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Abstract 25 

Some studies have described the isolation and 16S rRNA gene sequence-based identification of 26 

hydrocarbon-degrading bacteria living associated with marine eukaryotic phytoplankton, and thus 27 

far the direct visual observation of these bacteria on micro-algal cell surfaces (‘phycosphere’) has 28 

not yet been reported. Here, we developed two new 16S rRNA-targeted oligonucleotide probes, 29 

PCY223 and ALGAR209, to respectively detect and enumerate the obligate hydrocarbonoclastic 30 

bacteria Polycyclovorans algicola and Algiphilus aromaticivorans by Catalyzed Reporter 31 

Deposition Fluorescence in situ Hybridisation (CARD-FISH). To enhance the hybridization 32 

specificity with the ALGAR209 probe, a competitor probe was developed. These probes were 33 

tested and optimized using pure cultures, and then used in enrichment experiments with 34 

laboratory cultures of micro-algae exposed to phenanthrene, and with coastal water enriched with 35 

crude oil. Microscopic analysis revealed these bacteria are found in culture with the micro-algal 36 

cells, some of which were found attached to algal cells, and whose abundance increased after 37 

phenanthrene or crude oil enrichment. These new probes are a valuable tool for identifying and 38 

studying the ecology of P. algicola and A. aromaticivorans in laboratory and field samples of 39 

micro-algae, as well as opening new fields of research that could harness their ability to enhance 40 

the bioremediation of contaminated sites. 41 

 42 

 43 

 44 

 45 

 46 

 47 
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Introduction 48 

Obligate hydrocarbonoclastic bacteria (OHCB) are specialists with respect to their ability to 49 

utilise hydrocarbons almost exclusively as a carbon and energy source. The occurrence of these 50 

fastidious hydrocarbon degraders appears to be solely confined to the marine environment since, 51 

to the best of our knowledge, they are found nowhere else on earth. They play an important role 52 

in the removal and mineralization of hydrocarbon pollutants in the oceans and seas, as is 53 

evidenced in the wealth of reports documenting their enrichment from near undetectable 54 

abundance levels (<0.1%) to constituting up to 90% of the total bacterial community at oil-55 

impacted sites (Head et al., 2006; Yakimov et al., 2007). With the exception of Planomicrobium 56 

alkanoclasticum (a Gram-positive Firmicute), most of the recognised OHCB are classified within 57 

the order Oceanospirillales of the class Gammaproteobacteria, and comprise members of the 58 

genera Alcanivorax, Oleiphilus, Oleispira, Oleibacter and Thalassolitus that specialize in the 59 

degradation of linear or branched saturated hydrocarbons, whereas two genera, Cycloclasticus 60 

and Neptunomonas, specialize in the degradation of polycyclic aromatic hydrocarbons (PAHs). 61 

The detection, identification and monitoring of these types of organisms in a highly-resolved 62 

manner and within samples collected in situ is highly advantageous to expand our knowledge on 63 

their geography and ecology. 64 

The phycosphere of marine eukaryotic phytoplankton is an underexplored biotope in the 65 

ocean where OHCB and ‘generalist’ oil-degrading bacteria have been identified. Hydrocarbon-66 

degrading bacteria, including some comprising novel taxa, have been isolated from all three 67 

major phytoplankton lineages of dinoflagellates, diatoms and coccolithophores (Green et al., 68 

2004; Green et al., 2006; Green et al., 2015; Gutierrez et al., 2012a,b; 2013; 2014). This algal-69 

bacterial association raises important questions regarding the interplay and ecology between these 70 

organisms, what contribution this has to the biodegradation of hydrocarbons in the ocean, and to 71 

their evolutionary genesis. Enhanced degradation of hydrocarbons has been demonstrated when 72 

bacteria and phytoplankton coexist (e.g., Abed and Köster, 2005; Warshawsky et al., 2007), and 73 
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more recent work has shown that the bacterial community associated with phytoplankton may be 74 

better tuned to respond to and degrade hydrocarbons when challenged with crude oil 75 

(Mishamandani et al., 2016; Thompson et al., 2017). Whether through biogenic synthesis 76 

(Andelman and Suess, 1970; Gunnison and Alexander, 1975; Zelibor et al., 1988; Marlowe et al., 77 

