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Abstract
In light of recently published work highlighting the incompatibility between the concepts underlying current code specifica-
tions and fundamental concrete properties, the work presented herein focuses on assessing the ability of the methods adopted 
by some of the most widely used codes of practice for the design of reinforced concrete structures to provide predictions 
concerning load-carrying capacity in agreement with their experimentally established counterparts. A comparative study is 
carried out between the available experimental data and the predictions obtained from (1) the design codes considered, (2) 
a published alternative method (the compressive force path method), the development of which is based on assumptions dif-
ferent (if not contradictory) to those adopted by the available design codes, as well as (3) artificial neural networks that have 
been calibrated based on the available test data (the later data are presented herein in the form of a database). The compara-
tive study reveals that the predictions of the artificial neural networks provide a close fit to the available experimental data. 
In addition, the predictions of the alternative assessment method are often closer to the available test data compared to their 
counterparts provided by the design codes considered. This highlights the urgent need to re-assess the assumptions upon 
which the development of the design codes is based and identify the reasons that trigger the observed divergence between 
their predictions and the experimentally established values. Finally, it is demonstrated that reducing the incompatibility 
between the concepts underlying the development of the design methods and the fundamental material properties of concrete 
improves the effectiveness of these methods to a degree that calibration may eventually become unnecessary.
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b	� Beam width
d	� Effective depth
x	� Depth of the compressive zone
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Asw	� Area of transverse reinforcement
�v∕d	� Shear span-to-depth ratio
fc	� Uniaxial compressive strength of concrete
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�l	� Ratio of tensile reinforcement ( �l = As∕b × d)
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( �t = As�∕b × d)
�w	� Ratio of transverse reinforcement ( �w = Asw∕b × s)
Vc	� Shear resistance of the RC beam without the con-
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Vs	� Shear resistance offered by of shear links
Vu	� Shear developing along the span of the RC beam 

at failure
Mu	� Bending developing along the span of the RC 

beam at failure
Mf	� Flexural moment capacity of the cross section of 

the RC beam
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Introduction

It has recently been shown that the concepts underlying code 
specifications for the design of reinforced concrete structures 
(RC) is incompatible with fundamental concrete properties 
such as post-peak stress–strain characteristics, mechanism of 
crack extension, and sensitivity of strength and deformation 
characteristics to the presence of small confinement stresses 
(acting orthogonal to the direction considered) (Kotsovos 
2015). Consequently, the need of calibrating these specifica-
tions with experimental data describing the behaviour of RC 
beam/column elements leads to an ever increasing complexity 
of the code-adopted design formulae. Moreover, it has been 
shown that compliance with the fundamental concrete proper-
ties can lead to the development of alternative design methods, 
such as the compressive force path (CFP) method, which may 
be, not only simpler and more efficient, but also rely on failure 
criteria derived from first principles (of mechanics), without 
the need of calibration through the use of experimental data 
(Kotsovos 2014).

To this end, the present work has been aimed at evaluating 
the shear design specifications of some of the most widely 
adopted codes of practice (ACI 445R-99 1999, ACI 318 2014, 
Eurocode 2 2004, JSCE 2007, CSA 2007, NZ 2006) and the 
CFP method (Kotsovos 2014) as regards, not only the close-
ness of the correlation of the calculated values of load-carrying 
capacity with their experimentally established counterparts, 
but also the validity of the concepts underlying the develop-
ment of the method of calculation. The present study focuses 
on comparing the values of load-carrying capacity predicted 
by the design codes with those obtained through the use of a 
purely empirical (soft computing) method that employs arti-
ficial neural networks (ANNs) (Cladera and Mari 2004a, b; 
Mansour et al. 2004; Abdalla et al. 2007; Yang et al. 2007; 
Jung and Kim 2008) capable of providing predictions concern-
ing load-carrying capacity that correlate closely to the avail-
able test data. In what follows the description of the ANN 
approach developed herein and the presentation and discussion 
of the results of the comparative study are preceded by a con-
cise description of the methods of calculation employed and 
the presentation of the experimental information used for the 
training and verification of the ANNs.

Experimental information on RC structural 
response at ULS

To date, a large number of experiments have been con-
ducted on simply supported RC beam specimens to study 
the mechanics underlying RC structural response throughout 
the loading process and establish the effect of a wide range 
of parameters [e.g., width (b), effective depth (d), shear 

span-to-depth ratio (αv/d), compressive strength of concrete 
(fc), longitudinal (ρl) and transverse (ρw) steel reinforcement 
ratios, yield strength of longitudinal (fyl) and transverse (fyw) 
reinforcement bars, etc.] on the exhibited behaviour (Κani 
1964; Panagiotakos and Fardis 2001; Reineck 2013; Rei-
neck et al. 2014; Kotsovos 2014). During testing, attention 
is focused on measuring certain aspects of the exhibited 
behaviour such as the applied load and reaction forces, the 
displacement of certain points along the element span as 
well as the strain at specific critical locations (i.e., the com-
pressive region or on the steel longitudinal and transverse 
reinforcement bars). In addition, the deformation profiles 
and crack patterns forming as well as the exhibited mode of 
failure are also recorded, as they provide important informa-
tion concerning the internal stress state developing within 
the members considered. The test data published and the 
different parameters considered have been used to form an 
extensive database describing the effect of the above param-
eters on the exhibited behaviour mainly at ULS (see Tables 
A1 and A2 presented as supplementary material).

