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1- Introduction 

Development of newly engineered materials with desired 

properties e.g. thermal, mechanical or biological for 

specific applications is an important field in material 

sciences [1-3]. In biomaterial and particularly in natural-

based polymers, it is essential to modify their properties 

to desired conditions for specific end uses [4, 5].  

Collagen and its associated derivations are the leading 

natural biomaterials with excellent biological and 

physiochemical properties that have been used in a 

variety of applications such as in drug delivery [4, 6], 

filtration [7, 8], tissue scaffolds [9, 10], protective 

clothing [11], wound dressing [12]. Attempts have been 

made to modify collagen by graft polymerization to 

benefit from its natural properties whilst at the same time, 

to add value by introducing monomer(s) to its main chain 

[13, 14].  

Thus far, the main objective of many research groups has 

been focused on reducing the highly hydrophilic behavior 

of collagen chains and benefiting in a controllable 

degradation by using the graft polymerization method 

[13, 15-18]. This method is well known for producing 

collagen-based hydrogels [15, 19-22].   

When it comes to promoting the final product with a high 

surface area, the electrospinning technique is an attractive 

method for the processing of polymeric fibers with a 

wide range of diameters from a few microns down to 100 

nm. In general, the electrospun fibers can be achieved by 

altering the processing and polymer melt/solution 

parameters [23, 24]. 

However, Zeugolis et al.  reported that physiochemical 

properties of the pure collagen are lost when it is 

electrospun into fibers [25]. They observed a lowered 

denaturation temperature in electrospun collagen chains 

that was also confirmed by some recently published 

studies [26, 27].  In a similar work, Yang et al. revealed 

that 45% of the collagen mass is denatured during 

electro-spinning [28]. Furthermore, due to a significant 

conformational change in collagen chains, it has been 

reported that the electrospun collagen fibers do not swell 

in aqueous media and may immediately dissolve in water 

[9, 28-31]. 

To reduce the negative effect of processing methods on 

sensitive structure of collagen chains, surface 
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Collagen is an important natural biopolymer that cannot be electrospun easily due to the lost properties 
occurs in the associated degrading chains while dissolving and spinning. Grafting polymerization of methyl 
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modification methods on collagen fibers using 

crosslinking agents have been extensively recommended 

as post-treatment [23, 24, 32, 33]. For instance, chemical 

crosslinking agents such as aldehydes have been typically 

applied to protect the collagen fibers obtained from 

electrospinning [23, 24]. However, due to random 

crosslinking, the end material is more likely to lose its 

desired morphology after post- treatment [34]. Also, the 

rigid and fixed collagen chains are incapable to represent 

good mechanical properties rendering the material to 

suffer under non-stable humidity conditions [23].  

To the best of our knowledge, the effect of flexible 

branching chains onto the structure of collagen has not 

been given attention when the grafted polymer is 

electrospun into fibers. We hypothesize that during the 

electrospinning process, the branching on the main 

backbone of collagen can significantly preserve the 

collagen from an extensive conformation change by the 

electrostatic repulsion force occurring between its chains 

in acidic solvents. And branch densities can present 

different velocities by influencing chain entanglement 

which is essential in fiber formation.  

In this study, Collagen was solubilized by acid treatment. 

Subsequently, binary different vinyl monomers of Methyl 

Methacrylate (MMA) and Ethyl Acrylate (EA) in varied 

feed ratios were grafted onto the acid soluble collagen 

(ASC) to achieve collagen graft polymers with varied 

branch densities. To exploit the advantages of the chain 

flexibility of the structurally branched copolymer, the 

collagen graft copolymers were then processed through 

the electrospinning method in low concentrations. The 

effect of entanglement density on fiber diameters was 

investigated. Our aim is to benefit from the amphiphilic 

behavior, the firmness and the plasticizing capacity of the 

resulted copolymer under unstable humidity conditions. 

Since electrospinning is believed to be a challenging 

processing method for the sensitive nature of collagen 

chains, we performed surface characterizations on the 

electrospun fibers from the collagen graft copolymers. To 

investigate the degradation and water absorption capacity 

of the collagen-based fibers, a series of comparisons were 

performed between the unprocessed bulky graft collagen 

copolymers and the fibers. This controlled branching can 

be used as a predictable method to preserve the 

morphology of the collagen-based fibers, in contrast with 

randomly crosslinking methods which pose significant 

challenges.  