1984; Shaw et al., 2010; Exton et al., 2012) or adsorption of hydrocarbon molecules from the 78 

surrounding seawater (Mallet and Sarfou, 1964; Andelman and Suess 1970), phytoplankton cells 79 

can be regarded as a “hot spot” to which hydrocarbon-degrading bacteria are attracted to and, 80 

through evolution, have settled into a state of co-existence. 81 

Two species of known OHCB representing a novel genus (Polycyclovorans) and family 82 

(Algiphilus) were originally isolated from eukaryotic phytoplankton, but are poorly represented in 83 

16S rRNA gene sequence databases (Gutierrez et al., 2012a; Gutierrez et al., 2013). The type 84 

species of these two genera, Algiphilus aromaticivorans and Polycyclovorans algicola, were 85 

respectively isolated from the dinoflagellate Lingulodinium polyedrum (Gutierrez et al., 2012a) 86 

and the cosmopolitan marine diatom Skeletonema costatum (Gutierrez et al., 2013). Both 87 

organisms belong within the order Xanthomonadales and found to exhibit a narrow nutritional 88 

spectrum, preferring to utilise mono- and polycyclic aromatic hydrocarbons (PAHs) and some n-89 

alkanes and organic acids. Using quantitative PCR primers designed to target the 16S rRNA gene 90 

of P. algicola strain showed that this organism is also associated with other species of marine 91 

diatoms and also dinoflagellates (Gutierrez et al., 2013) and coccolithophores (unpublished data). 92 

These organisms were identified in these studies because they were targeted based on their ability 93 

to utilise hydrocarbons as a sole source of carbon and energy, and because they were searched for 94 

in the right place – i.e. in cultures of marine eukaryotic phytoplankton. When isolating for these 95 

types of organisms in seawater samples, in the absence of methods that could allow researchers to 96 

discern if they are free living or associated with particulate matter (e.g. transparent exopolymer, 97 

marine snow, phytoplankton, etc.), the common mistake is to assume these organisms exist in a 98 

free-living state. In order to improve our understanding on the ecology of hydrocarbon-degrading 99 
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bacteria found associated with phytoplankton and their role in the event of oil contamination in 100 

the marine environment, it is imperative to have a method that can identify and monitor the 101 

abundance of these organisms in environmental samples. 102 

CARD-FISH (Catalyzed Reporter Deposition Fluorescence in situ Hybridisation) is an 103 

effective technique allowing phylogenetic identification, enumeration, and direct spatial 104 

visualization of microorganisms in their natural environment by targeting the ribosomal RNA 105 

(rRNA) of bacterial cells of interest (Pernthaler et al., 2002; Schönhuber et al., 1999). CARD-106 

FISH is an in situ amplification method utilizing horseradish peroxidase, which enhances 107 

bacterial cell detection over standard FISH protocols that can be several orders of magnitude less 108 

sensitive. The value of this method is in its ability to allow the observer to visualize the cells 109 

being targeted by the probe(s) in natural (in situ) environmental samples. Genus-level 110 

oligonucleotide probes were previously developed to identify members of the OHCB Alcanivorax 111 

(Syutsubo et al., 2001), Cycloclasticus (Maruyama et al., 2003) and Marinobacter (Mckay et al., 112 

2016) by conventional FISH. CARD-FISH has been used to detect epiphytic bacteria on algae 113 

(Mayali et al., 2011; Simon et al., 2002; Tujula et al., 2005), although this method has not, 114 

hitherto, been used to explore the occurrence of hydrocarbon-degrading bacteria associated with 115 

eukaryotic phytoplankton. In this study, we developed and optimized new probe sets to detect A. 116 

aromaticivorans and P. algicola by CARD-FISH. We then used these probes to examine the 117 

presence and spatial association of these organisms with laboratory cultures of phytoplankton. 118 

 119 

Materials and methods 120 

Oligonucleotide probe design 121 

Oligonucleotide probes targeting Polycyclovorans algicola or Algiphilus aromaticivorans were 122 

designed against current 16S rRNA gene sequence databases. Using the Probe Design tool of Arb 123 

v104 (Pruesse et al., 2007), probe candidates were selected based on specific targeting of the 16S 124 

rRNA sequences for these two species. Probe candidates were analysed using the ProbeCheck 125 
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server (Loy et al., 2008), the Ribosomal Database Project’s Probe Match tool (Cole et al., 2009), 126 

and the ARB-Silva TestProbe tool (Ludwig et al., 2004) to evaluate their in silico specificity and 127 

coverage. From this, one probe sequence, PCY223 (5’-TCA GAC ATA GGC TCC TCC AA-3’; 128 

