of spatial rotations is a symmetry group of YMH theory and acts
isometrically on the Atiyah–Hitchin manifold. Therefore, it is convenient to parametrise
the Atiyah–Hitchin manifold in terms of this SO(3) action and one transverse radial
or ‘shape’ coordinate. The latter parametrises a 1-parameter family of two-monopole
configurations which includes twowell-separatedmonopoles where the shape parameter
is simply the distance between the two monopoles. However, when the two monopoles
get close, they deform each other until they coalesce to a doughnut-shaped configuration.
The SO(3) orbits are generically isomorphic to SO(3)/Z2, but the orbit of the doughnut-
shaped configuration is exceptional and isomorphic to S2, called the core in the following.

The metric on the Atiyah–Hitchin manifold M0
2 is most conveniently written in

terms of left-invariant 1-forms σ1, σ2 and σ3 on SO(3), see [10] for details. Denoting the
transverse coordinate by r , the metric takes the Bianchi IX form

ds2 = f 2dr2 + a2σ 2
1 + b2σ 2

2 + c2σ 2
3 ,
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where f, a, b and c are functions of r . The self-duality of the metric implies

2bc

f

da

dr
= (b − c)2 − a2, (22)

and two other related equations obtained by cyclic permutation of a, b, c. The function
f can be chosen to fix the radial coordinate r . Following [10], we pick

f = −b

r
.

The initial conditions for the coefficient functions are

a(π) = 0, b(π) = π, c(π) = −π.

The unique solution with these initial conditions can be written in terms of elliptic
functions as follows. Let

r = 2K

(
sin

β

2

)
, 0 ≤ β ≤ π, (23)

where K is the elliptic integral

K (k) =
∫ π

2

0

dτ√
1 − k2 sin2 τ

.

With
w1 = bc, w2 = ca, w3 = ab, (24)

the solution is then given by

w1(r) = − sin β r
dr

dβ
− 1

2
(1 + cosβ)r2,

w2(r) = − sin β r
dr

dβ
,

w3(r) = − sin β r
dr

dβ
+
1

2
(1 − cosβ)r2. (25)

It turns out that b > a > 0 away from the core, and that c is negative (in fact,
c < −2). Defining a proper radial distance coordinate R via

R(r) =
∫ r

π

− f (ρ) dρ =
∫ r

π

b(ρ)

ρ
dρ, (26)

we have the following behaviour near the core

R = (r − π) + O
(
(r − π)2

)
.

This allows us to deduce expansions for the coefficient functions of the Atiyah–Hitchin
metric [10,22]:

a(r(R)) = 2R + O
(
R2

)
, b(r(R)) = π +

1

2
R + O

(
R2

)
, c(r(R)) = −π +

1

2
R + O

(
R2

)
.

(27)
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For large r , the coefficient functions a, b and c can be approximated by the functions
aTN, bTN and cTN given by

aTN(r) = bTN(r) = r

√
1 − 2

r
, cTN(r) = − 2√

1 − 2
r

. (28)

Theses functions are exact solutions of the self-duality equations (22), and give rise to
another hyperkählermetric, called the Taub-NUTmetricwith negative ‘mass’ parameter.
This metric has U (2) rather than SO(3) symmetry. In the form given above, the metric
is degenerate at r = 2 and changes signature form (+,+,+,+) to (−,−,−,−) as one
crosses from r > 2 to r < 2. For later use, we note that, as explained in [10], it follows
from (24) and (25) that

a(r) = aTN(r) + O
(
r2e−r

)
,

b(r) = bTN(r) + O
(
r2e−r

)
,

c(r) = cTN(r) + O
(
e−2r p(r)

)
, (29)

where p is an algebraic function of r .
In our study of the spectrum of the Laplace operator on the Atiyah–Hitchin manifold

we need the asymptotics of a, b and c both as a function of r and as a function of the
proper radial distance R. Substituting the asymptotic expressions (28) into the definition
(26) one finds (see also [22]) that

R(r) = r + ln r + O(1). (30)