Design methods

Current design methods are intended to size the cross section 
of structural members and specify an amount and arrange-
ment of reinforcement that will safeguard desired perfor-
mance characteristics such as load-carrying capacity and 
ductility. This objective can only be achieved by ensuring 
that the load corresponding to shear types of failure is always 
higher than that corresponding to flexural capacity. To this 
end, the sizing of the cross section and the assessment of the 
longitudinal reinforcement are linked to flexural capacity, 
whereas the associated shear-force diagram underlies the 
method adopted for specifying an amount and arrangement 
of transverse reinforcement that will safeguard against shear 
failure occurring before flexural capacity is exhausted.

Code‑adopted methods

The concepts underlying the methods adopted by the major-
ity of the available RC design codes assume that load transfer 
at ULS is accomplished through the development of truss or 
various forms of strut-and-tie mechanisms (a simplified form 
of which is depicted in Fig. 1) in which the compressive 
zone and the tension flexural reinforcement form the lon-
gitudinal struts and ties, respectively, stirrups and inclined 
bars form the web ties and cracked concrete in the tensile 
zone (by means of aggregate interlock and dowel action) 
allows for the formation of inclined struts. On the basis of 
these concepts, shear failure is associated with failure of 
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either the web ties or the inclined struts, whereas the longi-
tudinal struts and ties are designed such that flexural failure 
occurs when the concrete strut at the most critical location 
reaches its strength (in compression) after yielding of the 
longitudinal tie at the same cross section. To determine shear 
capacity each code employs its own empirical formulae (see 
Table 1), the derivation of which is largely based on regres-
sion analysis of the available test data, whereas the calcula-
tion of flexural capacity is based on assumptions such as 
plane cross sections remain plane during bending, full bond 
between concrete and steel, uniaxial stress–stain behaviour 
of concrete in the compressive zone, etc. 

The CFP method

The CFP method is based on the incorporation of important 
mechanical characteristics of concrete such as brittle behav-
iour, cracking mechanism, sensitivity to triaxial stress condi-
tions, etc. into beam theory which describes the mechanism 
of load transfer accomplished through the bending of the con-
crete cantilevers forming between consecutive flexural and/or 
inclined cracks (see Fig. 2). Failure is considered to be associ-
ated with the stress conditions in the compressive zone and 
reinforcement is specified to prevent non-flexural (commonly 
referred to as shear) types of failure before flexural capacity 
is exhausted. Unlike the code methods, the criteria for non-
flexural types of failure have been derived from first principles 
without the need of calibration through the use of test data. 
The method is fully described elsewhere (Kotsovos 2014) and, 
therefore, is only briefly presented in what follows.

The CFP theory attributes what is commonly referred to 
as ‘shear’ failure to the development of tensile stresses at par-
ticular locations [dependent on the shear span-to-depth ratio 

(av/d)] along the compressive zone. For an RC beam/column 
element with flexural reinforcement only, the values of the 
shear force corresponding to such types of failure are obtained 
from.

For av/d > 2.5, failure occurs when either the shear force at 
a distance equal to 2.5d from a simple support or a point of 
contra-flexure attains a critical value:

where ft is the tensile strength of concrete and b, d are the 
width and depth of the cross section, or after yielding of the 
flexural reinforcement in regions, where the value of the 
shear force attains a critical value:

where Fc is the value of the compressive force developing on 
account of bending when Mf is attained and fc and ft are the 
values of the compressive and tensile, respectively, strengths 
of concrete.

For 1 ≤ av/d ≤ 2.5, failure is considered to occur when the 
bending moment at the cross section located at a distance equal 
to av from the closest simple support or point of contra-flexure 
exceeds a critical value:

obtained by linear interpolation between the values MII = VII 
(2.5d) and MIV = Mf (flexural capacity) at cross sections at 
distances of 2.5d and d, respectively, from the closest simple 
support or point of contra-flexure.

For av/d < 1, failure occurs when the shear force exceeds a 
critical value provided by Eq. (4):

(1)VII,1 = 0.5ftbd,

(2)VII,2 = Fc[1 − 1∕(1 + 5|ft|∕fc)],

(3)MIII = MII + (Mf −MII)(2.5 − av)∕(1.5d),

(4)VIV = Mf∕av.

Fig. 1   Code design methods: a 
truss model of a beam-like RC 
element; b portion of truss in 
Fig. 1 between cuts 1–1 and 2–2 
indicating the mechanism of 
load transfer
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When the above types of failure occur before flexural capac-
ity is attained, they can be prevented by specifying transverse 
reinforcement in the form of stirrups in an amount sufficient 
to undertake the total tension developing at the locations indi-
cated earlier as critical. More specifically, for av/d > 2.5, the 
transverse tension developing at a distance of 2.5d from the 
location of the simply support or the point of contra-flexure 
has been shown to be numerically equal to the shear force Vf 
developing at this location and, then, the amount of transverse 
reinforcement required to prevent failure is obtained from:

Such reinforcement is spread over a length of 2d extend-
ing symmetrically on either side of the location, where trans-
verse tension is considered to develop (i.e., the location at a 
distance from a simple support or a point of contra-flexure).