20-mer) was selected for Polycyclovorans algicola, and the probe sequence ALGAR209 (5’-CCT 129 

CCA GCG TGA GGT CCG-3’; 18-mer) was selected for Algiphilus aromaticivorans. A 130 

competitor probe, c1ALGAR209 (5’-CCT CCA GCG CGA GGT CCG-3’; 18-mer), was 131 

designed to improve signal intensities in hybridisations targeting Algiphilus aromaticivorans. 132 

Table 1 summarizes the probes that were developed in this study. In silico analysis of both probes 133 

using the SILVA 16S rRNA gene database revealed 13 uncultivated clone sequences with 100% 134 

sequence match to the PCY223 probe, and 219 sequences with a 1-basepair non-weighted 135 

mismatch. For the ALGAR209 probe, however, only 18 sequences with a 1-basepair non-136 

weighted mismatch were found to uncultivated clones. 137 

 138 

Oligonucleotide probe optimization 139 

In order to test and optimize the CARD-FISH probes, pure cultures of Polycyclovorans algicola 140 

and Algiphilus aromaticivorans were grown in a defined synthetic seawater medium, ONR7a 141 

(Dyksterhouse et al., 1995), that was supplemented after steam-sterilization with filter-sterile (0.2 142 

μm) trace elements and vitamins to final concentrations as previously described (Blackburn et al., 143 

1989). Cells were permeabilized by incubation in lysozyme buffer (1.355 × 106 U ml-1 lysozyme, 144 

50 mM EDTA [pH 8.0], 300 mM Tris-HCl [pH 8.0]) at 37°C for 2 h.  The slides were washed in 145 

water for 1 min, incubated in 0.01M HCl for 10 min to bleach endogenous peroxidases, and then 146 

washed again in water for 1 min and air dried. 147 
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Table 1.  16S rRNA-targeted oligonucleotide FISH probes developed in this study. 148 

 149 

Probe name Probe full name1 Sequence 5'-3' Coverage2                      Specificity2           Target organism Optimal [FA] 

PCY223 S-S-PCY223-a-A-20 TCA GAC ATA 

GGC TCC TCC AA 

Genus                                     0                     Polycyclovorans 

Polycyclovorans (22%)                                algicola (FJ176554)  

55-60% 

ALGAR209 S-S-ALGAR209-a-A-18 CCT CCA GCG 

TGA GGT CCG 

Genus                                     0                      Algiphilus 

Algiphilus (33%)                                            aromaticivorans                    

                                                                        (DQ486493) 

 35-40% 

c1ALGAR209 S-S-c1ALGAR209-a-A-18 CCT CCA GCG 

CGA GGT CCG 

                                                                        Competitor for  

                                                                        ALGAR209   

 150 

1According to Alm et al. (1996) 151 

2In silico coverage (% of target taxon) and specificity (number of matched sequences outside the target taxon for cultivated strains) were evaluated 152 

using the TestProbe tool of ARB Silva with default settings (0 mismatches) and database SSU132RefNR. 153 

 154 
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 155 

Optimal conditions for hybridization with these probes were determined by performing 156 

multiple hybridisations using increasing formamide (FA) concentrations from 0% to 70%. The 157 

competitor probe c1ALGAR209 was always used in equimolar concentration with its respective 158 

probe ALGAR209. Hybridization buffers contained 900 mM NaCl, 20mM Tris-HCl (pH 8), 10% 159 

(w/v) dextran sulfate (Sigma-Alrich), 0.01% (w/v) sodium dodecyl sulphate and 10% blocking 160 

solution. The blocking solution consisted of 10% blocking reagent (Perkin Elmer) and maleic 161 

acid buffer (1.16% [w/v] maleic acid, 150 mM NaCl, pH 7.5). The washing buffer consisted of 162 

NaCl (variable concentration to maintain hybridization stringency), 20 mM Tris-HCl (pH 8), 5 163 

mM EDTA (pH 8) and 0.01% (w/v) SDS. Excess washing buffer was removed with blotting 164 

paper. The samples were incubated for 20 min with PBS (~10 ml) and then at 46°C for 30 min 165 

with 1 part fluorescently-labelled tyramide and 499 parts amplification buffer (10% [v/v] 166 

blocking solution, 2 M NaCl, 10% [w/v] dextran sulfate, 0.0015% [v/v] H2O2, 100% [v/v] PBS 167 