4.2. The Laplace operator on the Atiyah–Hitchin manifold. One may approximate the
quantummechanics of k interactingmonopoles at low energy by solving the Schrödinger
equation on the moduli space of charge k monopoles, taking the covariant Laplace
operator associated to the Riemannian metric as the Hamiltonian. For details of this
programmewe refer the reader to [10],where it is explained and applied to the asymptotic
form of the manifold M0

2 , and to [22] where bound states and scattering states on M0
2

are discussed in detail, using a combination of numerical and semiclassical techniques.
The wave function for a two-monopole quantum state is a C-valued function on

the moduli space (21). However, assuming without loss of generality that we work in
the centre-of-mass frame of the two monopoles we can neglect the dependence on R

3.
Introducing an angular coordinate χ ∈ [0, 2π) on S1, the Hamiltonian is then

H = − �
2

16π

∂2

∂χ2 − �
2

4π
�AH,

where �AH is the covariant Laplace operator on M0
2 . It can be written in terms of the

left-invariant (and right-generated) vector fields ξ1, ξ2 and ξ3 on SO(3) which are dual
to the forms σ1, σ2 and σ3 (see again [10] for details). Then

�AH = 1

abc f

∂

∂r

(
abc

f

∂

∂r

)
+

ξ21

a2
+

ξ22

b2
+

ξ23

c2
.
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Assuming without loss of generality a harmonic dependence of the wave function on
the angular coordinate χ , the stationary Schrödinger equation is

H(ei Sχ�) = EeiSχ�

for a function � : M0
2 → C. This is equivalent to

− 1

abc f

∂

∂r

(
abc

f

∂�

∂r

)
+

(
ξ21

a2
+

ξ22

b2
+

ξ23

c2

)
� = ε�, (31)

where ε = 4πE
�2 − S2

4 . The quantum number S is necessarily an integer and characterises
the total electric charge of the quantum state [10].

We will now derive and study spectral problems for functions on the half-line which
can be obtained from (31) by separating the dependence of the function� on the angular
coordinates and the radial coordinate r . For details about the separation of variables we
refer the reader to [10] and [22]. Here we only give enough background to help the
reader appreciate the interpretation of the bound states which we will encounter in terms
of magnetic monopoles.

The vector fields ξ1, ξ2 and ξ3 generate rotations of a two-monopole configuration
about body-fixed orthogonal axes. The sum of squares ξ21 + ξ22 + ξ23 commutes with the
Laplace operator onM0

2 and represents the total angularmomentumof the two-monopole
configuration. As usual in quantum theory, it has eigenvalues − j ( j + 1), for an integer
j ≥ 0.

The operator ξ3 does not commute with the Laplace operators on M0
2 , but does com-

mutewith its asymptotic formwhere a, b, and c are replaced by aTN, bTN and cTN. Forwell-
separated monopoles, ξ3 generates the rotation about the line joining the monopoles and
an eigenvalue s of −iξ3 characterises the relative electric charge of the two monopoles.
The metamorphosis of body-fixed relative angular into electric charge is one of the
interesting and subtle aspects of the theory of non-abelian monopoles. Again we refer
the reader to [10] for details. Finally, note that, as a consequence of the Z2-division in
(21), the relative electric charge s and the total electric charge S have to have an even
sum. This essentially reflects the fact that the individual electric charges (only defined
asymptotically) are both integers.

To study the spectrum of (31), we separate variables in terms of Wigner functions
D j
sm for the dependence on SO(3). Referring to [10,22] for details, the conservation of

the total angular momentum but not of the relative electric charge means that one may
fix j but needs to consider linear combinations of Wigner functions with all allowed
values of s, with coefficient functions u js of the radial coordinate. This leads to systems
of coupled ordinary differential equations, increasing in size with j , whose structure
is described in [22]. It turns out that, because of parity considerations, only a single
radial equation needs to be considered for j = 0 (where necessarily s = 0) and also
for ( j, s) = (1, 1), (2, 1) or (3, 2). In the case j = 0 there are no bound states (albeit
very interesting scattering, see [22]), but the other three single channels support bound
states, which we now discuss. The radial equation takes the form

