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Abstract—We propose to perform Bayesian uncertainty quan-

tification via convex optimization tools (BUQO), in the context of

high dimensional inverse problems. We quantify the uncertainty

associated with particular structures appearing in the maximum

a posteriori estimate, obtained from a log-concave Bayesian

model. A hypothesis test is defined, where the null hypothesis

represents the non-existence of the structure of interest in the

true image. To determine if this null hypothesis is rejected, we

use the data and prior knowledge. Computing such test in the

context of imaging problem is often intractable due to the high

dimensionality involved. In this work, we propose to leverage

probability concentration phenomena and the underlying convex

geometry to formulate the Bayesian hypothesis test as a convex

minimization problem. This problem is subsequently solved using

a proximal primal-dual algorithm. The proposed method is

applied to astronomical radio-interferometric imaging.

Index Terms—Bayesian uncertainty quantification, hypothesis

testing, astronomical imaging, inverse problem, proximal primal-

dual algorithm

I. INTRODUCTION

Many imaging problems can be formulated as an inverse
problem. Here we focus on linear imaging inverse problems,
where the objective is to estimate an unknown image x 2 RN

from a degraded observation y 2 CM , related to x̄ by a model

y = �x+w, (1)

where � 2 CM⇥N is the measurement matrix and w 2 CM is
a realization of an additive random noise. A common Bayesian
method to solve (1) consists in modelling x as a random vector
with a prior distribution p(x) that is log-concave, followed by
maximum a posteriori (MAP) estimation given by

x† 2 Argmin
x2RN

f(x,y) + g(x) (2)

where f(x,y) = � log p(y|x) associated with (1), g(x) =
� log p(x), and where we note that f, g 2 �0(RN )1. Prob-
lem (2) can generally be efficiently solved by using modern
convex optimization techniques [1]–[10]. Using a MAP ap-
proach has the advantage of summarising x|y as a single point
estimate that can be easily displayed and visually analysed.
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1�0(RN ) denotes the set of convex, proper, lower semi-continuous func-
tions from RN to ]�1,+1].

However, in many applications it is necessary to go beyond
point estimation and also analyze the uncertainty in the solu-
tions delivered. This is the case for example in applications
related to quantitative imaging, scientific inquiry, and image-
driven decision-making, particularly in fields such as medicine
or astronomy. Also note that uncertainty quantification analy-
ses are particularly important in problems that are ill-posed or
ill-conditioned because of their high intrinsic uncertainty [11].

The Bayesian framework provides a rich theory to analyse
the uncertainty in the value of x̄. A first step in this analysis
is to identify the regions of space where x|y takes values
with high probability [11], and to devise strategies to visually
explore this uncertainty [12]. Following on from this, the next
step is to enable quantitative uncertainty analyses, namely
Bayesian hypothesis tests, to properly assess the degree of
confidence in specific image structures. Unfortunately, it is
difficult to perform these analyses in large-scale imaging prob-
lems because of the cost involved in calculating probabilities
w.r.t. p(x|y) when N is large (see [13], [14] for more details
about state-of-the-art Bayesian computation methods). Conse-
quently, most imaging methods do not quantify uncertainty.

Following the recent work [11], here we propose to ad-
dress this difficulty by leveraging probability concentration
phenomena and the model’s underlying convex geometry to
formulate Bayesian hypothesis tests as convex problems, that
we then efficiently solve by using a scalable proximal primal-
dual algorithm [5], [6], [9]. The method described in this paper
is mainly based on our recent work [15], where a simpler
projection onto convex sets (POCS) algorithm was used.

Quantifying the uncertainty associated with a particular
structure is of great interest for astronomers, in the context of
astronomical imaging. Related methods are important to pro-
vide the foundational statistical information on the estimated
image, which would help to validate particular emissions ap-
pearing in the reconstructed sky image (e.g. compact sources).
In particular, radio-interferometric imaging aims to observe
an area of the sky at high angular resolution through an
array of antennas. Next generation telescope, namely Square
Kilometre Array (SKA), will provide giga-pixel images, with
unprecedented dynamic range [16]–[18]. These big datasets
necessitate scalable uncertainty quantification methods. In this
work, we provide illustrative examples to show the potential of



the proposed approach in this context. In particular, we focus
on small compact structures which can correspond in practice
to, e.g. point sources, or slightly extended sources.

