
Shared-variable synchronization approaches
for dynamic dataflow programs

Apostolos Modas1, Simone Casale-Brunet2, Robert Stewart3, Endri Bezati2, Junaid Ahmad4∗, Marco Mattavelli1
1EPFL SCI STI MM, École Polytechnique Fédérale de Lausanne, Switzerland

2SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
3Mathematical and Computer Sciences, Heriot-Watt University, Edinburgh, United Kingdom

4J Nomics, Manchester, United Kingdom

Abstract—This paper presents shared-variable synchronization
approaches for dataflow programming. The mechanisms do not
require any substantial model of computation (MoC) modifi-
cation, and is portable across both for hardware (HW) and
software (SW) low-level code synthesis. With the shared-variable
formalization, the benefits of the dataflow MoC are maintained,
however the space and energy efficiency of an application can be
significantly improved. The approach targets Dynamic Process
Network (DPN) dataflow applications, thus making them also
suitable for less expressive models e.g. synchronous and cyclo-
static dataflow that DPN subsumes. The approach is validated
through the analysis and optimization of a High-Efficiency Video
Coding (HEVC) decoder implemented in the RVC-CAL dataflow
language targeting a multi-core platform. Experimental results
show how, starting from an initial design that does not use
the shared-variable formalism, frames per second throughput
performance is increased by a factor of 21.

I. INTRODUCTION

In recent years, there has been a renewed interest in the
field of dataflow programming. This has been driven by the
limitation of the frequency increases of deep sub-micron
CMOS silicon technology, which has shifted the evolution of
processing platforms to systems comprising heterogeneous ar-
rays of parallel processors. The emergence of these manycore
architectures poses new problems and challenges for compiling
applications efficiently to them. A major challenge is the
portability of applications across heterogeneous architectures,
in particular, the portability of the parallelism present in
each specific application [1]. Dataflow programming, in all
its different model of computations (MoCs), is well placed to
overcome the challenges of exploiting efficient heterogeneous
architectures. Dataflow MoCs are widely used for the specifi-
cation of data-driven algorithms in many application areas, e.g.
video and audio processing, bioinformatics, financial trading,
packet switching applications. In these domains, scalability
and composability of systems are increasingly important re-
quirements, and dataflow MoCs are an efficient way of imple-
menting algorithms in standardized high-level languages [2],
[3], [4].

Dataflow MoCs are architecture agnostic, making them
highly valuable for the specification of performance portable
applications that can be deployed on a wide variety of com-
puting platforms. Dataflow programs are mapped to specific

∗This work has been done while author was with EPFL SCI STI MM

architectural components with low-level, target specific code
synthesis.

By relying on isolation and non-sharing, an actor can access
its own state without fear of data-races. The approach can
introduce inefficiencies in generated code, e.g. allocations
causing high memory use, and high levels of actor idle time
whilst data is explicitly copied. As an example, in the context
of video compression, the output data generally depends on
intermediate data structures that different actors are obliged to
replicate since they cannot be shared. This can severely impact
both the time and space performance and the energy efficiency
of an application.

In this paper, we present a set of shared-variable synchro-
nization approaches that do not require any substantial MoC
modification and that are portable both for HW and SW low-
level code synthesis. The main advantage of this formalization
is the fact that the benefits of the dataflow MoC are main-
tained, however, the space and time performance and energy
efficiency of an application can be significantly improved.
The method targets Dynamic Process Network (DPN) dataflow
applications, thus making them also suitable for less expressive
models e.g. synchronous and cyclo-static dataflow that DPN
subsumes.

The paper is structured as follows: Section II provides
an overview of current dataflow MoCs and shared-variable
approaches. Section III presents a novel and generic shared
variable paradigm that can be introduced in a dataflow MoC
without fear of data-races. Section IV describes how this
methodology has been implemented in the standardized RVC-
CAL dataflow language. Experimental results are provided in
Section V, where an HEVC video decoder implemented using
the RVC-CAL dataflow language has been optimized with the
use of shared variables. Finally, Section VI concludes the paper
and discusses future work directions.

II. BACKGROUND WORK

A. Dataflow model of computations

Dataflow programming models have a long and rich history
dating back to the early 1970s [5], [6]. As depicted in Fig. 1a, a
dataflow program is defined as a (hierarchical) directed graph
in which nodes (called actors) represent the computational ker-
nels and directed edges (called buffers) represent the lossless,
order preserving, and point-to-point communication channels

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Heriot Watt Pure

https://core.ac.uk/display/287501106?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

between actors. Buffers are used to communicate sequences
of atomic data packets (called tokens). In literature, several
variants of dataflow Models of Computation (MoC) have been
introduced [6], [7], [8]. One of their common properties is
that individual actors encapsulate their own state which is
not shared among other actors of the same program. Instead,
actors communicate with each other exclusively by sending
and receiving tokens by means of buffers connecting them.
The absence of race conditions makes the behavior of dataflow
programs more robust to different execution policies, whether
those be truly parallel or some interleaving of the individual
actors.