− 1

abc f

d

dr

(
abc

f

du js

dr

)
+ Vjsu js = εu js, (32)

where the potentials Vjs are given in Table 2.
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Table 2. The potentials for the three single channels with bound states in terms of a, b and c

( j, s) Vjs

(1, 1) 1
b2

+ 1
c2

(2, 1) 4
a2

+ 1
b2

+ 1
c2

(3, 2) 4
a2

+ 4
b2

+ 4
c2

Bound state energies for the channels ( j, s) = (1, 1) and ( j, s) = (2, 1) were com-
puted numerically in [14] using a shooting method applied to (32). The bound states in
the channel ( j, s) = (3, 2)weremissed in [14] but pointed out in [23], where their bound
state energieswere also computed using a shootingmethod. The results in [13,23] are not
rigorous. Our goal is to use our results from Sect. 2 to prove that infinitely many bounds
states do indeed exist in each of these three channels, and to provide lower bounds for
the eigenvalues.

In order to apply the results from Sect. 2, we need to ‘flatten’ the radial derivative
using equation (1). To do this, we first change coordinates to the proper radial distance
coordinate R, defined in (26), which satisfies dR = − f dr . With

ν = √−abc,

the radial derivative becomes

− 1

abc f

d

dr

abc

f

d

dr
= − 1

ν2

d

dR
ν2

d

dR
.

Defining
η = νu

and substituting u = η
ν
into (32) we obtain

Hjsη = εη, (33)

where

Hjs = − d2

dR2 + V eff
js, V eff

js = 1

ν

d2ν

dR2 + Vjs . (34)

This is the promised reduction of theAtiyah–HitchinLaplacian to a standard Schrödinger
operator on the half-line.

4.3. Bound states of the Atiyah–Hitchin Laplacian. The Sturm–Liouville problem (33)
has the form required to apply the result of Sect. 2. The potentials V eff

js are analytic on
(0,∞) since they are implicitly defined in terms of elliptic functions. With R related to
r via an integral, and a, b, c being determined in terms of r via the relations (23), (24)
and (25), we have not been able to express V eff

js in terms of R explicitly. However, we can
determine the asymptotic information near R = 0 and R = ∞ required to establish the
existence of infinitely many bound states with the result of Sect. 2, and to give numerical
estimates for the eigenvalues.

Near the core of the Atiyah–Hitchin manifold, we can use (27) to determine leading
terms in V eff

js in the limit R → 0. We find ν = √
R + O (R) and therefore

1

ν

d2ν

dR2 = − 1

4R2 + O (1) .
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Table 3. The asymptotic forms of the potentials V eff
js for small and large R

( j, s) V eff
js near R = 0 V eff

js for R → ∞ c2 C0 C1

(1,1) − 1
4R2

+ 2
π2 + O (R) 1

4 − 1
2R + o

(
1
R

)
− 1

4
1
4 − 1

2

(2, 1) 3
4R2

+ 2
π2 + O (R) 1

4 − 1
2R + o

(
1
R

)
3
4

1
4 − 1

2

(3, 2) 3
4R2

+ 8
π2 + O (R) 1 − 2

R + o
(
1
R

)
3
4 1 −2

Collecting leading terms in V eff
js for R → 0, we arrive at the second column of Table 3.

For large r , we need to combine the behaviour of the Atiyah–Hitchin metric coef-
ficients with respect to r given in (29) with the relation (30) between r and the proper
radial distance R to derive the asymptotic behaviour of V eff

js(R). The basic method is to
compute asymptotics with respect to r and then deduce from (30) that, for example,

lim
R→∞

R

r2
= 0,

and so, by definition,

1

r2
= o

(
1

R

)
for R → ∞.

One then finds, for example,

1

a2TN
= 1

r2
+ O

(
1

r3

)
,

1

c2TN
= 1

4
− 1

2r
,

and therefore in particular

1

a2
= o

(
1

R

)
,

1

c2
= 1

4
− 1

2R
+ o

(
1

R

)
.