[pH 7.3]).  Samples were then washed in PBS (pH 7.3) for 20 min, followed by three washes with 168 

water for 1 min and then 96% ethanol for 3 sec before air-drying. The samples were stored at -169 

20°C for subsequent microscopic analysis. 170 

Samples were covered in mountant (80% [v/v] Citifluor, 14% [v/v] Vectashield, 1 μg ml-1 171 

DAPI in 100% PBS [pH 9]) for visualisation using a Zeiss (Axio Scope.A1) epifluorescence 172 

microscope equipped with a Zeiss digital fluorescence imaging camera (AxioCam MRm).  173 

Amplified signal intensities were quantified using Zeiss Zen-Blue (2012) imaging analysis 174 

software. Six to eight fields of view (~300 – 500 bacterial cells) were counted for fluorescence 175 

intensity maximum quantification. 176 

 177 
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Polycyclovorans algicola and Algiphilus aromaticivorans enrichment setup using laboratory 178 

micro-algal cultures 179 

To directly visualize the association of Polycyclovorans algicola strain TG408 and Algiphilus 180 

aromaticivorans strain DG125 with micro-algal cells, and to assess their response when exposed 181 

to phenanthrene, a time-series enrichment incubation was setup. The marine algal strains used 182 

were non-axenic laboratory cultures of the cosmopolitan diatom S. costatum strain CCAP 183 

1077/1C and the dinoflagellate Lingulodinium polyedrum strain CCAP 1121/2. These micro-184 

algae were used because they were the source in the original isolation of Polycyclovorans 185 

algicola strain TG408 and Algiphilus aromaticivorans strain DG125, respectively (Gutierrez et 186 

al., 2012a; Gutierrez et al., 2013). Both strains were purchased from the Culture Collection of 187 

Algae and Protozoa (CCAP; Oban, Scotland) and maintained in f/2 + Si algal medium (Guillard, 188 

1975; Guillard and Ryther, 1962) in a temperature-controlled 12°C illuminated incubator. 189 

Enrichments were prepared using twelve steam-sterilised 100-ml glass Erlenmeyer flasks 190 

capped with cotton bungs, each containing 49 ml of f/2 + Si medium. Six of the flasks were 191 

supplemented with phenanthrene (200 μg per flask) using acetone as carrier, and the acetone 192 

allowed to volatilize overnight prior to adding the f/2 + Si medium. The phenanthrene was 193 

allowed to equilibrate with the f/2 + Si medium for 3 days at 16°C prior to inoculation. Three of 194 

these flasks were inoculated with 1 ml of an S. costatum culture grown to the exponential phase, 195 

whereas the other three flasks were inoculated in the same way with L. polyedrum. The other six 196 

flasks containing f/2 + Si medium, but no phenanthrene, were inoculated in the same way – three 197 

with S. costatum and three with L. polyedrum. All twelve flasks were incubated in a temperature-198 

controlled illuminated incubator with gentle shaking, at 16°C, with a 12:12 light/dark cycle and at 199 

a photon flux density of 150 μmol s-1 m-2). At days 0, 3, 5 and 8, sub-samples (0.5 ml) were taken 200 

from each flask and fixation performed by mixing with 3% (v/v) paraformaldehyde for 3 hours at 201 

4°C on Isopore polycarbonate filters (0.22 μm). Filters were washed three times with sterile ice-202 

cold 1× PBS, air-dried and stored at 4°C for subsequent analysis within 48 hours. 203 
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 204 

CARD-FISH analysis of Polyclovorans algicola and Algiphilus aromaticivorans enrichments 205 

with micro-algae 206 

Sub-samples fixed onto polycarbonate filters from the time-series incubations enriched with or 207 

without phenanthrene were dipped into 0.2% (w/v) agarose, then mounted onto glass slides and 208 

air dried following standard methods (Pernthaler et al., 2002). CARD-FISH was performed 209 

directly on the agarose-embedded samples using the optimized protocol developed for the 210 