This method is also used to calculate the amount of trans-
verse reinforcement required to prevent failure in the region 
of points of contra-flexure.

When Vf > VII,2 (where Vf is the shear force corresponding 
to Mf), the transverse tensile stresses σt exceed the tensile 
strength of concrete ft in the compressive zone of the regions 
of beam/column elements, where yielding of the flexural 

(5)Asv = Vf∕fyv.

Table 1   Formulae adopted by the RC design codes for predicting shear capacity

a For design purposes, EC2 ignores the contribution of Vc, relying only in the contribution of Vs when assessing the shear capacity

Physical models Contribution of the specimen cross 
section without stirrups

Contribution of the 
stirrups

Limitations Factors used for multiplying 
shear capacity for the case of 
small shear spansV

c
V
s

ACI-318-11 (SI units) Vc =
(
0.16f 0.5

c
+ 17

As×Vu

Mu

)
bd Vs,45◦ =

Aswfywd

s
Vc ≤ 0.29

√
fcbd

d ≤ 500m

fy ≤ 420 MPa
fc ≤ 70 MPa

If [3.5–2.5 (αv/d)] ≥ 2.5 then 
use 2.5

If [3.5–2.5 (αv/d)] < 2.5 and 
≥ 1.0 then use 1.0

If [3.5–2.5 (αv/d)] < 1.0 then 
use [3.5–2.5 (αv/d)]

EC2a (SI units)
Vc = 0.18 k (100 �lfc)

1∕3bd Vs =
Aswfyw0.9d cot �

s
,

where 1 ≤ cot � ≤ 2.5
Vc ≤ vminb × d

vmin = 0.035f
1∕2
c k3∕2

�l =
As

bd
≤ 0.02

k = (1 +
√
200∕d) ≤ 2

fck < 90 MPa

If (αv/d) ≤ 2.0 then use 2d/αv

JSCE (SI units) Vc = �d�p�nfvcdbd∕�b Vs =
Aswfyw(sin �+cos �)z

s�b

z = d/1.15

�p = (100�l)
1∕3 ≤ 1.5

0≤ �n ≤ 2.0
�d = (1000∕d)1∕4 ≤ 1.5

fvcd = 0.20 × f
1∕3
c  ≤ 0.72

fy ≤ 400 Mpa
fc ≤ 60 MPa

No change required (see Sec-
tion 9.2.2.2 of the revevant 
code)

KBCS-(SI units) Vc = �d

(
0.16f 0.5

c
+ 17.6�l

Vud

Mu

)
bd Vs = fyw�wbd Vc ≤ 0.29

√
fcbd �d = [3.5 − 2.5(av∕d)] ≤ 2.5

CSA (SI units) Vc = �c��f
0.5
c

bd Vs =
�sAswfywd cot �

s

Vr,max ≤ 0.25φc × fcbd
fy ≤ 400 Mpa
fc ≤ 60 MPa

No change required (see Sec-
tion 11.3.2 of the revevant 
code)

NZ (SI units) Vc = vcAcv , Acv = bd

vc = kdkavb , ka = 1.0

vb = min[(0.07 + �w)
√
fc , 0.2 

√
fc]

Vs� =
Aswfywd

s

For d ≤ 400m kd = 1.0

for d > 400 mm 
kd = (400∕d)0.25

fy ≤ 500 Mpa
fc ≤ 50 Mpa

No change required (see 
Section 9.3.9.3.1 of the 
revevant code)

Fig. 2   CFP method: a schematic representation of the physical state 
of an RC beam at the ULS; b mechanism of load transfer
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reinforcement occurs. Then, these tensile stresses can be 
calculated from Eq. (2) by replacing VII,2 with Vf and ft with 
σt, and solving for σt, that is

and hence, the tensile force per unit length developing in this 
region is expressed by:

The second term of Eq. (7) is divided by 2 to allow for 
the non-uniform distribution of the transverse stresses within 
the compressive zone.

Therefore, the amount of transverse reinforcement 
required per unit length to sustain TII,2 is equal to:

As regards the assessment of the transverse reinforce-
ment to prevent failure for the case of 1 ≤ av/d ≤ 2.5, this is 
obtained from:

It should be noted that this reinforcement is uniformly 
distributed within the shear span and, in accordance with the 
CFP theory, is intended to increase flexural capacity from 
MIII to Mf rather than prevent shear failure.

It is also important to note that in accordance with the 
CFP theory, the specified transverse reinforce is effective 
when its spacing is smaller than d/2.