Similarly,

ν = √
2r − 1 − 3

4r
+ O

(
1

r2

)
,

implies

1

ν

d2

dR2 ν = o

(
1

R

)
.

We collect the resulting asymptotic terms in the potentials V eff
js in the third column of

Table 3.
By virtue of the results of Sect. 2, we arrive at the following.

Corollary 8. The radial Hamiltonians Hjs : D −→ L2(0,∞) defined in (34) are
selfadjoint. Their essential spectrum is the segment [C0,∞), whereC0 is given in Table3.
Each of these Hamiltonians has infinitely many eigenvalues below C0.
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Table 4. The computed eigenvalues of Hjs for three channels

( j, s) = (1, 1) ( j, s) = (2, 1) ( j, s) = (3, 2)

0.23151604 0.24264773 0.92838765
0.24250546 0.24597017 0.95655735
0.24605425 0.24745446 0.97063593
0.24898588 0.24836885 0.97876253

0.24942162 0.98390049
0.98736886

4.4. Numerical approximation of the eigenvalues. Having established the existence of
infinitely many eigenvalues, we would like to produce numerical approximations for
them, in analogy with our treatment of the linearised YMH equations in Sect. 2. There
we were able to exploit the asymptotic agreement between the radial YMHHamiltonian
(17) and the radial Coulomb Hamiltonian. A natural exactly solvable approximation to
the Laplace operator on theAtiyah–Hitchinmanifold is provided by the Laplace operator
on the (negative mass) Taub-NUT space.

As explained in [10,22], replacing the Atiyah–Hitchin radial functions a, b, c by
their Taub-NUT counterparts (28) (with f = −b/r similarly replaced) in the eigenvalue
equation (31), and separating variables leads to an exactly solvable radial problem on the
half-line (0,∞). The additional U (1) symmetry of the Taub-NUT metric means that ξ3
commutes with the Laplace operator, so that separating variables into Wigner functions
of the angular coordinates and a radial function u js , yields decoupled radial equations.
Writing u js(r) = h js(r)/r , the radial equations derived in [10] are

(
d2

dr2
− j ( j + 1)

r2
− s2

4

(
1 − 4

r

)
+ ε

(
1 − 2

r

))
h js(r) = 0.

Remarkably, the singularity in Taub-NUT at r = 2 is not visible in this radial equation,
which can be solved exactly in terms of confluent hypergeometric functions. The relevant
eigenvalues are

ε(s,n) = 1

2

√
n2 − s2

(
n −

√
n2 − s2

)
, |s| ≤ j, n = j + 1, j + 2 . . . . (35)

One might think that the exact solutions of the Taub-NUT radial equation could be
used as trial wavefunctions for the radial Atiyah–Hitchin equation (33), in analogy with
our use of the Coulomb wavefunctions in the YMH radial problem. However, there
are theoretical and practical problems to overcome. The Atiyah–Hitchin and Taub-NUT
manifolds are differentmanifolds (even topologically), and identifying radial coordinates
on the two spaces is arbitrary. Pragmatically, one might identify, for example, the proper
radial distance coordinate R on the Atiyah–Hitchin space with the radial coordinate r
on the Taub-NUT space because they have the same range, and the Taub-NUT problem
is most easily solved in terms of r . However, even with this choice, the numerical
computation of the potential V eff

js in (33) as a function of R with control over numerical
errors is very difficult because it involves, amongst others, the inversion of the elliptic
function arising in (23).Wewere therefore not able to construct useful trialwavefunctions
for the Atiyah–Hitchin Laplacian from the Taub-NUT eigenfunctions by following this
idea. Instead we consider a more pedestrian approach.