2- Materials and methods  

2.1. Materials 

Collagen from cow skin was provided by Devro 

Company Inc., UK. Methyl methacrylate (MMA, 99%, 

Alfa Aesar), Ethyl Acrylate (EA, 99%, Alfa Aesar) were 

used as monomers and were passed through a column of 

5% sodium hydroxide acquis solution to remove 

inhibitors existing in the monomers. Benzoyl peroxide 

(BPO, 97%, Alfa Aesar) was used as initiator and 

recrystallized in Acetone before applying. Acetic acid 

(AA, 99.7%, Alfa Aesar), Formic Acid (FA, 99%, Alfa 

Aesar), distilled water and methanol (MeOH, 99.9%, 

Alfa Aesar) were applied as received.  

2.2. Graft polymerization onto Acid Soluble Collagen 
(ASC) 

ASC was prepared using pure collagen from cow skin in 

100 mmol AA and distilled water (Table 1) to reach to 

pH of 3±1. The mixture was incubated for 5 h at 45 °C in 

a 250-ml triple necked round-bottom flask and a stirrer 

bar was then added. This step was terminated by the 

suddenly increased temperature of 80°C, the threshold of 

achieving ASC in water, seen as a homogenous solution. 

Free radical polymerization was used to synthesize the 

graft copolymers of MMA and EA onto ASC in distilled 

water. This procedure is given in detail elsewhere [35, 

36]. In this step, the previous 250-ml triple necked round 

bottomed flask was served as a reaction vessel. Nitrogen 

gas was applied through the solution while stirring. Once 

the desired temperature (80 °C) was achieved, dissolved 

BPO in 2 ml Acetone as the initiator, was added 

gradually to the reaction vessel within 10 min. Distilled 

MMA and EA in the rates mentioned in Table 1, were 

then introduced to the mixture via a syringe in 30 min. 

The temperature and reaction time were fixed at 80°C 

and 60 min after adding the initiator and the monomers. 

The stirrer speed was also fixed at 2400 rpm during the 

reaction. Precipitation of the graft copolymer occurred 

after 15 min of reaction time yielding a milky white 

solution. The reaction mixture was then added to excess 

cool methanol for complete precipitations. The solution 

was then filtered with a glass sinter filter and dried in a 

vacuum oven at 25 °C until a constant weight was 

achieved. Accordingly, 5 samples (S1P2… S5P2) were 

obtained as listed in Table 1.  

As with any conventional free radical copolymerization 

reaction, the formation of P(MMA-co-EA) always arises 

along with that of the desired copolymer (ASC-g-

P(MMA-co-EA) due to reactivity ratio effects or the 

segregation of macromonomers from main and side 

chains. An extraction step was required to remove 
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ungrafted ASC, unreacted EA and MMA macromonomer and P(MMA-co-EA) from the collagen graft copolymers.   

Table 1 Change of graft performance with water content and initiator concentration based upon the feed ratio composition for 

reactants used in the synthesis of grafted copolymers (initial amount of ASC was set at 11g) 
Sample  Comonomer 

cont. in feed 
(mmol) 

EA cont. 
(%) 

Feed ratio 
ASC:(MMA-co-EA) 

(wt.: wt.) 

Water 
cont. 
(mL) 

Initiator 
(mmol) 

GP 
(%) 

GE 
(%) 

Yield of 
grafted 

collagen (%) 

Mn*10
-3 

of Branch 
copolymer 

Wight ratio 
of ASC: 

Side grafts 

Nitrogen 
cont.  

% 

S1P2 109.83 0.50 1:1 85 4.51 11.42 10.79 6.26 9.54 1:0.96 7.46 

S2P2 219.71 5.00 1:2 106 9.10 37.14 16.47 21.85 7.89 1:1.09 4.69 

S3P2 329.65 10.00 1:3 120 13.62 49.85 15.68 32.47 7.08 1:1.33 4.59 

S4P2 493.47 15.00 1:4 145 18.16 57.42 13.49 34.37 8.06 1:1.68 4.35 
S5P2 549.39 20.00 1:5 160 22.70 51.71 10.34 32.13 9.11 1:1.53 5.95 

A simple isolation method with selective solvent 

extraction based upon the difference in the solubility was 

employed. Therefore, the grafted copolymers were 

extracted by repeated washings with hot water followed 

by acetone at room temperature to remove the associated 

ungrafted ASC and P(MMA-co-EA). The supernatants 

were then separated from the graft copolymer using a 

sintered glass filter under reduced pressure. All samples 

were dried in a vacuum oven at room temperature until 

constant weight was achieved. The grafting percentage 

(GP) and the grafting efficiency (GE) were calculated by 

the following equations: 

𝐺𝑃 =
𝑊1 − 𝑊0

𝑊0
                         (1) 

 

𝐺𝐸 =
𝑊1 − 𝑊0

𝑊2
                         (2) 

 

Where W0, W1, and W2 are the weights of the initial ASC 

and ASC-g-P(MMA-co-EA) and the used comonomers, 

respectively [36, 37]. 

