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Abstract— This paper presents measurements of human
hand-impedance during a laparoscopic training program with
physically interactive robotic manipulators. The knowledge of
how the hand-impedance changes due to training might be
useful to inform better training programs and to introduce
co-manipulated robotic assistants for effective trainings. Ten
novice subjects participated in a three weeks training program
for a suturing activity in laparoscopy. The subjects have been
instructed to set the needle, enter the skin, and tie knots by
using laparoscopic tools within a Minimally Invasive Surgery
training box. Variable admittance controlled robots, attached
to the tools with force sensors, applied step vice velocity
disturbances while subjects were trying to set the needle. Based
on the interaction force and end-effector position information,
impedances of the left and right hands were computed in four
different directions. The computed results were compared with
respect to the participants skill progression.

I. INTRODUCTION

Laparoscopy, a special type of Minimally Invasive Surgery
(MIS) also known as keyhole surgery, enables surgeons to
perform operations using small incisions leading to minimal
surgical wounds, that connotes less post-operative pain and a
quicker recovery time for the patients. Improvements within
the scaled-down display devices and special surgical instru-
ments give rise to utilization of this technique, evidently it
became the main method for the operations around abdomi-
nal region such as cholecystectomy, appendectomy, and Nis-
sen fundoplication surgeries [1]. Apart from the aforemen-
tioned benefits and acceptance, the laparoscopic technique
brings additional challenges to the surgeons as it requires
more training to master than a conventional open surgery.
The paramount challenge is the disturbed observation along
with a loss of depth perception as the operation is viewed on
a two-dimensional screen. Also, manipulation is disoriented
due to the discrepancy between the hand movements and tip
of the laparoscopic tools (the well known fulcrum effect) [2],
[3]. To circumvent those difficulties surgeons require to carry
out extensive and protracted training programs outside the
operation rooms, hereby proficiency is broadly subjectively
assessed due to lack of quantitative measurements indicating
whether or not a trainee reached a sufficient competence level
for the laparoscopy [4], [5].
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Herein, hand-impedance estimation techniques can be
embedded within the laparoscopic training kits to distin-
guish impedances of professional and novice surgeons, in
this way learning process within the training program can
be optimized by providing appropriate feedback and also
possibly robotised co-manipulated assistants to enhance the
hand-impedance accordingly.

The muscles, bones, and masses i.e. the musculoskeletal
system forming the human hand along with the arm can be
associated, all together, as a mechanical system. Dynamical
characteristics of this system, in general, described as a
mechanical impedance [6]. This characteristic phenomenon
is encountered frequently in human-robot interaction such
that any slight vibration or oscillation at the point of touch
involuntary extinguishes with a hand grip [7]. In addition to
this passive behaviour, human hand model is also assumed
locally as a Linear Time Invariant (LTI) system consisting
of mass, spring, and damper [8]. In this way, not only
stability analysis of haptic systems is streamlined but also
conservatism within the analysis is reduced by diminishing
uncertainties (e.g. hand model) within the overall system.

In the light of the above findings, measuring hand-
impedance implies estimation of the mass, spring, and
damping parameters within the aforementioned LTI model.
Applying small, impulse type force or position perturbations
from a grip point and analysing resulting response behaviour
of the hand is extensively revisited methodology, for instance
see [9], [10] for the force and [11], [12], [13] for the position
disturbances.

Generally speaking, to apply perturbations or measure
the hand position admittance controlled robotic manipulators
have been used within the aforementioned hand-impedance
measurement techniques without concerning the overall sys-
tem’s stability. But, unlike the other cases where this control
methodology was revisited, such as manual welding [10],
the training for suturing requires frequent contact of the
laparoscopy instruments with hard (key hole, the needle, and
tip of the other instrument) and soft (the pad to be sutured)
structures. Thus, special care should be taken to eliminate the
instability that might occur due to such contacts during the
training and measurement procedures. Here, we implemented
an adaptive admittance control which allows both transparent
co-manipulation in normal manipulation conditions and low
admittance in case of oscillations during contact.

In this paper contact hand-impedances of the ten par-
ticipants were computed during a three weeks laparoscopy
training program by applying small step-vice velocity dis-
turbances via robotic manipulators. As an initial effort, post-
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hoc analyses were also carried out to identify any significant
difference between the impedance parameters measured at
different periods within the program.