As regards the calculation of flexural capacity, this differs 
from the EC2 code method in that the normal stress distribution 
in the compressive zone is equivalent to a stress block cover-
ing the whole compressive zone; its intensity is obtained from:

The above expression has been derived by considering 
the triaxial stress conditions invariable developing in the 
compressive zone when ULS is approached.

Artificial neural networks

Artificial neural networks mimic their biological coun-
terparts in the nervous system and the brains of animals 
and humans. They are used to estimate or approximate 

(6)||�t|| = fc∕[5(Fc∕Vf − 1)],

(7)TII,2 = �tb∕2.

(8)Asv,II2 = TII,2∕fyv.

(9)Asv,III = 2(Mf −MIII)∕(avfyv).

(10)�a = fc + 5||ft||.

functions that depend on a large number of parameters, 
the effect of which is not clearly established or quantified. 
Due to their adaptive nature and ability to remember infor-
mation introduced to them during training (calibration), 
ANNs can learn, generalize, categorize, and empirically 
predict values.

A typical artificial neuron (AN) designed to perform spe-
cific operations is schematically depicted in Fig. 3. From 
the figure, it can be seen that the AN is fed with the values 
of parameters xj (describing selected parameters associated 
with the design details and strength characteristics of the 
structural elements investigated), each of them being attrib-
uted an (initially assumed) weight wji and a bias Θi. This 
input information is used to form the sum ni of the products 
xj × wji and Θi, that is

The sum ni is inserted as argument into an adopted activa-
tion function g, that is

and the resulting value of g, yi = g(ni) is the output Oi of the 
AN.

ANs, such as that of Fig. 3, have been combined to 
form the artificial neural networks (ANNs) adopted for the 
present work, as depicted in Fig. 4. The process through 
which the ANNs have been developed is presented in a 
flowchart form in Fig. 5. The architecture of the ANNs 
models, which is associated with the selection of the type 
of activation function employed for each layer, the number 
of hidden layers and the number of neurons in each hid-
den layer have been determined through a trial-and-error 
process due to the absence of relevant guidelines. This 
trial-and-error process indicated that the use of two hidden 
layers comprising nine neurons each produces a satisfac-
tory solution for the purposes of the present work, whereas 
the types of activation functions adopted are provided in 
Table 2 which also shows the layers, where the functions 
were incorporated. The values of the weights (wkj) and bias 
(Θj) are initially randomly assigned, but obtain their final 
values through an iterative training (calibration) process 

(11)ni =
∑

wjixj + �i.

(12)yi = gi = g(�wjixj + ��),

Fig. 3   Typical AN
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(described later) which aims at reducing to an acceptable 
value the difference between the output values Oi (obtained 
from the ANN) and the target values Ti (provided in the 

database) (Svozil et al. 1997; Basheer and Hajmeer 2000). 
A measure of the deviation of Oi from Ti is obtained from:

Convergence is considered to be achieved when E 
becomes smaller than an acceptable value.

Experimental database

In the present study, two databases (DB) are formed which 
are presented as supplementary material at the end of this 
paper: DB-I, containing test data obtained from tests on 
609 on RC beam specimens without stirrups (BWOS) (see 
Table A1 presented as supplementary material) and DB-II, 

(13)E = (1∕2)
∑

(Ti − Oi)
2.

. 
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Fig. 5   Flowchart describing the 
process through which ANNs 
are developed
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containing test data obtained from tests on 306 RC beam 
specimens with stirrups (BWS) (see Table A2 presented as 
supplementary material). Both databases include parameters 
associated with the design of the RC beams as well as aspects 
of RC structural response at ULS (load-bearing capacity and 
mode of failure). All specimens are simply supported and 
subjected to 3 or 4 points bending tests. Table 3 provides 
statistical information, essential for the development of the 
ANNs, on the variation of certain key parameters associ-
ated with the design details and load-carrying capacity of 
the specimens in DB-I and DB-II.

Selection of input parameters

The relationship between two parameters (in the databases) 
is expressed through the Pearson’s correlation coefficient (r) 
described by Eq. (14) (Mojtaba et al. (2013)):

where n represents the total number of samples and x, y are 
the two variables considered.

Tables  4 and 5 describe the correlation between the 
parameters considered by the ANN employed. The linear 

(14)r =
n�xy − (�x)(�y)

√
n(�x2) − (�x)2

√
n(�y2) − (�y)2

,

Table 2   Activation functions used in the ANN models

Activation functions Layers Mathematical expression Range of values of x Graphical expression

Sigmoid B/w input layer and 
first hidden layer

B/w first hidden layer 
and second hidden 
layer

f (x) =
1

1−e−x
(0, + 1)

Hyperbolic (tanghn) B/w second hidden 
layer and out put 
layer

f (x) =
ex−e−x

ex+e−x
(− 1, + 1)

Table 3   Statistical information 
concerning the test data 
included in DB-I AND DB-II