To calculate the Yield of the graft collagen, the collagen 

graft copolymer was hydrolyzed in HCl and the weight of 

branch copolymer was evidence to measure the Yield of 

the graft collagen using the given equation: 

 

Yield of the graft collagen =
(W1−W2)−W0

W0
               (3)   

 

Where W0, W1, and W2 were the weights of the initial 

ASC, ASC-g-P(MMA-co-EA), and the grown branches, 

respectively [38]. The molecular weight of the isolated 

grafted branches was then determined by viscometric 

measurements in Acetone at 30
o
C, based on the relation 

(η) = 7.70×10
-3

Mn
0.70

.[38] 

2.3. Preparation of the electrospinning solution, fiber 
formation, and characterizations 

The above-obtained collagen graft copolymers were then 

dissolved individually in FA and stirred at room 

temperature until homogenous solutions were achieved. 

To investigate the effect of P(MMA-co-EA) content, 

each solution was then transferred into the 5-ml plastic 

syringe connected to a needle (22-gauge) to be processed. 

A Spreybase® electrospinning system was used to 

process all solutions at the following conditions: feed-

rate (1 ml min
-1

), needle diameter (gauge 22), 

temperature (25±2
o
C) and humidity (RH: 35-40%) 

(using IR lamp), TCD (15 cm, distance between the tip 

of needle and the fiber collector), voltage (10 kV) and 

different solution concentrations with approximately 

same viscosity. A grounded rotating collector (surface 

length of 25 cm, diameter of 9 cm) at a speed of 1.7 ms
-1

 

was used. 

To measure the Nitrogen content of the collagen graft 

copolymers, an Exeter CE-440 Elemental Analyzer was 

used. The conductivity value of the sample solutions was 

determined using a conductivity meter (OAKTON, 

RS232 CON 110 series). Surface tension studies of the 

solutions were carried out by using a tensiometer 

(KRŰSS). Inherent viscosities of diluted polymer 

solutions (1 wt%) in FA were determined using a 

Brookfield DV-II+Pro Viscometer at (20 ± 0.2) °C. The 

structure of the electrospun fibers was revealed by 

Fourier Transform Infrared Spectroscopy (FT-IR, 

Thermo Nicolet Avatar 370 DTGS) at room temperature 

after washing the fibers with warm distilled water (40℃). 

To prepare the disk, fibers (1 wt%) in KBr were uses. 

High-resolution 
1
H-NMR spectra were recorded on a Buker 

AVI-400 spectrometer. To compare signals of the end 

groups before and after electrospinning, the processed and 

unprocessed collagen graft copolymers were dissolved in 

deuterated acetic acid.  

The structure of the fiber samples was also characterized by 

X-ray diffraction (XRD) using a Bruker D8 Advance 

powder diffractometer. The X-ray diffraction patterns were 

collected from 5° to 60° in 2θ value (wavelength of 1.5406 

Å) over one hour per sample using Ge-monochromated Cu 

Kα radiation and zero background sample holder. The 
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generator settings were at 40kV, 40mA and the sample was 

rotated at 30 rpm. 

The morphology of the fibers was studied using Scanning 

Electron Microscopy (SEM, Hitachi S-4300). The mean 

fiber diameter and uniformity of the fibers were 

estimated statistically by using ImageJ software from 

SEM micrographs. The thermal analysis of the achieved 

fibers was performed by Differential Scanning 

Calorimeter (DSC, Mettler DSC 12E). A temperature 

ranging up to 220 °C with a heating rate of 10 °C min
-1

 in 

the nitrogen atmosphere was reached. Sensitivity curve 

analysis was carried out on samples (10 mg) to evaluate 

changes in their thermal behavior. Thermogravimetric 

analysis (TGA) was carried out by using a 

thermogravimetric analyzer (Mettler TC 10A/TC 15 

Instrument) range of 35– 600°C on samples (5 mg) at a 

heating rate of 10 °C min−1. The water contact angles of 

different fiber samples were measured by a contact angle 

analyzer (OneAttention v. 2.3, Boilin Scientific, n=5). Heat 

and mass transfer mechanisms were studied by weighing the 

fiber samples (n=5) before and after immersion in distilled 

water. Excess water was removed from the samples by 

gently blotting with filter paper prior to each weighing. 