II. METHODOLOGY

A. Experimental Setup
The experimental setup consists of one MIS training box,

2 Universal Robots (UR3), and 2 ATI force/torque (FT)
sensors. The FT sensors have been inserted between a special
mechanical adaptor which was integrated to the MIS tool and
the robot’s end-effector, see Fig. 1. The UR3 robots are light
weight, capable of carrying 3 kg at its end effector, controlled
by its own control box providing 125 Hz control cycle. To
create a human-robot interaction, an admittance control ar-
chitecture with variable parameters has been implemented by
using the Robot Operation System (ROS) and the FT sensors’
measurements with a sampling frequency (fs) equivalent to
the robot’s control cycle (fs = 125 Hz).

Fig. 1. Experimental setup: MIS training kit with integrated UR3 robots.

B. Implemented Admittance Control Architecture
The depicted admittance control architecture’s block di-

agram, which is used to experiment a physical human-
robot interaction, is illustrated in Fig. 2. The force sensor
at the end effector of the robot measures the interaction
force with the tool kit and based on this measurement the
controller generates the desired velocities. In Cartesian space,
the motion dynamics of the admittance controller can be
described as

Fs = MaV̇ref +DaVref , (1)

where Fs, Vref ∈ R6 denote the measured interaction
force/torque and desired end effector velocity vectors. The
diagonal matrices Ma, Da ∈ R6×6 are controller’s virtual
mass and damping, respectively. As known, the desired
velocities in Cartesian space, given in (1), can be transformed
into the joint space by using the robot’s Jacobian matrix
J(q). One can determine desired robot joints’ velocities,
q̇ref , while assuming that the inverse of the Jacobian ma-
trix exists (robot is not operating nearby the singular joint
configuration) as

q̇ref = J−1(q)Vref .
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Fig. 2. Block diagram representation of the intended human-robot
interaction with implemented admittance control architecture.

Admittance control parameters, Ma and Da, need to
be meticulously determined due to the inherent trade-off
between the stability and performance. A small admittance
corresponds to sufficient elimination of the external force
disturbances, yet exhibits sluggish response in the free space
movements. In the same manner, a large admittance, with
respect to the mechanical driving-point impedance, enables
operator to accomplish smooth noncontact movements by
giving rise to rapid velocity incline to the applied force, yet
that might jeopardize the stability of the overall system [14].

C. Frequency Analysis of the Laparoscopic Operation with
Robotic Manipulators

Generally speaking, dynamics of the intrinsic hand move-
ment is significant over the low frequency range, 0-10
Hz [15]. In a similar manner, the laparoscopic operations
require gradual and dedicated hand motions. To quantita-
tively determine principal frequencies during laparoscopy,
initially, we carried out different experimental scenarios
where laparoscopic tools either manipulated in a gradual,
stable manner or conducted fast and oscillatory behaviour
which, in general, can be characterized as undesired, instable
movements. The stable motions are achieved under high mass
and damping parameters within the designed admittance
controller, similarly instability is encountered under low
admittance control parameters. After running 6 different
experimental scenarios both for stable and instable motions
(12 in total), we have analysed the interaction forces and
Cartesian space velocity measurements in frequency domain
by using fast Fourier transform (FFT) [16]. The frequency
spectrums of the both signals are illustrated in Fig. 3.

As seen from the frequency spectrums, the principal fre-
quencies of the desired stable motions in the both measures
(force and velocity) are lower than 1 Hz. On the contrary,
undesired, instable motions’ principal frequencies are settled
at frequencies higher than 2 Hz. In this regard, a finer
frequency resolution, ∆f , within the FFT analysis enables
us to distinguish the principle frequencies of the desired
and undesired motions. To obtain this, a large value of
FFT window size, N , with respect to determined sampling
frequency, needs to be chosen, as ∆f = fs

N . In addition to the
computational load, the price paid for the large value N is
a slower detection for the real time implementation. Hence-
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Fig. 3. Power spectral densities of the force and velocity measurements
during experimental laparoscopy by using FFT.

forth, we will depict the frequency resolution ∆f = 0.9766
Hz, by choosing N = 128, and the critical frequency (fc)
as 1.9531 Hz for the laparoscopic operation with the robotic
schema. In this way, any movements higher than the critical
frequency will be interpreted as an involuntary behaviour.
Despite obtaining similar frequency spectrum both with force
and velocity measurements, we tend to use force signal in
the forthcoming frequency analyses as force becomes the
dominant measure when the MIS tool is in contact with its
environment, for instance while suturing.