The remainder of the paper is organized as follows. In Sec-
tion II we introduce the class of Bayesian models considered.
Then Section III presents proposed uncertainty quantification
method. Numerical results are reported in Section IV. Finally,
we conclude in Section V.

II. PROBLEM DESCRIPTION

In this work, we consider that w, in the inverse problem (1),
is a realization of a zero-mean random noise with a bounded
energy, i.e. kwk2 6 " with " > 0 and k.k2 denoting the usual
Euclidean norm. Consequently, we choose the associated log-
likelihood term appearing in (2) to be the indicator function2

of the `2 ball, centred in y with radius " > 0 (denoted by
B2(y, ")):

(8x 2 RN ) f(x,y) = ◆B2(y,")(�x). (3)

Moreover, for the log-prior we use the function

(8x 2 RN ) g(x) = ◆[0,+1[N (x) + �k †xk1, (4)

where  2 RN⇥N is an orthonormal sparsity basis (e.g.
wavelet transform [19]), and � > 0 is a regularization
parameter. This prior enforces positivity of pixel values and
promotes sparsity in the representation induced by  . The
resulting MAP estimate x†, given by Problem (2) with (3)-
(4), can be efficiently computed by using primal-dual proximal
methods [5], [6], [9].

III. PROPOSED APPROACH

A. Hypothesis test
The proposed uncertainty quantification method takes the

form of a Bayesian hypothesis test on the degree of support
for specific image structures appearing in the MAP estimate
x† (e.g., lesions in medical imaging, or celestial sources in
astronomical imaging). To define this test we postulate the
two following hypotheses:

H0 : The structure of interest is ABSENT in the true image,
H1 : The structure of interest is PRESENT in the true image.

These hypotheses split the set of images RN onto two regions.
We denote by S the region containing all images without the
structure; the images containing the structure belong to the
complementary RN \ S . Note that P(H0|y) = P(x 2 S|y).

The null hypothesis H0 is rejected with significance ↵ if

P(H0|y) 6 ↵,

or equivalently if P(H1|y) > 1 � ↵. Here we assess this
probability by comparing the convex set S with the region
of the solutions space where most of the posterior probabil-
ity mass of x|y lies. This region is known as a posterior
credible set in the Bayesian literature [11]. By definition, C↵

2For a non-empty, closed convex subset B of RN , for every x 2 RN ,
◆B(x) is equal to 0 if x 2 B, and +1 otherwise.

is a posterior credible set with confidence level (1 � ↵), if
P(x 2 C↵|y) = 1�↵. Identifying exact credible regions is too
computationally expensive in imaging problems because of the
high dimensionality involved. To overcome this difficulty, [11]
proposes a conservative credible region eC↵, in the sense that
P(x 2 eC↵|y) > 1� ↵, that can be computed as a by-product
of MAP estimation. Precisely, for any ↵ 2]4 exp(�N/3), 1[,
eC↵ is the set given

eC↵ =
�
x 2 [0,+1[N

���x 2 B2(y, ")

and  x 2 B1(0, e⌘↵/�)
 
, (5)

where e⌘↵ = g(x†) + N
�p

16 log(3/↵)/N + 1
�
, and where

B1(0, e⌘↵/�) denotes the `1 ball, centred in 0, with radius
e⌘↵/�. Observe that eC↵ is convex. This property will play a
central role in the proposed methodology.

Intuitively, if S \ eC↵ = ? then S ⇢ RN \ eC↵. And because
P(x 2 eC↵|y) > 1� ↵, if S \ eC↵ = ?, then P(x 2 S|y) 6 ↵.
Consequently, the Bayesian hypothesis test described above
can be reformulated as follows:

Theorem 3.1 (Thm. 3.2 in [15]): For every ↵ 2
]4 exp(�N/3), 1[, if S \ eC↵ = ?, then P(H0|y) 6 ↵.
This theorem ensures that, if there is no intersection between
the sets S and eC↵, then H0 is rejected at level ↵. Conversely,
if S \ eC↵ 6= ? we then fail to reject H0 at level ↵.