3-  Results and Discussions 

The solubility profile of ASC and the graft 

polymerization process were presented by four controlled 

parameters including; temperature, rotation speed, and 

time (Figure 1, supplementary information). Table1 gives 

a summary of the amount of raw material used in the 

current study. In all experiments, 11g ASC was used and 

various MMA-co-EA feed ratios were examined. The 

incorporation of the growing branches onto ASC chains 

correlates well with the feed ratios of MMA-co-EA in the 

reaction. More specifically, the grafting performance and 

the yield of grafted collagen confirm the direct 

interaction of the feed ratio of co-monomers added to 

ASC chains. This can be due to the steric effect and 

polarity effect of the combination of ASC and co-

monomers in the aqueous medium.  

According to Table 1, a decrease in the grafting 

performance is evident at the highest feed ratio of S5P2 

where the dominated co-monomers are more likely to be 

initiated and to be (co)polymerized solely in the reaction. 

Furthermore, S2P2, S3P5 and S4P2 represent a decreased 

molecular weight of branch copolymers, higher grafting 

efficiencies, and lower Nitrogen contents in contrast with 

other samples. This may be due to increased number of 

grafting points on the ASC backbone.  

As shown in Table 2, the conductivity of the dissolved 

copolymers having dielectric properties was studied to 

compare the effect of P(MMA-co-EA) content on the 

charge dynamics of chains. The cationic characteristic of 

ASC is responsible for the higher electric conductivity 

compared to the P(MMA-co-EA) with low dielectric 

constant when they are bonded covalently on the surface 

of collagen chains [39]. ASC-g-P(MMA-co-EA) showed 

a reducing electron mobile phase with increasing the 

branch densities on ASC. The replacement of Hydrogen 

compounds on ASC to MMA-co-EA can lead to 

dropping conductivity of the solutions. Hence, the 

conductivity value of S1P2 and S5P2 can be due to 

having the lowest number of side branches on the 

backbone of ASC (Table 2).  

Table 2 Properties of the electrospinning solutions 
Sample Concentration 

(% wt./v) 
Viscosity 

(cP) 
Conductivity 

(ms.cm
-1
) 

Surface 
tension 
(mN.m

2
) 

S1P2 10.17 120±10 3.23 31 
S2P2 6.07 120±10 1.02 30.5 

S3P2 6.97 120±10 1.01 33 
S4P2 4.14 120±10 1.02 31.5 

S5P2 5.48 120±10 2.91 33 

With the knowledge that the surface tension of polymeric 

solutions tends to increase with the growth of Mn, the 

interfacial phenomena of the prepared solutions were 

evaluated by applying the Nouy ring method. Although 

the corresponding values in Table 2 show a slight 

increase to some extent in some samples, all surface 

tension values are in the range of 31.8±1.02. This is 

possibly due to the wide molecular weight distribution 

occurred in ASC extraction as well as the side branching 

growth on the main backbone of ASC. 

Generally, the fact that chain entanglements making 

concentration, and consequently viscosity are essential 

for fiber formation, has been well established [32, 40] 

and it has also been repeatedly reported that the diameter 

of electrospun fibers can be increased by increasing 

solution viscosity [31, 41-43].  By contrast to the 

widely-studied electrospinning of homopolymers, the 

electrospinning of branched copolymers has an 

additional less known aspect; namely the chain 

entanglement density as one of the many parameters 

affecting the fiber formation and surface morphology. 

While in electrospinning, the importance of chain 

entanglements has been widely accepted, there is no 

clear understanding on the required entanglements to 

stabilize the fiber formation of non-linear polymers. 

This issue becomes more crucial when one segment of 
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copolymers; in this case ASC, is more likely to be non-

stable during electrospinning [9, 28-31, 44]. 

Hence, the chain entanglement concentration (Ce) was 

assumed to be dependent on the density of branching on 

ASC along with solvent power in which FA was used as 

a suitable solvent for both segments of branches and main 

chain in all studied samples. We applied a range of 

comonomer feed ratios to study the effect of increased 

side branches on the collagen chain against repulsive 

forces during electrospinning which caused by factors 

such as solvent power and high intensity of electric field. 

Also, the effect of branching on chain entanglement 

density of samples was considered through fiber 

formation of various sample solution concentrations 

representing approximately a same viscosity while all 

other factors were constant. 