PCY223 or ALGAR209 probes at a FA concentration of, respectively, 55% or 40%, with the 211 

exception that 50–100 μl of hybridization buffer were used. All hybridisations were 212 

counterstained with DAPI following standard methods (Porter and Feig, 1980) prior to 213 

visualization under the epifluorescence microscope and analysed using Zeiss Zen-Blue image 214 

processing software, as described above. 215 

 216 

Field sample collection and CARD-FISH analysis of Polyclovorans algicola and Algiphilus 217 

aromaticivorans in natural communities of phytoplankton 218 

During a sampling operation aboard RV Serpula on 24 May 2013 to a sampling station in the 219 

lower basin of Loch Creran (56º30.820N, 5º22.817W) located on the west coast of Scotland, a 220 

phytoplankton net (50-60 μm mesh size) was trawled near the sea surface (1–2 m depth) for 221 

several minutes to collect the phytoplankton community. The phytoplankton net sample was 222 

passaged through a 125-μm metal mesh filter to remove grazers, washed by gentle centrifugation 223 

with sterile synthetic seawater, and then stored at 4°C and used within 24 hours for the 224 

preparation of a crude oil enrichment experiment, as previously described (Thompson et al., 225 

2017). Briefly, 500 ml of the washed phytoplankton sample, with its associated bacterial 226 

community, was added to 10 litres of filtered (0.2 μm) seawater. This was used to set up a crude 227 

oil enrichment by adding 350 ml of the phytoplankton suspension into 1-litre Erlenmeyer flasks 228 

(performed in triplicate) and then amended with filter-sterilised (0.2 μm) Heidrun crude oil (ca. 229 
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1% v/v final concentration). A control treatment was set up in the exact same way, with the 230 

exception that the oil was not added. The flasks were incubated in a temperature-controlled 15°C 231 

illuminated incubator with a 12:12 light/dark cycle (photon flux density ~100 μmol s-1 m-2). 232 

Samples for CARD-FISH analysis with probes PCY223 and ALGAR209 were taken at days 2 233 

and 5. The dynamics of the phytoplankton and bacterial community in these treatments, and 234 

results for hydrocarbon analysis, are reported elsewhere (Thompson et al., 2017). 235 

 236 

Probes, chemicals and reagents 237 

Probes ALGAR209 and PCY223 for CARD-FISH labelled with HRP at the 5' end were 238 

purchased from Biomers and Thermo Fisher Biopolymers, respectively. The competitor probe 239 

(c1ALGAR209) without HRP labelling, was purchased from Integrated DNA Technologies. 240 

Cy3-labelled tyramides were purchased from Perkin Elmer. The phenanthrene (>99.5% purity) 241 

was purchased from Sigma-Aldrich. All other chemicals were of molecular biology or HPLC 242 

grade. 243 

 244 

Results and discussion 245 

P. algicola and A. aromaticivorans phylogeny and probe design 246 

At the time of analysis, the PCY223 probe sequence was found to be 100% complementary to 43 247 

Gammaproteobacteria and to one unclassified Proteobacteria. These 43 Gammaproteobacteria 248 

are affiliated to the family Sinobacteriaceae and comprise uncultivated clones, with the exception 249 

of 1 unclassified isolate designated strain DG1192 (EU052753) and the target organism P. 250 

algicola TG408. A previously reported (Gutierrez et al., 2013), 16S rRNA gene sequence 251 

analysis showed strain TG408 is affiliated with the family Sinobacteraceae, and further 252 

supported by the strain’s DNA G+C content of 64.3 mol%, which is similar to that of most 253 

members of the Sinobacteraceae family (60–65 mol%). 254 
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Analysis of the ALGAR209 probe sequence showed it was 100% complementary to 255 

solely the target organism, A. aromaticivorans DG1253; it showed no match to any other 256 

cultivated strains or uncultivated clones or sequences. The phylogenetic position of this organism 257 

lies closest to the family Sinobacteraceae, but is poorly supported (low bootstrap value of <50%) 258 

and indicates the strain is only moderately affiliated with this family (confidence threshold of 259 

<89%) (Gutierrez et al., 2012a). Hence, the phylogenetic position of the strain in the order 260 

Xanthomonadales is unique, distinct, and probe ALGAR209 was successfully designed to target 261 

solely this organism. 262 

 263 

PCY223 and ALGAR209 probe optimization 264 

The hybridization conditions for probes PCY223 and ALGAR209 were optimised by 265 

hybridisations with the target strain (Figure 1A and 1B). As expected, the fluorescence intensity 266 

for the two target strains was greater than that employing the nonsense probe over a wide range 267 

of formamide concentrations. In the case of probe PCY223, fluorescence signal intensities 268 

dramatically decreased at formamide concentrations higher than 60%. The formamide series 269 

experiments indicated that concentrations of 40-60% would be suitable for use with this probe. 270 