In Table 4we show the numerically computed lowest four to six eigenvalues in each of
the channels listed by means of the Matlab routine Chebfun, [7]. These calculations are
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Table 5. The Taub-NUT approximation to the first eigenvalues from (35) and agreement with the eigenvalues
from Table 4

( j, s) = (1, 1) Agreement (%) ( j, s) = (2, 1) Agreement (%) ( j, s) = (3, 2) Agreement (%)

0.23205081 + 99.77 0.24264069 − 99.99(7) 0.92820323 − 99.98
0.24264069 + 99.94 0.24596669 − 99.99(9) 0.95643924 − 99.99
0.24596669 − 99.96 0.24744871 − 99.99(7) 0.97056275 − 99.99
0.24744871 − 99.38 0.24823935 − 99.95 0.97871376 − 99.99(5)

0.24744871 − 99.20 0.98386677 − 99.99(7)
0.98733975 − 99.99(7)

The signs displayed correspond to whether the Taub-NUT eigenvalue is above (+) or below (−) the Atiyah–
Hitchin eigenvalue

expected to be more accurate than those in [14,23]. We use the radial Atiyah–Hitchin
Hamiltonian in the form (32). The equations (22) for the coefficient functions (with
f = −b/r ) are used to express derivatives of a, b and c, in terms of a, b and c. For each
integration of (32), the coefficient functions a, b and c are obtained from (22), starting
with initial data a = 2h, b = π + h and c = −π + h where h = 0.001.

We have listed the corresponding Taub-NUT eigenvalues from (35) in Table 5. For
the channel ( j, s) = (1, 1), the lowest four energies occur when n = 2, 3, 4, 5, for
( j, s) = (2, 1) they occur when n = 3, 4, 5, 6, 7 and for ( j, s) = (3, 2) they occur
when n = 4, 5, 6, 7, 8, 9. Our calculations confirm the remarkable agreement between
numerically computed eigenvalues for the Atiyah–Hitchin Hamiltonian and the Taub-
NUT eigenvalues. This agreement was pointed out and discussed in [14] for the three
lowest lying eigenvalue in the channels ( j, s) = (1, 1) and ( j, s) = (2, 1), and also in
[23] for ( j, s) = (3, 2).

Note that the Taub-NUT approximation is slightly below our numerically computed
eigenvalues for the Atiyah–Hitchin Laplacian for all but two (the lowest when ( j, s) =
(1, 1) and n = 2, 3).

5. Conclusion

In this paper we rigorously established the existence of infinitely many eigenstates of
operators which arise in linearisations of the SU (2)YMH equations in the BPS limit and
in symmetry reductions of the Laplace operator on the moduli space of two monopoles.
We have also provided sharp numerical estimates of the eigenvalues in some cases. As
promised in the Introduction, we would now like to look at the physical interpretations
of these eigenstates in YMH theory, with a particular emphasis on their significance for
electric–magnetic duality conjectures.

As discussed in Sect. 3.2, suitable quantum superpositions of the eigenstates of the
Schrödinger operator (17) define fluctuations around the BPS monopole of definite
electric charge n ∈ Z. The eigenstates we found therefore give rise to an infinite tower
of Coulombic bound states in each of the dyonic sectors (1, n), n ∈ Z. These Coulombic
bound states are covered by an essential spectrum arising from other sectors, see [21]
for details.

The eigenstates of the Atiyah–Hitchin Laplacian discussed in Sects. 4.3 and 4.4
describe quantum states of magnetic monopoles of charge m = 2 and relative electric
charge s = 1 (with angular momentum j = 1 or j = 2) or s = 2 (with angular
momentum j = 3). The total electric charge has to be odd when s = 1 and even when
s = 2, but is otherwise arbitrary. We thus have two families of dyonic sectors, with each
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Fig. 1. The qualitative nature of the spectrum of the Laplace operator (acting on differential forms) on the
Atiyah–Hitchin manifold: the special eigenvalue ε = 0 for the Sen (or BPS) state is also the lower bound of
the essential spectrum. The Coulombic bound states studied here are all embedded in the essential spectrum.
The spectrum of the linearised YMH operator has the same qualitative form

sector containing infinitely many Coulombic bound states: one family labelled by (2, n),
n odd, and one by (2, n) with n even. The bound states are also covered by an essential
spectrum arising from other channels.

The families of charge sectors (1, n), n ∈ Z and (2, n), n odd, have both featured
prominently in studies of S-duality since they are related by the SL(2, Z) action reviewed
in the Introduction. The fact that both contain so-called quantum BPS states was one
of the first pieces of strong evidence for S-duality. In the language of this paper, BPS
quantum states are bound states with energy equal to the lower bound of the essential
spectrum.