As shown in Figure 1, the surface morphology of all 

electrospun samples looks similar at first glance, without 

bead deficiencies, suggesting the polymer concentrations 

shown in Table 2 are above 2Ce, where Ce is a function of 

chain density and intermolecular interactions [45]. 

Based on the above-given arguments, it is important to 

consider the concentration dependence of the diluted 

solutions of 1 w/v % ASC-g-P(MMA-co-EA) in FA. The 

changed density of branching displayed significantly 

different viscosities (η).
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Figure 1 a) SEM micrographs and associated fiber diameter scattering of grafted polymer S1P2 …S5P2 and a representative capture of a cross-
sectional SEM image of S3P2 formed with feed-rate (1 ml min

-1
), needle diameter (gauge 22), temperature (25±2

o
C) and humidity (RH: 35-40%), 

TCD (15 cm), and voltage (10 kV), b) The effect of P(MMA-CO-EA) content on mean fiber diameter and uniformity (standard deviations) of the 
fibers.

Fig. 2 shows that over the shear rate range investigated, 

the grafted copolymer displayed Newtonian behavior. 

With the knowledge of having a higher absolute Mw, the 

highly-branched copolymers can display a higher 

viscosity compared to lower degrees of branching 

obtained in S1P2 with the possessing of lowest 

comonomer feed ratio. 

  

 
Figure 2 Shear rate dependence of viscosity for different co-monomer 
feed ratio. All copolymers showed Newtonian behaviour over the 
range of shear rates studied. 

Fig. 1 exhibits the SEM micrographs and the associated 

fiber diameter scattering of grafted copolymer S1P2 to 

S5P2 and also a typical example of the cross-sectional 

SEM micrograph of S3P5 (S3-a) in which the phase 

separation behavior of the electrospun copolymer is 

observed through the porous fibers.  

Fiber diameter scattering of each sample was also 

demonstrated in the associated Pareto graph in which the 

individual scattering values of each specific fiber 

diameter range is denoted in downward order by bars, 

and the cumulative total is indicated by the line (Fig. 1a). 

The highest frequency distribution of S1P2 was in the 

range of (332-1041 nm) while S2P2 to S5P2 possess their 

frequency distribution to a greater extent of fiber 

diameter in the following order: (S2P2, 517-820 nm), 

(S3P2, 530-959 nm), (S4P2, 1137-1408 nm), and (S5P2, 

1739- 2141 nm). 

Figure 1b shows the correlation between the mean fiber 

diameters and P(MMA-co-EA) content of each sample 

incorporated into the precursor fibrous material. It must 

be noted that the bars on the plot are the standard 

deviations of fiber diameters. The standard deviations 

represent the uniformity of the electrospun fibers. Hence, 

S4P2 has the highest fiber uniformity whereas S3P2 

represents the lowest average fiber diameter (1101 nm).  

There is a clear correlation between the fiber diameters 

and the molecular weight of P(MMA-co-EA) contents in 

side chains influenced by monomer feed ratio, as 

discussed earlier, in which less average fiber diameter 

can be formed from collagen graft copolymers possessing 

the high density of short chains. These results are in good 

agreement with the viscosity graph, Figure 2 with a 

dramatic increase in the solution viscosity and the 

performance of highly branched polymers in fibrous 

assemblies which tells us the same story; that viscosity 

plays a leading role in fabrication of the fibers enabling 

chain entanglement during stretching of the solution jet 

towards the collector. 

To verify our hypothesis, that the increased side chains 

can reduce the deteriorative effect of repulsive forces on 

collagen chains during the process, all electrospun 

samples were characterized by considering the FTIR and 

NMR spectra, XRD patterns, TGA and DSC plots. This 

is to get an insight into the electrospun ASC-g-P(MMA-

co-EA) fibers which passed through the challenging 

process of electrospinning. And eventually, the 

functionality of the electrospun fibers was evaluated by 

additional measurements to determine their surface 

wettability and water absorption capacity.  

The main characteristic features of the fiber samples were 

observed in the FTIR spectra, Figure 3. ASC has several 

characteristic absorption bands known as amide A (3425 

cm
-1

), amide B (2857-2953 cm
-1

), amide I (1614-1711    

cm
-1

), amide II 1459 cm
-1

 in the infrared region of the 

spectrum [46, 47]. Characteristic bands of P(MMA-co-

EA) were carbonyl (C=O) stretching vibration at 1730   

cm
-1

, CH (CH, CH2 and CH3) stretching vibrations at 

(2950-3050 cm
-1

) (asymmetric) and (CH2) 2865 cm
-1

 

(symmetric), C-O stretching at 1060 cm
-1

, and C-O-C 

stretching at 1260     cm
-1

 (asymmetric).   