Min Max Diff Avg. St. dev COV

For beams without stirrups (BWOS) DB-I
 b (mm) 50 500 450 171.51 68.71 0.4
 d (mm) 65 483 418 255.15 73.6 0.29
 αv/d 0 0.98 9.73 8.75 3.53 1.4 0.4
 ρl (%) 0.250261 7.462626 7.212365 2.14 1.09 0.51
 fyl (MPa) 283 1779 1496 444.83 189.15 0.43
 fc (MPa) 12.2 110.9 98.7 39.07 21.43 0.55
 Mf (kN mm) 2000 844,000 842,000 101,307 109,891.2 1.08
 Vu (kN) 7 360 353 69.09 47.07 0.68

For beams with stirrups (BWS) DB-II
 b (mm) 100 510 410 207.27 67.64 0.33
 d (mm) 113 975 862 342.87 157.03 0.46
 av/d 1 7.002188 6.002188 3.43 1.35 0.39
 ρl (%) 0.18 5.57 5.39 2.35 1.05 0.45
 fyl (MPa) 250 888.48 638.48 411.33 77.88 0.19
 fc (MPa) 13.8 126.2 112.4 44.51 22.41 0.5
 ρw (%) 0.08 2.24 2.16 0.57 0.5 0.88
 fyw (MPa) 224.08 875.5 651.42 399.4 112.62 0.28
 Mf (kN mm) 2648 1,738,423 1,735,775 283,484.8 378,729.4 1.34
 Vu (kN) 4.0967 760.1942 756.0975 185.54 134.25 0.72
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correlation coefficient (r) can obtain values between 1 and 
− 1 (1 > r > − 1). Negative values of r describe an inverse 
relation between the two associated parameters (i.e., an 
increase in the value of one parameter results in the decrease 
in the value of the other). Positive values of r have a similar 
effect on the values of the associated parameters (i.e., an 
increase in the value of one parameter results in an increase 
of the other). Higher absolute values of |r| indicate a more 
pronounced relation between the two parameters considered. 
Depending on r and on the basis of current knowledge on RC 
structural response at ULS, different combinations of input 
parameters are selected for the case of the beams without 
and with stirrups, as shown in Tables 6 and 7.

Normalization of database

Expressing the parameters considered in the database in a 
non-dimensional form is of particular significance for the 
calibration and overall function of the ANNs, since this 
improves their ability to provide accurate predictions. To 
avoid problems associated with low learning rates of the 
ANNs, it is more effective to further normalize the values of 
the parameters between appropriate upper and lower limiting 
values. Furthermore, to compensate for the fact that purely 
experimental databases are characterized by regions (often 
located at their boundaries) which may not be as densely 
populated with data as other regions, it is considered more 

effective to normalize the values of the parameters consid-
ered between (0.1, 0.9) instead of (0, 1), through the use of 
the following expression (Krogh and Vedelsby 1995; Utans 
et al. 1995; Castellano and Fanelli 2000):

where xmax and xmin represent the minimum and maximum 
values of a specific parameter included in the database 
considered.

Training process

The training of the ANNs is achieved through the multi-layer 
free-forward back-propagation (MLFFBP) process (Beale 
et al. 2015) (a schematic representation of which is provided 
in Fig. 6) and the provided databases DB-I and DB-II. The 
MLFFBP process consists of two phases: (1) the free-forward 
phase (input signal) and (2) the back-propagation phase (error 
signal). In the case of the free-forward phase, the information 
provided is processed from the input layer towards the output 
layer, where the predicted solution of the problem considered 
is obtained. If convergence is not achieved [i.e., the difference 
between the output (predicted) and target (database) values 
is expressed by E as defined by Eq. (13)] is larger than a pre-
defined acceptable value), then the values of the weights and 

(15)

X =

(
0.8

xmax − xmin

)
x +

[
0.9 −

(
0.8

xmax − xmin

)
xmax

]
,

Table 4   Values of r expressing 
the effect between parameters 
considered in the database 
for the case of beams without 
stirrups

b d av/d ρl fyl fc Mf Vu

b 1.00
d 0.39 1.00
av/d − 0.02 0.04 1.00
ρl − 0.14 − 0.16 0.23 1.00
fyl 0.09 0.03 0.02 − 0.20 1.00
fc 0.20 − 0.08 − 0.09 0.25 0.09 1.00
Mf 0.55 0.68 0.11 0.23 0.09 0.22 1.00
Vu 0.56 0.48 − 0.30 0.17 − 0.04 0.30 0.67 1.00

Table 5   Values of r expressing 
the effect between parameters 
considered in the database for 
the case of beams with stirrups

b d av/d ρl fyl fc ρw fyw Mf Vu

b 1
d 0.71 1
av/d 0.12 − 0.10 1
ρl − 0.17 0.08 − 0.11 1
fyl 0.07 − 0.24 0.57 − 0.45 1
fc − 0.07 − 0.33 0.36 0.31 0.28 1
ρw − 0.23 − 0.36 − 0.37 0.10 − 0.07 0.17 1
fyw 0.09 − 0.36 0.21 − 0.25 0.36 0.29 0.20 1
Mf 0.71 0.74 0.15 0.33 − 0.03 0.05 − 0.14 − 0.10 1
Vu 0.26 0.46 − 0.62 0.29 − 0.60 − 0.23 0.25 − 0.26 0.33 1
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bias are re-adjusted through the “gradient descent” method in 
which the change in weights (Δwkj) is expressed in the form:

where a is the learning rate.
High values of learning rate (α) result in the values of the 

weights (wjk) changing more drastically (large values of Δwjk) 