D. Empirical Instability Disclosure
Stability, inherently, is the main concern while designing a

control architecture for a robotic system interacting with it’s
environment also embedded into a critical application such
as robotic surgery training as there is almost no room for any
unwanted behaviour. Therefore, there has been a great deal of
effort to design absolutely stable interactive robotic systems
whose application areas vary from industrial and military to
bilateral teleoperation [17], [18].

To assess the stability of a robotic architecture, passivity,
a sufficient condition for the stability, is the main tech-
nique applied by many researches. This method provides an
elegant tool to eliminate severe constraints caused by the
unmodelled dynamics of the robotic systems via concerning
only the input and output energy of the system [19]. Yet,
it should be noted that a major problem within this model
avoidance methodology is that the overall design becomes
too conservative. To reduce the conservatism one can design
passivity observer/controller, introduced as in [20], by using
measured forces and velocities to estimate total power/energy
injected to the system. Yet, integrated energy during passive
motions is the inherent limitation of this methodology;

that phenomenon prevents instant active behaviour detection
at real time implementation and requires intuitive energy
resetting methodology [21], [22].

More recent attention has also been focused on deriving
empirical instability detection methodology via analysing
forces or motions of the robot in the frequency domain.
This procedure is intuitively stating that a stable motion
does not exhibit unintentional high frequency movements
or vibrations. And by distinguishing the desired movements
from the undesired behaviour via haptic stability observer
(HSO), proposed in [23], unwanted actions can be eliminated
via penalization techniques such as an increase in the overall
impedance of the system by appropriate control action [23],
[24], [25].

Following [23], [25], we designed a variable admittance
controller by using HSO index, Ip, and a recursive stability
index, If . Those indices can be determined by analysing
robot’s velocities/positions or interaction forces in frequency
domain via using FFT analysis. A ratio, known as HSO, is
depicted by dividing the sum of the amplitudes of unstable
frequency components with the sum of the amplitudes of all
frequency components and changes in this parameter can be
used as a remark to detect the overall instability (or stability).

Ip[kT ] =

∑fs/2
f=fc

|Pf (f)|∑fs/2
f=f0

|Pf (f)|
,

where Pf (f) and f0 denote the FFT of the determined signal
(force) and the lowest frequency within the FFT, respectively.
One can determine the highest substantive frequency compo-
nent within the FFT analysis based on the Nyquist sampling
theorem, where it has been stated that sampling rate must be
at least twice of the highest frequency component for correct
representation of a signal, that is why it has been limited to
fs/2. Another, more applicative, recursive stability index is
depicted as

If [kT ] = Ip[kT ]Ifrms[kT ] + λIf [(k − 1)T ],

where Ifrms is the ratio between root mean square and
maximum value of the measured force signal and λ is
tunable time constant of the index, see [25] for more
detailed information. In order to demonstrate how these
two indices change with respect to the frequency of the
analysed force/torque measures, we carried out an FFT
analysis of a force signal with different frequencies and
acquired the aforementioned indices. Based on Fig. 3, the
critical frequency, fc, namely the frequency distinguishing
the desired and undesired behaviours is depicted as 1.95
Hz. The preliminary analysis results are illustrated in Fig. 4
where at the first half (0-4 sec) the frequency of the force
signal is 1 Hz (< fc), yet it is 2 Hz (> fc) in the second
part (4-8 sec).

As shown in Fig. 4, increases in the indices, as desired,
correlated to the frequency of the oscillatory behaviour.
In this manner one can enhance robustness of the system
by associating this phenomenon to an overall impedance
increment of the system. Therefore, the admittance control
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Fig. 4. Alteration of the stability observer parameters, Ip and If with
respect to a force signal in different frequencies.

constants, mass and damping, are designed to be variable
parameters and their alteration is associated with the stability
indices as

Da = DminI +DuIf ,

Ma =
Mmin

Dmin
Da,

(2)

where Mmin and Dmin are minimum virtual mass and
damping parameters such that stable free space movement
is maintained. When an oscillation is detected the variable
parameters, in (2), increase based on the increments in the
stability index. Thus, the unwanted movements leading to the
instable behaviour are suppressed by increasing controller
impedance. It must be noted that, however, there is a certain
drawback associated with the use of this haptic stability
observer methodology; the instable behaviour cannot be
detected before it actually occurs, hence the design required
to be able to tolerate initial undesirable behaviours taking
place due to the lag within the designed observer.