Whilst a 60% formamide concentration appears as the ideal stringency for probe PCY223, this 271 

concentration, however, is at the maximal point where specificity of the probe dramatically 272 

decreases with higher formamide concentrations. Therefore, 55% was selected as the empirically 273 

optimized formamide concentration for this probe. 274 

For the formamide series experiments with probe ALGAR209, highest fluorescence 275 

signal intensities occurred with formamide concentrations between 20-40%. Decay of the 276 

fluorescence signal occurred rapidly with formamide concentrations <20% and >40%. An 277 

optimised formamide concentration of 40% was, hence, selected that would be at the high end of 278 

stringency and still produce relatively strong fluorescence signals. Use of these optimised 279 

formamide concentrations for probe PCY223 (55% FA) and for ALGAR209 (40% FA) were 280 
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tested in subsequent hybridization experiments using pure cultures for each of their target strains 281 

– respectively, P. algicola TG408 (Fig. 1C) and A. aromaticivorans DG1253 (Fig. 1D) – and as 282 

expected showed strong cell signal intensities for both probes. 283 

 284 

 285 

Figure 1. Dissociation profiles of 16S rRNA-targeted probes PCY223 and ALGAR209 for 286 

CARD-FISH evaluated against the perfectly-matching (target) strains P. algicola and A. 287 

aromaticivorans, respectively, over a range of formamide concentrations (%). Black diamonds 288 

represent hybridization intensities for P. algicola (A) or A. aromaticivorans (B) with their 289 

respective probes. White squares correspond to hybridization intensities for these same 290 

organisms, but using the NON338 probe. These probes were labeled with CY3 in all experiments. 291 
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Each data point represents the average fluorescence intensity value ± standard deviation up to 292 

eight randomly-selected fields of view. In some cases the standard deviation is smaller than the 293 

symbol. Images of the target cells were captured from hybridisations performed with probe 294 

PCY223 (C) or ALGAR209 (D) using the formamide concentration determined optimal for each 295 

probe – 55% for PCY223 and 40% for ALGAR209. The competitor probe c1ALGAR20 was 296 

included together in hybridisations with ALGAR209. Bar, 4 μm. 297 

 298 

Detection and response of P. algicola and A. aromaticivorans in micro-algal cultures 299 

enriched with phenanthrene 300 

In the present study the aim was to visualize, for the first time, the presence of these OHCB on 301 

the surface (phycosphere) of micro-algae. The localization of the hydrocarbonoclastic bacterial in 302 

relation to their micro-algal hosts and during petroleum hydrocarbon enrichment may be 303 

important factors governing the relationship of these organisms. The CARD-FISH probes 304 

designed and optimized for the detection of P. algicola and A. aromaticivorans were used to 305 

directly visualize these bacteria in association with marine eukaryotic phytoplankton (micro-306 

algae), which is likely their natural biotope in the ocean. For this, micro-algal cultures S. 307 

costatum and L. polyedrum were used as they represent the original source from which P. 308 

algicola and A. aromaticivorans, respectively, were isolated (Gutierrez et al., 2012a; Gutierrez et 309 

al., 2013). Subsamples taken prior to and during enrichment were analysed in order to examine 310 

the response of these bacteria to phenanthrene, which was shown as a preferred carbon source for 311 

these obligate hydrocarbon-degrading bacteria (Gutierrez et al., 2012a; Gutierrez et al., 2013) 312 

and considered a model hydrocarbon to enrich for these organisms. 313 

In the enrichment employing S. costatum, subsamples analysed with Cy3-labelled 314 

PCY223 revealed an extremely low abundance of P. algicola, with either none or one to three 315 

cells detected in any of the fields of view analysed (Figure 2A). By day 5, the abundance of P. 316 

algicola cells quantified with probe PCY223 had increased as a result of enrichment with 317 
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phenanthrene, with P. algicola signals observed attached with, and detached from, the diatom 318 

(Figure 2B). Hybridisations performed with subsamples taken at day 8 (results not shown) did not 319 

noticeably differ to those examined at day 5. In the enrichment employing L. polyedrum, 320 

subsamples analysed with Cy3-labelled ALGAR209 also revealed a very low abundance of A. 321 

aromaticivorans cells, none of which were observed attached to dinoflagellate cells in any of the 322 

fields of view analysed (Figure 2C). By day 3, the abundance of these bacteria, as quantified with 323 

probe ALGAR209, was observed to have moderately increased as a result of enrichment with 324 

phenanthrene (results not shown), and then markedly increased by day 8 (Figure 2D). Signals for 325 