The amide I adsorption originated largely from the C=O 

stretching vibration and is specifically sensitive to the 

secondary structure of the polypeptides[48]. Hence, shift 

towards a higher wavenumber may represent hydrogen 

bonding formed between chains in S1P2 to S5P2.  

The amide B and the amide II regions are affected by 

P(MMA-co-EA) absorptions. However, the amide A and 

amide I bands were used as reference peaks to confirm 

the presence of Collagen in the fibers of the graft 

copolymers in this analysis. Furthermore, two new 
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absorbance peaks can be observed in all samples; 

asymmetric vibration peak at 978 cm
-1

 referring to α to 

nitrogen linkage (N-C) and asymmetric stretching at 1158 

cm
-1

 corresponding to (CO-O-C) that can be the 

branching points on the main backbone of ASC.  In S3P2 

and S4P2, a significant peak was observed at 1060 cm
-1

 

associated with C-O-C stretching vibration and the 

highest intensity of C=O is observed in S4P2. 

 

Figure 3 FTIR absorbance vs. frequency for Acid soluble 
collagen (ASC) and electrospun fiber samples with varied 
branching density of        ASC-g-P(MMA-co-EA). 

To further investigate into fiber compositions, TGA 

curves of the fiber samples of collagen graft copolymers 

was compared to the original ASC, as shown in Figure 4. 

TGA curves indicated that the dehydration (moisture 

loss) occurred in  50 to 200 
o
C [49] in all samples in the 

following order of mass loss: ( ASC, %13.34), (S5P2, 

%10.23), (S1P2, S2P2 and S4P2, about %7.62),  and 

(S3P5, %6.11). 

  

 
Figure 4 TGA analysis of the ASC and electrospun fibers from collagen 
graft copolymers of different comonomer feed ratio, S1P2…S5P2, 
heating rate of 10 

o
C. 

 

The highest thermal stability was observed in the fiber 

sample of S3P5 at 380 
o
C while the other samples lost the 

same mass (about %24) at 307, 324, 346 and 360 
o
C for 

ASC, S5P2, S1P2 and (S1P2 and S4P2), respectively. 

The mass residuals at 550 
o
C were also significantly 

different; %5.75, %7.35, %9.32 and about 17% for ASC, 

(S3P2 and S2P2), S1P2 and (S5P2 and S4P2), 

respectively.  This variation may be due to the 

carbonization of P(MMA-co-EA) that occurs in 

temperatures above 450 
o
C while the decomposition of 

ASC segment can be accomplished in temperatures 

below 450 
o
C [49, 50]. This reason can suggest that the 

analysis of TGA was accompanied by the carbonization 

of long side chains of methylene. Hence, the higher mass 

residual can confirm the presence of long grafted chains 

onto ASC backbone with the following order (high to 

low): S5P2, S4P2, S1P2, S2P2, S3P2, and ASC. 

Furthermore, to analyze the chemistry of end-group 

variations before and after electrospinning, we 

characterized 
1
H NMR spectra of the fiber samples and 

bulk collagen graft copolymers. This analysis was 

performed to study the end group signal changes that may 

be caused by processing factors. We assumed the 

changed signals in 
1
H NMR spectra can represent 

chemical structure alterations caused by the denaturation 

of ASC during the process.  Therefore, the less change in 

end group signals after the process in comparison with 

what recorded for the unprocessed copolymer can 

characterize more stability and processability of collagen 

graft copolymer as a key factor in the processing of 

biopolymers. 

In 
1
H NMR spectra, all samples of the bulk copolymers 

represent approximately the same main resonances in 
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varied intensities that can be attributed to protons of 

methyl (0.9-1 ppm), methylene (1.3-1.5 ppm), amine (-

NH2, 1.35 ppm), R-N-C-R and R-CO-C-R (2-3 ppm, 

branching points), RO-CH3 (3.64 PPM, side chains), and 

amide (R-CO-NHR, 7.5-8.5 PPM) as shown in Figure 

5A. 

The changes in signals of end groups of fiber samples are 

simply visible in Figure 5B in where S1P2 and S5P2 

have received more structure alterations that were 

affected by the electrospinning parameters. More 

specifically, more changes occurred in the region of 1.35-

5 ppm shifting to a higher electronegativity (deshielding). 