B. Minimization problem
In this work, we focus on compact (i.e., spatially local-

ized) image structures. To define mathematically this type
of structures, we need to introduce the selection matrix
M 2 {0, 1}NM⇥N , such that, for an image x 2 RN , Mx
corresponds to the region where the structure of interest is
localized. Then, the set S is defined as follows. Firstly, we
impose S to be a subset of the intensity images of RN ,
using a positivity constraint. In addition, to smooth the area
of the structure, we use a linear inpainting technique to fill
the pixels in Mx with the information contained in the other
pixels M cx of the image x, where M c 2 {0, 1}(N�NM )⇥N .
Formally, we use the constraint

Mx = LM cx+ ⌧ , with ⌧ 2 [�⌧,+⌧ ]NM , (6)

where L 2 RNM⇥(N�NM ) is an inpainting operator and
⌧ = 10�2kLM cx†k2/NM . This inpainting can potentially
amplify the energy in Mx, and lead to artificial structures.
To prevent this, we constrain the energy of the area of
interest Mx to be smaller than ✓ = (1 + 10�2)kLM cx†k2.
Mathematically, this constraint can be written as

Mx 2 B2(0, ✓). (7)

The resulting set S of images not containing the compact
structure of interest is given by

S =
�
x 2 [0,+1[N

�� �M �LM c
�
x 2 [�⌧,+⌧ ]NM

and Mx 2 B2(0, ✓)
 
. (8)

It is interesting to note that if dist(S, eC↵) > 0, where
dist(S, eC↵) = inf

n
kxS � xC↵k2 :

�
xS ,xeC↵

�
2 S ⇥ eC↵

o
,



then we conclude that S \ eC↵ = ?, and consequently H0 is
rejected with significance ↵. Otherwise, if dist(S, eC↵) = 0, we
deduce that S \ eC↵ 6= ?. By combining the definition of the
distance, and the definitions of the sets eC↵ and S , respectively
given in (5) and (8), the problem of determining if S\ eC↵ = ?
can be equivalently reformulated as follows:

minimize
(xS ,x eC↵

)2[0,+1[N⇥[0,+1[N

�

2
kxS � xeC↵

k22

s.t.

(
LxS 2 [�⌧,+⌧ ]NM , MxS 2 B2(0, ✓)

�xeC↵
2 B2(y, "),  xeC↵

2 B1(0, e⌘↵/�)
(9)

with � > 0 and L = M �LM c.

C. Proposed algorithm

To solve this minimization problem, we leverage the primal-
dual forward-backward algorithm [5], [6], [9], described in
Algorithm 1. At each iteration k 2 N, in addition to minimize

Algorithm 1 Primal-dual algorithm to solve (9).
Initialization: Let x(0)

eC↵
2 [0,+1[N , x(0)

S 2 [0,+1[N , v(0)
1 2

RM , v(0)
2 2 RN , u(0)

1 2 RNM and u(0)
2 2 RNM .

Let (µ1,1, µ1,2, µ2,1, µ2,2, ⇣) 2 [0,+1[5.
Iterations:

for k = 0, 1, . . .66666666666666666666666666666664

ev(k)
1 = v(k)

1 + µ1,1�x
(k)
eC↵

v(k+1)
1 = ev(k)

1 � µ1,1⇧B2(y,")

�
µ�1
1,1ev

(k)
1

�

ev(k)
2 = v(k)

2 + µ1,2 
†x(k)

eC↵

v(k+1)
2 = ev(k)

2 � µ1,2⇧B1(0,e⌘↵/�)

�
µ�1
1,2ev

(k)
2

�

x(k+1)
eC↵

= ⇧[0,+1[N

⇣
(1� �⇣)x(k)

eC↵
+ �⇣x(k)

S

�⇣�†(2v(k+1)
1 � v(k)

1 )� ⇣ (2v(k+1)
2 � v(k)

2 )
⌘

eu(k)
1 = u(k)

1 + µ2,1Lx(k)
S

u(k+1)
1 = eu(k)

1 � µ2,1⇧[�⌧,+⌧ ]NM

�
µ�1
2,1eu

(k)
1

�

eu(k)
2 = u(k)

2 + µ2,2Mx(k)
S

u(k+1)
2 = eu(k)

2 � µ2,2⇧B2(0,✓)

�
µ�1
2,2eu

(k)
2

�

x(k+1)
S = ⇧[0,+1[N

⇣
(1� �⇣)x(k)

S + �⇣x(k)
eC↵

�⇣L
†
(2u(k+1)