A. aromaticivorans cells were observed attached to cells of L. polyedrum (Figure 2D), and in 326 

some fields of view some cells were found associated with clusters of other (DAPI-stained) 327 

bacteria. After incubation with phenanthrene, cells of the hydrocarbonoclastic bacteria in both the 328 

L. polyedrum and S. costatum cultures appeared to be arranged in clusters (or arranged in 329 

streaks), where previously (on day 0) they were present as unattached single cells, sometimes 330 

appearing near micro-algal cells. These micro-aggregate (<5 – 500 μm) arrangements of bacteria 331 

and micro-algae have also been reported in the literature (Simon et al., 2002). The distribution of 332 

these OHCB appears uneven among the rest of the DAPI-stained bacterial community, 333 

suggesting that these bacteria are possibly either aggregating towards a hydrocarbon source that 334 

may be adsorbed onto the micro-algal cells and/or are being held together by some transparent 335 

extracellular polymer (as proposed by Thornton, 2002). 336 

 337 

 338 
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 339 

 340 

Figure 2.  Hybridisation of samples from a culture of Skeletonema costatum (A, B) or 341 

Lingulodinium polyedrum (C, D) enriched with phenanthrene using, respectively, probe PCY223 342 

targeting P. algicola or probe ALGAR209 (and competitor probe cALGAR209) targeting A. 343 

aromaticivorans (orange) among cells of the diatom/dinoflagellate and other bacteria (blue). 344 

Samples were taken for analysis on day 0 (A, C), day 5 (B) or day 8 (D). Cells of P. algicola and 345 

A. aromaticivorans (ca. 1 μm size) are indicated with white arrows in the panels, whereas cells of 346 

S. costatum cells (ca. 10 μm) or Lingulodinium polyedrum (ca. 30 μm) are indicated with red 347 

arrows. Bar, 20 μm. 348 

 349 

Overall, in both enrichments with the S. costatum and L. polyedrum cultures, most fields 350 

of view rarely revealed any signals for, respectively, P. algicola and A. aromaticivorans. This 351 

indicates that these bacteria are in very low abundance to the total bacterial composition 352 
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associated with these micro-algae. The observed attachment of some cells for both types of 353 

bacteria to their micro-algal host cells infers that they may share more than just a physical 354 

attachment, as reported for other types of bacteria living associated with micro-algae. The 355 

interaction of micro-algae with bacteria in the ocean is believed to play an important role to their 356 

ecological success (Amin et al., 2012; Amin et al., 2015; Buchan et al., 2014). Algal-associated 357 

bacteria have been shown to acquire algal exudates as carbon and energy sources (Bell and 358 

Mitchell, 1972; Myklestad, 1995), where the algae have been reported to benefit from bacterial-359 

produced vitamins, trace metals and other nutrients (Kazamia et al., 2012; McGenity et al., 360 

2012). In a study by Amin et al. (2009), the authors reported a mutual sharing of iron and fixed 361 

carbon between several species of phytoplankton and bacteria, including members comprising the 362 

hydrocarbon-degrading genus Marinobacter. Taking into account the narrow nutritional spectrum 363 

of strains TG408 and DG1253 living associated with micro-algae (Gutierrez et al., 2012a; 364 

Gutierrez et al., 2013), it is possible that they too may co-exist through some form of nutrient-365 

sharing, though further work will be needed to determine this.   366 

 367 

Detection and response of P. algicola and A. aromaticivorans in natural seawater 368 

populations of phytoplankton enriched with crude oil 369 

The enrichment and spatial localization of P. algicola and A. aromaticivorans was investigated in 370 

a natural population of phytoplankton from coastal water. Since these obligate 371 

hydrocarbonoclastic bacteria were originally isolated and shown to live associated with 372 

laboratory cultures of micro-algae (Gutierrez et al., 2012a; Gutierrez et al., 2013), the application 373 

of CARD-FISH employing the new probes (PCY223 and ALGAR209) allowed us to observe 374 

these bacteria in natural seawater samples, including associated with phytoplankton cells. This 375 

was examined in enrichments with and without crude oil in order to detect for these bacteria 376 

under, respectively, perturbed and unperturbed environmental conditions. Samples taken at days 377 

0 (results not shown) and 2 of these enrichment experiments and analysed with probes PCY223 378 
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or ALGAR209 rarely revealed signals for P. algicola (Figure 3A) or A. aromaticivorans (Figure 379 