E. Subjects and Experiments
Ten novice subjects (5 males and 5 females) took part

in our three weeks training program, where experiments and
measurements of 5 hours in total per participant took place in
Week 1 (W1) and Week 3 (W3). Week 2 was considered to be
a training only slot so no measurement was taken during that
period. All the subjects were recruited among PhD students
of the Institute of Sensors, Signals, and Systems at Heriot-
Watt University (HWU), on a voluntary basis. The subjects
did not have any prior experience on laparoscopic operation
and they used the MIS training kit for the first time during
our experiments. All the participants consider themselves as
right-handed, yet according to the test result of the Edinburgh
Handedness Inventory [26] two of them are actually mixed-
handers. The experiment protocol was approved by Ethics
Committee of the HWU. All the participants were provided
with an information sheet, and they gave their informed
consent prior to the experiments.

Before the experiments, the participants were introduced
to the MIS training kit and usage of the MIS tools, receiver
and driver, they then were instructed about process of the
suturing as guided in [27]. The participants were instructed

about how to set the needle, enter the skin with a needle,
and tie two different surgeons knots by using the MIS tools.
A demonstration of a complete suturing with and without
robots were performed by the authors to demonstrate these
in practice.

In the beginning, the subjects familiarized themselves
with the MIS training system. They performed setting the
needle process freely without the robots. After a couple
of successful attempts the subjects carried out the same
process while adaptive admittance controlled robots with
Mmin = 5 kg and Dmin = 50 Ns/m attached to the tools.
This phase lasted as long as the subjects got used to the
system and felt confident with the tools and robots; it took
between 10 and 15 min depending on the subject.

In the experiments, the subjects performed the needle
setting process with disturbances. Needle setting is con-
sidered to be one of the most difficult and important part
of suturing, as a good setting of needle at the tip of
the laparoscopy instrument significantly eases the following
phases; pushing the needle into the pad and making a
knot around the needle. The subjects were informed in
advance that disturbances would come from the robots. The
disturbances were composed of 100-ms duration 0.15 m/s
velocity impulses in one of the eight (±vn, ±x, ±y, ±z)
directions, randomly applied without replacement, see Fig. 5.
Here, vn corresponds to the direction perpendicular to the
moving plane of the tools (online estimated via end effector
positions and its kalman filter estimations), x corresponds to
the direction that the subjects are faced, y corresponds to the
direction perpendicular to the subjects, and z corresponds to
the direction parallel to gravity, see the x and y directions
illustrated in Fig. 1. The disturbances were introduced at
random instances, making sure that there were at least 4 sec
in between. Each experimental session lasted around 20-25
min.

To assess the progression of the subjects throughout the
training, at first glance, we have counted how many times
they have completed the needle setting task during the
experiments. The number of the needle dropping (on purpose
or accidentally) was used as a penalization criterion, thus
any unnecessary movements extending duration of the tests
were avoided by the participants during the experiments.
Subsequently, the overall performance was calculated by
subtracting the number of the penalties from the total number
of the completed task.

F. Hand Impedance Estimation
Here, human hand contact impedance is modelled as an

LTI passive operator in each of the three main directions
(x, y, z) and also perpendicular to the moving direction in
Cartesian space (vn) decoupled from one another as

f∆(t) = Mhp̈∆(t) +Dhṗ∆(t) +Khp∆(t), (3)

where Mh, Dh, and Kh are the mass, damping, and stiff-
ness parameters of the human hand contact impedance in
Cartesian and vn directions and p∆ states the position of the
hand in Cartesian space. By using measured/calculated data



of force (f∆), position (p∆), velocity (ṗ∆), and acceleration
(p̈∆), the equality in (3) can be solved for estimating the
impedance parameters by using the well-known least squares
method.

Additionally, we also estimated rate-hardness (RH) mea-
sures in each specified directions as proposed in [28], [10].
We refer reader to [10] for more detailed informations about
how to calculate the RH , f∆, and p∆ values. With these
measurements our main goal in this particular paper is to
test whether the developed interactive and adaptive admit-
tance control scheme allows for reliable hand-impedance
measurements across the subjects. In order to test that we
analyse a number of measurement throughout the training
and try to observe whether the results are within a meaningful
range and consistent with each other. Particularly we would
like to have larger impedance values with the dominant
hand (right hand) as eight of our subjects are right-handed
and two are mixed-handed. Please note that larger hand-
impedance is observed with the dominant hands in other
studies with a totally different robotic setup and with the
task of airbrush painting [29]. The second goal is to make
a first attempt to investigate whether we can observe any
statistically significant trend of change at hand-impedance
throughout laparoscopy training. Observing consistent mea-
sures across various measurement would prove the usability
of our system. Observing a statistically significant trend
would further indicate future directions of research to focus
on more refined hand-impedance measurements in specific
directions and with one of the right and left hands.