(16)Δwkj = − �
�E

�wkj

,

during each iteration. This can result in the training process 
not converging to the most optimum combination of values of 
weights for which the error attains its minimum value for the 
whole database considered (global minima). Small values of 
α result in small changes to the weights (wjk) (i.e., small values 
of Δwjk) for each iteration. In the latter case, although more 
training time is required (due to the larger number of iterations 
that have to be carried out to satisfy the convergence criteria), 
the iterative process is able to identify more effectively the 

Table 6   Architecture of ANN models

Sr. no Model Input No of input 
neurons

Act. function b/w 
first two layers

Act. function in 
last layers

No of neurons in 
each hidden layer

For beams without stirrups (BWOS) DB-I
 1 BWOS-1 b, d, av/d, ρl, fyl, fc 6 Sigmoid tanghn 12–12
 2 BWOS-2 b, d, av/d, Mf, fc 5 Sigmoid tanghn 10–10
 3 BWOS-3 b/d, av/d, Mf/fcbd2 3 Sigmoid tanghn 6–6
 4 BWOS-4 d, av/d, Mf/fcbd2, fc 4 Sigmoid tanghn 8–8
 5 BWOS-5 d, b/d, av/d, Mf/fcbd2 4 Sigmoid tanghn 8–8
 6 BWOS-6 d, b/d, av/d, Mf/fcbd2, fc 5 Sigmoid tanghn 10–10

For beams with stirrups (BWS) DB-II
 1 BWS-1 b, d, av/d, ρl, fyl, fc, ρw, fyw 8 Sigmoid tanghn 16–16
 2 BWS-2 b, d, av/d, Mf, fc, ρw, fyw 7 Sigmoid tanghn 14–14
 3 BWS-3 b/d, av/d, Mf/fcbd2, ρw, fyw 5 Sigmoid tanghn 10–10
 4 BWS-4 b/d, av/d, ρw/ρl, fc/fyw 4 Sigmoid tanghn 8–8
 5 BWS-5 d, av/d, Mf/bd2, fc, pwfyw 5 Sigmoid tanghn 10–10
 6 BWS-6 d, b/d, av/d, Mf/fcbd2, ρw, fyw 6 Sigmoid tanghn 12–12
 7 BWS-7 d, b/d, av/d, Mf/fcbd2, fc, ρw, fyw 7 Sigmoid tanghn 14–14
 8 BWS-8 d, b/d, av/d, Mf/fcbd2, fc, pwfyw 6 Sigmoid tanghn 16–16

Table 7   Results of different 
ANN models

Vu Min Max Diff Avg. St. dev COV

For beams without stirrups (BWOS) DB-I
 Exp (kN) 7 360 353 69.09 47.07 0.68
 BWOS-1 (kN) 5 307 302 69.53 46.61 0.67
 BWOS-2 (kN) 0 300 300 69.57 45.75 0.66
 BWOS-3 (kN) 6 394 388 78.95 63.04 0.8
 BWOS-4 (kN) 7 371 364 69.29 46.14 0.67
 BWOS-5 (kN) 7 319 312 70.72 50.48 0.71
 BWOS-6 (kN) 7 306 299 68.38 44.46 0.65

For beams with stirrups (BWS) DB-II
 Exp (kN) 4 761 757 185.54 134.25 0.72
 BWS-1 (kN) 3 757 754 186.41 134.36 0.72
 BWS-2 (kN) 13 780 767 184.99 130.65 0.71
 BWS-3 (kN) 0 767 767 185.34 137.65 0.74
 BWS-4 (kN) 4 656 652 184.5 133.08 0.72
 BWS-5 (kN) 2 763 761 186.74 137.71 0.74
 BWS-6 (kN) 7 846 839 187.31 137.19 0.73
 BWS-7 (kN) 4 863 859 186.9 137.83 0.74
 BWS-8 (kN) 3 834 831 187.31 141.15 0.75
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optimum combination of values wjk for which the error func-
tion obtains its minimum value for the whole database consid-
ered allowing the ANN to provide more accurate predictions. 
To facilitate this process, the values of Δwkj calculated for each 
iteration (n > 1) are provided as a function of the correspond-
ing adjustment carried out in the previous iteration (n − 1) and 
the momentum factor (0 < η <1) as follows:

The selection of the most accurate of the ANN mod-
els in Table 7 is based on assessing the correlation factor 
(R), the mean squared error (MSE), and the mean absolute 
error (MAE) which are analytically expressed by Krogh and 
Vedelsby (1995), Utans et al. (1995) and Castellano and 
Fanelli (2000):

(17)Δwn
kj
= � × yk + � × Δwn−1

kj
.