Here, we did not consider BPS states, but we can indicate briefly how they fit into our
discussion, referring to [6] where the N = 4 supersymmetric theory is studied in notation
similar to the one used here. The BPS states in the (1, n) sectors correspond to zero-
energy solutions of the coupled system (14) which, as already pointed out, cannot be
obtained via the transformation (16) used here. In the (2, n) sectors (n odd), the BPS state
is the famous Sen form. It is a zero-energy eigenstate of the Atiyah–Hitchin Laplacian
acting on differential forms. As explained in [6], all eigenfunctions (zero-forms) of the
Laplace operator are part of a supersymmetry multiplet of differential eigenforms of
the Laplacian. However, the zero-energy eigenstates are special, and the corresponding
supersymmetric multiplet does not contain ordinary functions on the Atiyah–Hitchin
space. As a result, we do not see them in our analysis. However, Fig. 1 illustrates the
relation of the BPS state to the essential spectrum of Laplace operator acting on forms
and to the eigenvalues studied here.

The Coulombic families of bound states we found both for (1, n), n ∈ Z and (2, n),
n odd, provide further evidence for the similarities between these two families of charge
sectors, and possibly further evidence for S-duality. The latter would not require the
spectra in these sectors to be equal, since it also involves a change in the Yang–Mills
coupling constant. It would, however, suggest that the tower of Coulombic states found
for the linearised YMH equations and for the s = 1 channels of the Atiyah–Hitchin
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Laplacian represent different approximations, valid for different values of the Yang–
Mills coupling constant, to the same physical system of bound states.

The Coulombic bound states in the ( j, s) = (3, 2) channel of the Atiyah–Hitchin
Laplacian are physically the most surprising of the bound states studied here. They
describe bound states of dyons with charges (1, 1) and (1,−1) and were overlooked in
[14] since one might expect dyons of equal and opposite electric charges to exchange
their electric charge and turn into pure monopoles. As pointed out in [23], this does not
happen because the bosonic nature of pure monopoles does not allow them to be in a
state of orbital angular momentum j = 3. Applying S-duality to these states leads to
surprising predictions. A pair of dyons with charges (1, 1) and (1,−1) is S-dual to a pair
with charges (−1, 1) and (1, 1). The Coulombic bound states we found would therefore
be dual to bound states in a system consisting of a monopole and an anti-monopole, both
carrying one unit of electric charge (breather states).

To end, we remark that the study of bound states in single channels arising in the
linearised YMH equations and the Atiyah–Hitchin Laplacian are merely the first steps
in a full exploration of these spectral problems. Both contain interesting scattering pro-
cesses with strikingly similar qualitative features [21,22]. For higher angular momenta,
both yield infinitely manymulti-channel problems, with both bound states and scattering
processes. Our analysis suggests that all of these warrant careful further study.

A. Detailed Evaluation of the Stiffness Matrices for the Linearised YMH
Equations

To compute the stiffness matrix in (20) we first split the Hamiltonian HYMH into two parts

HYMH = H1 + H2,

where

H1 = − d2

dr2
+

2

r2
− 2

r
,

H2 = 1 + cosh2(r)

sinh2(r)
+
2

r
(1 − coth(r)).

Now defining

Sk(i, j) =
∫ ∞

0
Hkb̃i (r)b̃ j (r)dr, k = 1, 2,

one finds that S1(i, j) is straightforward to calculate, but that the evaluation of S2(i, j)
is rather involved. To organise it, we write the basis functions (19) as

b̃i (r) = r

⎛
⎝ i∑

p=1

di+1p−1r
p

⎞
⎠ e

−
(

1
i+1

)
r
,

and introduce the notation d̂i jp ∈ R for the coefficients of the product

b̃i (r)b̃ j (r) = r2

⎛
⎝ i+ j∑

p=2

d̂i jp r
p

⎞
⎠ e

−
(

1
i+1 +

1
j+1

)
r
.
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Then

S2(i, j) =
∫ ∞

0

r2
(
1 + cosh2(r) + 2

r sinh
2(r) − 2

r sinh(r) cosh(r)
)

sinh2(r)⎛
⎝ i+ j∑

p=2

d̂i jp r
p

⎞
⎠ e

−
(

1
i+1 +

1
j+1

)
r
dr

=
i+ j∑
p=2

d̂i jp

∫ ∞

0

r2

sinh2(r)