III. MAIN RESULTS

The average and standard deviations of the measured
impedances of the left and right arms in all directions
are given in Table I. To determine the existence of any
meaningful difference between the impedance measurements
from Week 1 and Week 3, we analysed statistically sig-
nificance of the all estimated data groups (640 in total).
Before the analyses, we applied Box-Cox transformation1 to
the all groups in order to achieve a normalized distribution
in each of the compared groups. Approximately, 98.2% of
all the groups passed either the Lilliefors or the Anderson-
Darling normality test with a significance level p = 0.05.
The data groups that failed in the normality tests were
graphically inspected (via Histograms and Quantile-Quantile
Plots) and outliers that jeopardize normality were ignored in
the forthcoming analyses. We applied Students t-test (Matlab
ttest2()) to the W1 and W3 groups. In the all statistical tests
throughout the paper, we used p = 0.05 as the threshold
(maximum) for the statistical significance.

The average performance of all the subjects at each week
is given in Table II where an overall improvement indicated
in all aspects as participants proceed throughout the training
program. This trend is mainly based on the 90% of the
subjects’ significant progression, yet we must state that one
subject showed no skill improvements due to the difficulty
that s/he faced with the loss of depth perception.

1The same λ was used within the compared groups for the transformation.

TABLE I
IMPEDANCE MEASURES IN vn−, x−, y−, AND z− DIRECTIONS

Left Hand Week 1 (W1) Impedances (Avg. ± Std. dev.)
vn x y z

RH (N/m) 541± 597 437± 147 503± 210 362± 140

Mh (kg) 0.022± 0.02 0.023± 0.013 0.03± 0.01 0.017± 0.01

Dh (Ns/m) 7.9± 6.4 6.7± 3.8 13± 5 5± 3.1

Kh (N/m) 357± 304 296± 144 286± 181 310± 143

Week 3 (W3) Impedances (Avg. ± Std. dev.)
RH (N/m) 536± 660 440± 170 469± 212 326± 135

Mh (kg) 0.02± 0.017 0.03± 0.01 0.025± 0.01 0.015± 0.009

Dh (Ns/m) 7.8± 5.9 8± 3.8 12.3± 4.4 4.4± 2.7

Kh (N/m) 367± 412 273± 160 297± 187 304± 132

Right Hand Week 1 (W1) Impedances (Avg. ± Std. dev.)
vn x y z

RH (N/m) 929± 846 706± 280 844± 313 815± 251

Mh (kg) 0.037± 0.03 0.05± 0.02 0.038± 0.02 0.04± 0.02

Dh (Ns/m) 13.7± 7.6 17.4± 6.1 14.6± 7.5 11.6± 6.3

Kh (N/m) 578± 366 359± 207 628± 318 564± 208

Week 3 (W3) Impedances (Avg. ± Std. dev.)
RH (N/m) 883± 521 735± 288 834± 282 839± 284

Mh (kg) 0.04± 0.03 0.044± 0.02 0.037± 0.018 0.039± 0.02

Dh (Ns/m) 14.8± 8 15.4± 6.5 15.5± 6.5 10.9± 6.3

Kh (N/m) 560± 337 422± 216 591± 268 600± 234

TABLE II
AVERAGE PERFORMANCE ASSESSMENT MEASURES

Finished Task (T) Penalization (P) Time (min) Total (T-P)
W1 7.85 3.4 25 4.45
W3 14.85 2.85 24.5 12

A. Rate-Hardness Values

The rate-hardness of the left arm in W3 was found to
be significantly smaller than the W1 estimations in the y−
(p = 0.0296) and z− (p = 0.0013) directions. Yet, we did
not observe any statistically significant difference between
the left arms’ W1 and W3 rate-hardness measures in vn−
(p = 0.910) and x− (p = 0.924) directions. Regarding to the
right hand, there exist no statistically significant difference
in vn− (p = 0.439), x− (p = 0.176), y− (p = 0.888), and
z− (p = 0.255) directions.