(18a)R =

∑n

i=1
(Ti − T)(Oi − O)

∑n

1
(Ti − T)2

∑n

1
(Oi − O)2

,

(18b)MSE =

∑n

i=1
(T2

i
− O2

i
)

n
,

(18c)MAE =

∑n

i=1
��Ti − Oi

��
n

,

where T =
∑n

1
Ti∕n and O =

∑n

1
Oi∕n are the mean Ti and 

Oi values, respectively, and n is the total number of samples 
in databases, i.e., DB-I and DB-II (see Tables A1 and A2 
which provided in the form of supplementary material).

During the calibration process, the normalized data 
are divided into three sub-sets. Each of these sub-sets is 
employed for training, validation, and testing purposes. 
Matlab (Beale et al. 2015) is used to develop the ANN 
models and to randomly divide the database into the three 
sub-sets: 60% of the data for training, 20% for validation, 
and 20% for testing (Krogh and Vedelsby 1995; Utans 
et  al. 1995; Castellano and Fanelli 2000). Each ANN 
model is trained until one of the following conditions is 
met as proposed by the Levenberg–Marquardt back-prop-
agation method (Beale et al. 2015):

1.	 For 100 iterations (epochs) including the full MLFFBP 
process.

2.	 Maximum of 6 validation failures are exhibited. Valida-
tion failure occurs when the performance of the ANN 
(assessed during each iteration) fails to improve or 
remains constant.

3.	 The values of performance goal indicators, expressing 
the difference between the target and output values (see 
Eqs. 18a–18c) attain small values (e.g., 10−6), indicating 
that convergence has been achieved.

Fig. 6   Representation of a 
multi-layer feed forward NN 
(MLFNN)
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4.	 Minimum performance gradient (related to the rate at 
which the weights are adjusted through the MLFFBP 
process) becomes 10−10.

A number of ANN models have been presently consid-
ered employing different parameters, activation functions, 
and number of hidden neurons and layers (see Table 6) to 
study their effect on the ability of the subject models to 

provide accurate predictions. The values of the input and 
output parameters are normalized between 0.1 and 0.9 at 
the start of the training process, whereas the values of the 
weight and biases vary between − 1.0 and 1.0, at the end 
of the training process. The previous work (Ahmad et al. 
2016) has revealed that in such cases, the use of (1) the 
sigmoid activation function between the first three layers of 
the ANN (e.g., the input and the two hidden layers) and (2) 

Fig. 7   a Predictions obtained from different ANNs for the case of RC beam specimens without stirrups (BWOS). b Performance exhibited by 
ANNs models for the RC beams without stirrups (BWOS)
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the hyperbolic (tanh) activation function between the second 
hidden layer and the output layer allows the ANN to provide 
accurate predictions (see Tables 2 and 6).

A total of six different ANN models are developed for 
the case of the RC beams without stirrups (BWOS) and 
eight ANN models for the case of the RC beams with 
stirrup (BWS) (as described in Table 6). Table 7 presents 
statistical information concerning the level of correlation 

achieved between the predicted values of load-carrying 
capacity obtained from the ANN models and their experi-
mentally established counterparts. Figures 7 and 8 show 
the same statistical information in the form of graphs. The 
ANN model considered to provide the most accurate predic-
tions is that exhibiting the highest value of R (correlation 
function) in combination with the lowest values of MSE 
and MAE (Basheer and Hajmeer 2000). Figure 7b provides 

Fig. 8   a Predictions obtained from different ANNs for the case of RC beam specimens with stirrups (BWS). b Performance exhibited by ANNs 
models for the RC beams with stirrups (BWS)
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Fig. 9   Comparison between the predictions obtained from the various assessment methods employed and the ANN with their experimental 
counterparts for the case of beams without stirrups (BWOS)

Fig. 10   a Curves describ-
ing the normal distribution of 
VEXP/VPRED for beams without 
stirrups (BWOS) based on the 
predictions obtained from the 
various assessment methods 
employed and the use of ANNs. 
b Distribution VEXP/VPRED 
for beams without stirrups 
(BWOS) based on the predic-
tions obtained from the various 
assessment methods employed 
and the use of ANNs
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the values of R, MSE, and MAE calculated for the different 
ANN models developed for database DB-I (including beams 
without stirrups). From Table 7 and Fig. 8, it is observed 
the BWOS-4 exhibited the highest value of R (99.2%) in 
combination with the smallest values of MSE (0.05%) and 
MAE (1.5%), while, at the same time, employing the small-
est number of parameters (i.e., d, av/d, Mf/fcbd2, and fc). 
Similarly, based on the information provided in Table 7 and 
Fig. 8 for the case of database DB-II (including beams with 
stirrups), BWS-8 is the most efficient ANN model (with R = 
99.2%, MSE = 0.08%, and MAE = 1.9%) and employs only 
seven parameters (i.e., d, b/d, av/d, Mf/fcbd2, fc, and ρw × fyw).

In view of the above, ANN models BWOS-4 and DWS-8 
have been selected for use in what follows.