1 � u(k)
1 )� ⇣M†(2u(k+1)

2 � u(k)
2 )

⌘

the distance between x(k+1)
eC↵

and x(k+1)
S , projections are

performed onto the different sets defined by the constraints
appearing in problem (9). The projection of x 2 RN onto
a non-empty closed convex subset C of RN is given by
⇧C(x) = argmin

ex2C
kx� exk2 [10]. In Algorithm 1, the 5 first

equations are dedicated to the update of variable x(k)
eC↵

, while
the 5 last equations are dedicated to the update of variable
x(k)
S . The dual variables v(k)

1 and v(k)
2 are related to the primal

variable x(k)
eC↵

, while u(k)
1 and u(k)

2 are related to x(k)
S . In

particular, v(k)
1 and v(k)

2 are associated with the `2 ball and
the `1 ball constraints induced by eC↵, respectively. Similarly,

u(k)
1 and u(k)

2 are associated with the constraints (6) and (7),
respectively. According to [9], if the following condition holds:
1

⇣
�
�
µ1,1k�k2S + µ1,2k k2S + µ2,1kLk2S + µ2,2

�
> �, (10)

where k.kS denotes the spectral norm, then the sequence�
x(k)
S ,x(k)

eC↵

�
k2N converges to a solution

�
x‡
S ,x

‡
eC↵

�
to prob-

lem (9).
Note that the choice of � does not act on the solution to the

minimization problem. However, this parameter can be used
in practice to accelerate the convergence of the algorithm.

D. Uncertainty quantification parameter
By definition, the solution

�
x‡
S ,x

‡
eC↵

�
generated by Algo-

rithm 1 satisfies

kx‡
S � x‡

eC↵
k2 = dist(S, eC↵). (11)

To relate this quantity to the intensity of the structure of
interest, it is useful to introduce the image x†

S 2 S . This
image corresponds to a modified version of the MAP estimate
x†, where the structure has been removed. Formally, we define
M cx†

S = M cx† and Mx†
S = LM cx†. Then, kx†

S�x†k2 is
related to the intensity of the structure of interest, as it appears
in the MAP estimate. To put these quantities on a meaningful
scale we define the normalized parameter

⇢↵ =
kx‡

S � x‡
eC↵
k2

kx†
S � x†k2

. (12)

This parameter guarantees the structure’s minimum intensity
at level 1 � ↵, and its intensity as measured on the MAP
estimate. In addition, if ⇢↵ > 0, then the hypothesis H0 is
rejected.

Note that, in practice, we consider that Algorithm 1 has
converged when all the constraints in (9) are satisfied (up to
a tolerance), and the following stopping criteria are satisfied:

(
kx(k+1)

S � x(k)
S k2 6 10�5kx(k+1)

S k2,
kx(k+1)

eC↵
� x(k)

eC↵
k2 6 10�5kx(k+1)

eC↵
k2.

(13)

These stopping criteria does not allow to reach exactly ⇢↵ = 0.
Consequently, in our simulations we will consider that H0 is
rejected when ⇢↵ > 2%, to allow for numerical errors.

IV. APPLICATION TO RADIO-INTERFEROMETRY

In the context of radio-interferometric imaging, each mea-
surement ym 2 C, called visibility, is acquired by an antenna
pair, at a given time integration t 2 {1, . . . , T}, in the Fourier
domain of the intensity image of interest x. Visibilities are
related to an undersampled selection of the Fourier coefficients
of the intensity image degraded by antenna gains [20]. At
each time integration t, na(na � 1)/2 complex visibilities are
acquired by the na antenna pairs. In total, the measurement
vector y consists in M = Tna(na � 1)/2 visibilities. In our
simulations, we consider the antenna configuration of the Very
Large Array (VLA) telescope, constituted by na = 27 anten-
nas, with different values of T 2 {10, . . . , 500}. An example
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Fig. 1. Top: Visibility magnitudes |y| considering the VLA telescope, T = 50
integrations, and a time interval of 12 hours, with normalized continuous u-v
plane. Bottom: Original image of the W28 supernova, in log-scale.

of |y|, for T = 50 is shown in Fig. 1 (top). In this image, the
continuous Fourier space (also called u-v plane) is normalized
such that the spatial frequencies belong to [�⇡,⇡]2. We are
interested in estimating the original sky brightness distribution
for the W28 supernova image (N = 256⇥ 256), displayed in
Fig. 1 (bottom) with a log scale. The radio-interferometric
imaging problem can be formulated following model (1) [17],
[21], [22], where the observation matrix � corresponds to an
undersampling non-uniform Fourier operator [23].