B. Mass Values

No statistically significant difference was observed be-
tween the estimated mass values in W1 and W3 both for left
(p = 0.617) and right (p = 0.439) hands in vn− direction.
In x− direction, the left hand mass estimations in W3 was
found to be significantly higher than the W1 estimations
(p = 0.0083), but it was vice versa with the right hand
measures (p = 7.83× 10−6). Left hand mass estimations in
W3 were found to be smaller than the W1 estimations both
in y− (p = 6.3 × 10−14) and z− (p = 0.0245) directions.
On the other side, no statistically significant difference was
observed between the estimated right hand mass values in
W1 and W3 both in y− (p = 0.375) and z− (p = 0.705)
directions.
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Fig. 5. Data collected from one of the experiments and exclusively zoomed into the disturbance period for the illustration and clarity. The left column
shows when a disturbance was applied in vn− direction and right column shows when disturbance was applied in x− direction. Mismatches between
the actual (p) and predicted (p̂) positions are illustrated in the second row to indicate the effect of the perturbations. Third and the last rows illustrate the
measured velocities and forces, respectively.

C. Damping Values

We did not find any statistically significant difference
between the estimated damping values in W1 and W3 both
for left (p = 0.966) and right (p = 0.1076) hands in vn−
direction. In x− direction, there exists statistically significant
difference both in left (p = 6.7 × 10−6) and right (p =
1.6 × 10−7) hands’ measures; left hand’s damping values
in W3 were higher than the W1 values, yet right hand’s
damping values in W3 were smaller than the W1 values. No
statistically significant difference was observed about right
hand’s damping values in y−, z− directions (p = 0.063
and p = 0.113, respectively) and left hand’s values in y−
direction (p = 0.083). But, left hand’s damping values
in W3 were smaller than the W1 values in z− direction
(p = 0.0336).

D. Stiffness Values

No statistically significant difference was observed be-
tween the estimated stiffness values in W1 and W3 both
for left (p = 0.665) and right (p = 0.739) hands in vn−
direction. In x− direction, there exist statistically significant
difference both in left (p = 0.0265) and right (p = 3.7 ×
10−5) hands’ measures; left hand’s stiffness values in W3

were smaller than the W1 values, yet right hand’s stiffness

values in W3 were higher than the W1 values. No difference
was observed about left hand’s stiffness values in y−, z−
directions (p = 0.432 and p = 0.751, respectively) and right
hand’s values in y− direction (p = 0.243). But, right hand’s
stiffness values in W3 were higher than the W1 values in z−
direction (p = 0.0300).

The proposed results are also given in Table III where (−)
indicates when there is no statistically significant difference
between the weeks and W3 > W1 (W3 < W1) indicates
when there exists difference such that Week 3 estimates are
higher (smaller) than the Week 1 estimates.

IV. CONCLUSION

In this study, we implemented an adaptive admittance
control scheme leading to a transparent co-manipulation of
robotic arms integrated to a laparoscopy training box in
order to allow us to measure hand-impedances in a stable
manner. This control scheme addresses the specific needs
of an interactive robotic system integrated with a training
setup, in the sense of adapting the admittance to maintain
stable tool movement while occasionally in contact with
hard and soft environments within the training box. The
measurement results with ten novice subjects throughout a
three weeks training indicate that our setup is successful
to result in consistent impedance measurements across the



TABLE III
STATISTICAL SIGNIFICANCE BETWEEN THE WEEKS

Direction Left Hand Right Hand

RH

vn − −
x − −
y W3 < W1 −
z W3 < W1 −

Mh

vn − −
x W3 > W1 W3 < W1

y W3 < W1 −
z W3 < W1 −

Dh

vn − −
x W3 > W1 W3 < W1

y − −
z W3 < W1 −

Kh

vn − −
x W3 < W1 W3 > W1

y − −
z − W3 > W1

subjects and a number of different measurements instances.
We confirm this especially as we found larger impedance
parameters for the right-hand compared to the left-hand with
our subjects, eight of whom are right-handed and two are
mixed handed. Yet, it also must be noted that the driver is
slightly different (mechanically) from the receiver by being
heavier and requiring different hand-finger coordination for
the operation, thus that discrepancy might have some effects
on the impedance measurements and further effort is required
to investigate that aspect.

On the contrary, the results do not indicate any statistically
significant trend of change in hand-impedance with the three
weeks training. The cause of this might be that three weeks
training is not sufficient to build an observable change in
hand-impedance of novice subjects. In order to test this, we
plan a prolonged duration of training and experiment with the
same subjects and also plan measurements with the surgeons
who have already been trained for the laparoscopy. The
differences we would observe in hand-impedance throughout
a longer training period and across novice and professional
subjects might be used to inform advanced laparoscopy train-
ing programs and to build robotic assistants for laparoscopy
training.
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