Furthermore, a significant increase in the integral value 

of amide signals from 7-9 ppm occurred, more 

specifically in S1P2, S2P2 and S5P2 after electrospinning 

that can be due to the amidation that caused by the 

electrospinning conditions, even though no clear sign of 

water existence was observed as a result of this reaction 

during the process. However, S3P2 and S4P2 underwent 

an insignificant structural change whereas S3P2 owning 

the highly short branch densities is the least affected 

collagen graft copolymer by electrospinning.  

To better understand the branched structure of ASC, the 

graft copolymers and poly(MMA-co-EA), XRD spectra 

were considered, as shown in Figure 6. The broad peak of 

ASC at around 2θ = 21.5
o
 is attributed to the overlapped 

diffraction from the collagen's crystal planes of (020) and 

(110), while the more intensive peak at 2θ = 14.02° and 

also a weak peak at 29.68
o
 are observed in the 

Poly(MMA-co-EA)'s crystal planes of (110) and (200). 

In the XRD spectra of graft copolymers, it can be 

observed that diffraction intensity of the peak at around 

21.5° was obviously shifted to a lower angle, indicating 

that the crystallinity of the ASC decreased after grafting 

modification. Furthermore, P(MMA-co-EA) in S4P2 and 

S5P2 represent long enough chains that form a distinctive 

overlapped broad crystalline region at around 2θ = 13°. 

The thermal behavior of the fiber samples from the graft 

copolymers was also investigated. As shown in Figure 7, 

the DSC curve of ASC demonstrates an endothermic 

peak at 85°C, 160°C and 220°C related to melting 

temperature (Tm) and denaturation process (Td), 

respectively. In fiber samples, Tm dropped to a 

temperature between 59 to 80°C. This reduction in 

melting region can be affected by several parameters e.g. 

undergoing the slight denaturing of the backbone in the 

polymerization and subsequent electrospinning processes 

in which the average molecular weight may be lowered. 

Also, as the thermal behavior is size dependent, this 

reduction can be explained by the size of the fiber 

samples in contrast with ASC, in the shape of the bulk 

polymer. The enthalpy of denaturation (ΔHd), on the 

other hand, is not clearly observed in the fiber samples.  

This can be due to hidden peaks by transferring the 

samples into Tg of PMMA in the branches. These results 

indicate that ASC is thermally altered by the presence of 

side branched P(MMA-co-EA) in the feed ratios 

mentioned in Table 1, as verified by the shifting of the 

melting peak towards lower temperatures, with no 
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Figure 6 X-ray Diffraction (XRD) spectra of the electrospun fibers of 
collagen graft copolymers, ASC, and Poly (MMA-co-EA). 
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considerable changes on the enthalpy of denaturation, 

compared to non-processed ASC. 

Overall, if we compare our results with those of Yang et 

al [28] in which they reported the melting point of 45 
o
C 

for pure collagen electrospun fibers, it can be realized 

that irrespective of the benefits of a tailored branching 

density,  ASC modification by graft polymerization can 

improve the thermal stability of the electrospun fibers 

possessing  a higher  Tm of 59 to 71 
o
C. 

To better understand the functionality of the electrospun 

fibers in high humidity conditions and non-stable 

temperatures, water absorption of samples was studied as 

a function of time and temperature by considering the 

water contact angle (Water CAs), water uptake and the 

correlation between heat and mass transfer. Figure 8a 

shows the water contact angles of nonwoven fibrous mats 

of S1P2 to S5P2.     

  

 
Figure 7 DSC thermograms of ASC and the electrospun fibers from 

collagen graft copolymers of different comonomer feed ratio, 
S1P2...S5P2; Aluminum Pans, heating rate of 10 °C. 
 

The water CA analysis indicates the high surface 

wettability of all samples. The water CAs decreased in 

the fiber samples from 80.33o to 56.21o in the first 10 

seconds. The higher value of S1P2 is due to more 

hydrophilic end groups that can instantly make hydrogen 

bonding with the water droplet, by contrast to other fiber 

samples with higher branching densities that seem to 

penetrate into fiber samples as shown in decrease values 

of water CAs. After 10 minutes; as shown in Figure 8b, 

the water CA of S1P2 is still possessing a higher value of 

water CAs. This result is in a good agreement with the 

water absorption measured after 12 hours, Figure 8c; 

where the initial weight of bulk polymer S1P2 achieved a 

43.64% growth in mass and fiber sample of S1P2 could 

gain only a weight increase of 24.03%. And also, a 

nonequivalent mass transfer was observed in fiber mass 

loss where the fiber samples were left to be dried at room 

temperature. This substantial deviation was not observed 

in other samples. Hence, it can be suggested that the 

increase in branching density can significantly reduce the 

destructive impact of electrospinning conditions on the 

ASC chains when it comes to the mass loss of the 

electrospun fibers in high humidity situations.  