The MAP estimate of x is obtained by solving problem (2).
The value of " is chosen according to the noise level. In radio
interferometry, the residual norm being distributed according
to a �

2 distribution with 2M degrees of freedom, we use " =
�(2M+2

p
4M)1/2 to impose that "2 is 2 standard deviations

above the mean of the �
2 distribution. In our simulations,

we consider the noise variance to be equal to �
2 = 0.01.

Concerning the prior, we set  to the Daubechies wavelet
transform Db8 [19], [24].

We propose to quantify the uncertainty of 3 different
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Fig. 2. MAP estimate obtained considering T = 50 integrations. The three
structures highlighted in red show, from left to right, Struct. 1, Struct. 2 and
Struct. 3.
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Fig. 3. Curves representing the values of ⇢↵ for ↵ = 1%, in percentage,
in log-scale, as a function of T 2 {10, . . . , 500}, for the three different
structures of interest. Struct. 1: red curve, Struct. 2: black curve, and Struct. 3:
blue curve

structures appearing in the MAP estimate. Fig. 2 shows the
MAP estimate obtained when considering T = 50 integrations.
The three structures of interest are highlighted in red in this
image and denoted, from left to right, Struct. 1, Struct. 2 and
Struct. 3. Struct. 1 and Struct. 3 represent point sources with
different amplitudes, while Struct. 2 is a low amplitude slightly
extended source. In our simulations, we consider ↵ = 1%.

The results obtained using the proposed uncertainty quan-
tification method are summarized in Fig. 3. It shows three
curves, representing the values of ⇢↵ in percentage (in log-
scale) as a function of the time integration T 2 {10, . . . , 500},
for the three considered structures. In particular, the red curve
is associated with Struct. 1, the black curve with Struct. 2,
and the blue curve with Struct. 3. Note that, in Figure 3, the
curves of Struct. 1 and Struct. 2 are truncated for display
purpose. Their values of ⇢↵ reach 10�9% and 10�3% at
T = 10, respectively. The three considered structures be-
longing to original image x, it is not surprising to see that
their corresponding ⇢↵ increase with T (i.e., with the number



of measurements). In other words, the structure’s minimum
energy tends to be higher when the number of measurement
increases. For Struct. 3, we have ⇢↵ > 70% for all the
considered values of T 2 {10, . . . , 500}. In this case, at least
70% of the structure’s minimum energy is guaranteed at level
1� ↵ = 99%. Therefore, H0 is always rejected for Struct. 3,
for all the considered measurement configurations. Concerning
both Struct. 1 and Struct. 2, the conclusion are more nuanced.
They will depend on the the tolerance chosen to consider that
⇢↵ ⇠ 0. In our case, we have chosen that when ⇢↵ > 2%, H0

is rejected. Then, for Struct. 1 (resp. Struct. 2), for T > 45
(resp. T > 35) we conclude that H0 is rejected, while for
T < 45 (resp. T < 35) it can be deduced that H0 cannot be
rejected. The uncertainty related to these two structures is thus
more dependent of T .

V. CONCLUSIONS

In this work, we have presented a new Bayesian uncer-
tainty quantification method, combining the recent Bayesian
inference results presented in [11] and advanced optimization
techniques. In particular, we propose to perform Bayesian
hypothesis testing on the MAP estimate, using a primal-
dual algorithm. This method is mainly based on our re-
cent work presented in [15], where a POCS approach was
adopted. We have shown through simulation results that the
proposed approach can be used for uncertainty quantification
of particular structures appearing on radio sky images. We
emphasize that quantifying the uncertainty associated with a
particular image structure is of great interest for astronomers;
for example, to validate particular emissions appearing in the
reconstructed sky image. In radio-interferometric imaging, the
next generation telescope Square Kilometre Array (SKA) will
provide giga-pixel images with unprecedented dynamic range
[16]–[18], and which will require uncertainty quantification
methods that can scale efficiently. The proposed algorithmic
structure leverages optimization tools which are known to be
scalable and adapted to solve such large scale minimization
problems [2], [3], [9], [17].
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