Comparative study

A comparative study between the predicted values of load-
carrying capacity obtained from the ANNs, the design 
codes, and their experimentally established counterparts 
(forming the databases) is presented in Figs. 9, 10, 11 and 
12 for the case of RC beams without (BWOS) and with 
(BWS) stirrups, respectively, and Table 8. From Table 8, 
it can be seen that the ANN technique produced the closest 
fit to the experimental values with the smallest standard 
deviation, with the deviation of the mean normalized val-
ues of load-carrying capacity from unity being 0% and 

1% for the cases of RC beams without and with transverse 
reinforcement, respectively. The code predicted mean 
normalized values have been found to be conservative for 
both types of beams in all but one case, that of the NZ 
code for beams with stirrups, for which the predicted value 
overestimates its experimental counterpart by 8%. For the 
case of beams without transverse reinforcement, the code 
predicted mean normalized values deviate from unity by 
an amount ranging between approximately 27% and 60%, 
with the EC2 and NZ code values exhibiting the smaller 
and larger deviations, respectively. For the case of beams 
with transverse reinforcement, the corresponding devia-
tions range between approximately 14% and 53%, with 
EC2 and JSCE values exhibiting the smaller and larger 
deviations, respectively. As regards the CFP method, this 
produces values which deviate from unity by an amount of 
the order of 12% for both types of beams considered (with 
and without stirrups). The trends of behaviour discussed 
above are presented in a graphical form in Figs. 9, 10, 11 
and 12.

It should be noted at this stage that, unlike the other 
methods investigated, the CFP method is, by nature, capa-
ble of providing close predictions of not only the values 
of load-carrying capacities, but also of the locations and 
the causes of failure. In fact, the predictions of the latter 
have been successful in all cases investigated in the present 
work. Naturally, similar predictions cannot be expected 
to be obtained from a purely empirical method such as 

Fig. 11   Comparison between the predictions obtained from the various assessment methods employed and the ANN with their experimental 
counterparts for the case of beams with stirrups (BWS)
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the ANN technique employed in the present work, which, 
however, has been found capable of producing the best 
possible numerical predictions of load-carrying capacity.

It is also important to note that, as already discussed, 
the code methods are also heavily dependent on the use 
of experimental data for the calibration of the formulae 
underlying the assumed mechanisms of load transfer. The 
use of the code-adopted formulae, when compared with 
the use of the ANN technique employed in the present 
work, appears to reduce the effectiveness of the calibration 
process and this may be considered to reflect shortcomings 
of the underlying theory in describing the actual mecha-
nism of load transfer. On the other hand, the ability of the 
CFP method to produce numerical predictions exhibiting 
a relatively small deviation from those resulting from the 
ANN procedure, without the need of prior calibration, may 
be considered as an indication of the validity of the con-
cepts underlying the method.

Conclusions

The accuracy of the predictions of the RC design methods 
considered is assessed primarily against the available test 
data. The calibrated ANNs developed were successful in 
providing predictions very close to their experimentally 
established counterparts. The good correlation between 
the available test data and the predictions of the ANNs 
demonstrate that the latter soft computing method pro-
vides an effective tool capable of objectively analyzing 
the available test data and quantifying the effect of spe-
cific parameters on certain important characteristics of RC 
structural behaviour (e.g., the load-carrying capacity and 
mode of failure)

The ANN procedure, which is purely empirical in nature 
and follows a detailed mathematical approach within a heu-
ristic scheme allowing for all parameters widely assumed to 
affect load-carrying capacity, is found to produce a nearly 
perfect fit to the test data available in the literature on shear 
capacity of simply supported beam/column elements.

Current code methods for calculating shear capacity are 
semi-empirical in that, unlike the ANN procedure, the test 

Fig. 12   a Curves describ-
ing the normal distribution of 
VEXP/VPRED for beams with 
stirrups (BWS) based on the 
predictions obtained from the 
various assessment methods 
employed and the use of ANNs. 
b Distribution VEXP/VPRED for 
beams with stirrups (BWS) 
based on the predictions 
obtained from the various 
assessment methods employed 
and the use of ANNs
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data are used for calibrating the formulation of the theo-
retical basis of the methods. The resulting formulae are 
found conservative: they underestimate shear capacity by 
an amount ranging between approximately 15% and 60%.

The inability of the code methods to provide a fit to the 
test data as close as that of the ANN procedure is considered 
to reflect the lack of effectiveness of the code formulae to 
describe the trends of behaviour exhibited by the test data 
and this may be viewed as an indication of shortcomings of 
the theoretical basis of the code-design methods.

In contrast with code methods, the formulation of the 
theoretical basis of the CFP method does not require cali-
bration through the use of test data. The failure criteria have 
been derived from first principles and are functions of the 
strength of concrete of uniaxial compression and tension. 
Moreover, unlike the code methods, the CFP is capable of 
identifying both the location and the causes of failure.

An indication of the validity of the method is provided 
not only by the fit to the test data which is nearly as close as 
that of the ANN procedure for the case of simply supported 
beams, but also by the realistic predictions of the load-carry-
ing capacity, location, and causes of failure of the structural 
elements exhibiting points of contra-flexure. However, since 
test data on the behaviour of the latter structural elements 
are rather sparse, additional work is required for drawing 
definitive conclusions on the method.
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