As shown in Figure 8d, the water absorption capacity of 

fiber samples was studied as a function of temperature 

where the fiber samples were soaked in water and were 

heated up to 100 
o
C for 9 h and then cooled down to 

room temperature (20 
o
C) for 11 hours. This 

measurement was accomplished to consider the impact of 

increased chain mobility on the absorption capacity of 

fibers as a consequence of increasing temperature on 

amphiphilic behavior of the samples having the flexible 

chains. It was observed that heating can accelerate the 

absorption behavior of the fiber samples in contrast with 

what is achieved at lower temperatures below the melting 

region, as specified in DSC, Figure 7. 

 It can be clearly observed that fiber samples of S1P2, 

S2P2, and S5P2 have shown a significant weight loss by 

increasing temperature above their melting point and 

have followed the same behavior in their cooling phase 

afterward. By contrast, the rest of the samples 

demonstrated a higher absorption behavior. Even though 

all samples lost their fibrous morphology after this test, 

S4P2 has shown a continuing absorption in the cooling 

stage. These observations are in agreement with 

increased chain flexibility as a result of increased 

temperature in the orientated chains up to melting region 

of each fiber sample. By contrast, above the melting 

region, when the side chains reach to their Tg. This heat 

transfer to the side chains can significantly preserve the 

main backbone chain that undergoes the degradation, 
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Figure 5 
1
H NMR Spectra of the bulk collagen graft copolymers (A) 

and the electrospun fibers of collagen graft copolymers (B). 
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otherwise. This can be clearly observed in the absorption 

capacity of S3P2, S4P3 after the cooling stage in which 

their weight loss is not significant.  

CONCLUSIONS 

In this study, Acid soluble collagen (ASC) was 

modified by a free radical copolymerization method 

using MMA-co-EA as applied comonomers. The 

density of branching was investigated by increasing 

monomer feed ratios in relation to grafting parameters, 

molecular weight of side branches, viscosity, surface 

tension and conductivity of the grafted copolymers. 

While some discussion was devoted to the synthesis, 

rheological and solid-state properties of the branched 

structure of collagen graft copolymers, this paper 

focused onto the influence of branching on fiber 

formation through electrospinning as a challenging 

processing method in relation to the delicate structure 

of acid soluble collagen. To avoid Rayleigh instability, 

the solution concentration was considered as a variable 

factor and the other parameters were kept 

approximately constant to consider the influence of 

branching on fiber characterizations. The surface 

characterizations were then performed on the processed 

collagen graft copolymers and compared with 

unprocessed collagen chains to study the effect of 

branching on physiochemical properties. The increased 

grafting performance is not the sole factor determining 

the processability of the grafted collagen copolymer. 

From surface characterizations, thermal stability and 

NMR analysis; the short chain branching of P(MMA-

co-EA) can not only effectively influence the fiber 

morphology and the thermal stability of collagen graft 

copolymer, but also significantly reduce the 

degradation rate of the collagen chains during 

processing. By contrast, the long chain branching of 

ASC-g-P(MMA-co-EA) can provide a higher 

entanglement density, leading to the more uniformity of 

fibers. Hence, it can be concluded that a tailored side 

branching as a pretreatment can add unique properties 

and allow fiber formation from collagen chains that 

would otherwise be degraded during processing. This 

has a significant impact on new end-uses of collagen in 

a stable fibrous structure with enhanced properties. 
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Highlights 
 
- Grafting polymerization can be applied to modify 

the surface of acid soluble collagen before 
electrospinning.  

- The side branches of the main backbone of collagen 
can significantly influence the initial viscosity of 
solutions to be electrospun. 

- Increasing the number of branching onto ASC 
chains can significantly decrease the deteriorative 
impact of the electrospinning conditions.  

- The grown branches onto the collagen chains can 
increase the stability of collagen-based fibers under 
high humidity conditions.  

- The short chain branches onto collagen can 
influence the thermal stability of electrospun 
collagen fibers while the long chain branches can 
enhance the fiber uniformity due to the higher 
entanglement density. 
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