3C), respectively, but were nonetheless detected in the field sample. In samples taken at day 5, 380 

however, cell signals for these bacteria were slightly more abundant, though still rare to find in 381 

the many fields of view observed under the microscope (Figure 3B and D). At this time point, 382 

cells of P. algicola and A. aromaticivorans were observed among the free-living bacterial 383 

population that was counterstained with DAPI, as well as attached to cells of micro-algae, 384 

including cells of Skeletonema spp., likely S. costatum. It was apparent that the crude oil had 385 

enriched for these bacteria, but to heightened levels of cell abundance that were still very low 386 

compared to their abundance in the original unperturbed phytoplankton field sample. These 387 

results corroborate those from our analysis of these bacteria in laboratory cultures of micro-algae 388 

where very few cell signals had been detected, and where the abundance of these bacteria 389 

appeared to have only slightly increased after enrichment with phenanthrene. 390 

Although the primary objective of these enrichment experiments was to test the newly 391 

designed PCY223 and ALGAR209 probes, and to directly visualize the target organisms (P. 392 

algicola and A. aromaticivorans) with micro-algae, our data offers some insight into the ecology 393 

and dynamics of these obligate hydrocarbon-degrading bacteria during exposure to a 394 

hydrocarbon. In a previous study, qPCR probes were used to quantify the abundance of P. 395 

algicola 16S rRNA gene sequences during enrichment of S. costatum CCAP 1077/1C – the same 396 

strain used in the present study – with crude oil, and showed these genes to have increased by one 397 

order of magnitude within eights days of exposure to the oil (Mishamandani et al., 2016). This 398 

corroborates our CARD-FISH analysis with the PCY223 probe that showed a distinct increase in 399 

the abundance of P. algicola signals within 8 days exposure to hydrocarbons. The study by 400 

Mishamandani et al., (2016) further showed that the abundance of P. algicola 16S rRNA genes 401 

continued to increase, by a further three orders of magnitude, by day 42 of the crude oil 402 

enrichment experiment with S. costatum. 403 

 404 
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 406 

 407 

Figure 3.  Hybridization of samples from the crude oil enrichment with probe PCY223 at days 2 408 

(A) and 5 (B), and with probe ALGAR209 at days 2 (C) and 5 (D) amongst the entire DAPI-409 

stained microbial population (blue). White arrows indicate cell signals targeted by the respective 410 

probe. Small spherical micro-algal cells (orange autofluorescence) are shown in (A) with no 411 

apparent associated P. algicola cell signals; a Skeletonema chain (orange autofluorescence) is 412 

observed in (C) with several A. aromaticivorans cell signals associated with it. 413 

 414 

Based on initial abundance of these bacteria and their response to PAH/crude oil 415 

enrichment, it is possible that these types of obligate hydrocarbonoclastic bacteria may contribute 416 

to background levels of hydrocarbon biodegradation in the ocean rather than as major responders 417 

to oil spills. This is supported by the fact that they are poorly represented in 16S rRNA gene 418 
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sequence databases, including datasets from sequencing surveys performed on samples collected 419 

at natural oil seeps and oil spill sites (e.g. Deepwater Horizon). 420 

Conclusions 421 

The low abundance of P. algicola and A. aromaticivorans observed in our phenanthrene 422 

enrichment experiments, and the fact that 16S rRNA gene sequences of these bacteria are poorly 423 

represented in sequencing surveys in the literature, suggests that they are likely to contribute to 424 

the biodegradation of hydrocarbons in the water column at background levels. These organisms 425 

have been shown to be associated with a range of other species of diatoms, dinoflagellates and 426 

coccolithophores (Gutierrez et al., 2013; and unpublished data). It may be inferred that they have 427 

eluded detection in sequencing surveys because they occupy a specific biotope in the ocean (i.e., 428 

the phycosphere of phytoplankton), which has not been sufficiently explored in this respect, and 429 

because these bacteria may comprise the rare biosphere in the ocean. The design and 430 

development of 16S rRNA oligonucleotide probes for CARD-FISH provides a useful tool to 431 

study the occurrence and ecology of hydrocarbon-degrading bacteria in laboratory cultures of 432 

micro-algae and in fresh field samples. These new probes (PCY223 and ALGAL209) also 433 

expand the current inventory of FISH probes for targeting hydrocarbon-degrading organisms that 434 

will contribute to improving our understanding on the role of these bacteria in the ocean 435 

hydrocarbon cycle. 436 
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