(
3

2
+
e2r

4
+
e−2r

4
− 1

r
+
e−2r

r

)
r pe

−
(

1
i+1 +

1
j+1

)
r
dr

=
i+ j∑
p=2

d̂i jp

(
3

2
L

(
r2+p

sinh2(r)

) (
1

i + 1
+

1

j + 1

)
+
1

4
L

(
r2+p

sinh2(r)

)

×
(

1

i + 1
+

1

j + 1
− 2

)

+
1

4
L

(
r2+p

sinh2(r)

) (
1

i + 1
+

1

j + 1
+ 2

)
− 2L

(
r1+p

sinh(r)

)

×
(

1

i + 1
+

1

j + 1
+ 1

))
, (36)

whereL ( f (t))(s) is the Laplace transform of f (t) and we used the exponential defini-
tions of the hyperbolic functions. Using [16, 25.11.25] we see that

L

(
r

sinh(r)

)
(s) =

∫ ∞

0

2e−sr r

er − e−r
dr

= 1

2

∫ ∞

0

e− sx
2 x

e
x
2 − e− x

2
dx

= 1

2

∫ ∞

0

e
−

(
s+1
2

)
x
x

1 − e−x
dx

= 1

2
�(2)ξ

(
2,

s + 1

2

)
,

where �(t) is the Gamma function , ξ(q, w) is the Hurwitz zeta function and we have
made the substitution 2r = x . This evaluates the last term in (36). To simplify the other
terms, we start by defining the function

K (a, s) = L

(
ra

sinh2(r)

)
(s), a = 2, 3, . . . .

Taking the derivative of K (2, s) with respect to s we have

∂s K (2, s) = ∂sL

(
r2

sinh2(r)

)
(s)

=
∫ ∞

0

r2

sinh2(r)
∂se

−sr dr
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= −
∫ ∞

0

r3

sinh2(r)
e−sr dr

= −K (3, s).

By induction we have the relation

K (a + 1, s) = (−∂s)
(a−1)K (2, s), a = 2, 3, .... (37)

Using [16, 25.11.25, 25.11.12] we can write

K (2, s) = L

(
r2

sinh2(r)

)
(s)

=
∫ ∞

0

4r2e−sr

(er − e−r )2
dr

= 1

2

∫ ∞

0

x2e
−

(
s+2
2

)
x

(1 − e−x )2
dx

= 1

2

∫ ∞

0
e− sx

2 x2
d

dx

( −1

1 − e−x

)
dx

=
∫ ∞

0

xe− sx
2

1 − e−x
dx − s

4

∫ ∞

0

x2e− sx
2

1 − e−x
dx

= �(2)ξ
(
2,

s

2

)
− 2

4
�(3)ξ

(
3,

s

2

)

= �′ ( s
2

)
+
s

4
�′′ ( s

2

)
, (38)

where �(z) is the Digamma function and we have made the substitution 2r = x .
Substituting (38) into (37) gives

K (a + 1, s) = (−∂s)
(a+1)

(
�′ ( s

2

)
+
s

4
�′′ ( s

2

))
.

This can now be used to evaluate the expression for S2(i, j) in (36) in terms of the
Digamma function.

Acknowledgements. Funding was provided by the Engineering and Physical Sciences Research Council
through grants EP/K00848X/1 and EP/L504774/1.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Inter-
national License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Atiyah, M., Hitchin, N.: The Geometry and Dynamics of Magnetic Monopoles. Princeton University
Press, Princeton (1988)

2. Bais, F. A., Troost, W.: Zero modes and bound states of the supersymmetric monopole. Nucl. Phys.
B 178(1), 125–140 (1981)
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