ConsumerProducer
b1 b2

Filter

(a) An example of a dataflow network with three actors (i.e. Producer,
Filter and Consumer) and two buffers (i.e. b1 and b2).

actor Producer () ==> i n t Y :
i n t cn t := 0 ;
produce : action ==> Y : [cn t]
guard cnt < 3
do

cnt := cnt + 1 ;
end

end

(b) Producer.cal: at each firing it produces a token on output port Y.

actor F i l t e r () i n t X ==> i n t Y :
copy : action X : [a] ==> Y : [a] end
i n v e r t : action X : [a] ==> Y:[−a] end

schedule fsm s ta te1 :
s ta te1 (copy) −> s ta te2 ;
s ta te2 (i n v e r t) −> s ta te1 ;

end
end

(c) Filter.cal: at each firing it consumes a token from input port X and
it produces a token on output port Y.

actor Consumer () i n t X ==> :
consume : action X : [a] ==> end

end

(d) Consumer.cal: at each firing it consumes a token from input port X.

Fig. 1. RVC-CAL program example: dataflow network configuration and
actors source code.

DPN is an expressive MoC in comparison with other
dataflow models, e.g. by supporting dynamic branching with
actor firings predicated on token values. This makes the DPN
model sufficient for expressing dynamic, complex algorithms,
but comes at the cost of analysis and optimization opportuni-
ties. To execute, DPN actors perform a sequence of discrete
computational steps (or firings). During each step, an actor
can consume a finite number of input tokens, produce a finite
number of output tokens, and modify its own internal state
variables if it has any. The behavior of a DPN actor is specified
as a set of firing rules and firing functions. Formally an actor
is defined as a pair of (f,R) such that f : Sm 7→ Sn where f
is a firing function that consumes a token sequence on m input
ports and produces a token sequence on n output ports, S is the
set of all possible sequences and R = [R1, ..., Rn] is the set
of firing rules. These rules determine when the actor may fire
or not by describing the input sequences and actor states that

need to be present for the actor to execute a step (i.e., for it to
be enabled). For a given input sequence, the firing functions
determine a sequence/state combination for which the actor is
enabled according to the firing rule, the output tokens produced
in such step, and, if applicable, the next actor state. It must
be observed that at each step only one action can be selected
and fired. In general, DPN actors may be non-deterministic,
which means that the firing function may yield more than
one combination of outputs and next states. Furthermore, the
execution can be totally dynamic, meaning that the number of
consumed/produced tokens may vary according to the input
sequence, which severely limits any compile time analysis of
DPN actors.

B. Dataflow programming languages

In the last decades, a plethora of different programming
languages has been used to model and implement dataflow
programs [9]. Imperative languages (e.g. C/C++, Java, Python)
have been extended with parallel constructs, or pure dataflow
languages (e.g. Ptolemy, Esterel) have been formalized. The
RVC-CAL language [10] is the sole standardized dataflow
programming language which fully captures the behavioral
features of DPN. As an example, the RVC-CAL program re-
ported in Fig. 1a is composed of three actors (i.e., Producer,
Filter and Consumer) and two buffers (i.e., b1 and b2).
The Producer actor (see Fig. 1b) has an output port Y
connected to b1, the actor internal variable cnt and the action
(i.e., firing function) labeled as produce. During each firing
of the action, the value of cnt is modified and a token is
produced on b1. Furthermore, the execution of the action is
guarded by the guard condition on cnt. The Filter actor
(see Fig. 1c) has an input port X connected to b1, an output port
Y connected to b2, the two actions copy and invert, and an
actor state machine (FSM) which drives the action selection.
The selected action can be fired only if a token is available
on b1 and there is at least one token place on b2. During each
firing, a token is consumed from b1 and a token is produced
on b2. The Consumer actor (see Fig. 1d) is composed by the
input port X connected to b2 and the action consume. The
action can be fired only if a token is available on b2. During
each firing, a token is consumed from b2.

C. Shared-variable approaches

Conventional dataflow encapsulates isolated state inside
actors. Their only means of communication is by sending
and receiving data through dataflow edges. For example, the
only way for the Filter and Consumer actors to know
the value of the cnt variable in Producer is via explicit
token passing. Sharing large data structures across multiple
actors with token passing can be inefficient for memory use
since the shared-nothing dataflow model enforces copying.
Combining the dataflow model with transactional memory
approaches [11], [12] is a potential solution to this problem,
because there is only one copy of the large data structure,
with read/modify synchronization controlled by transaction
memory protocols.

a) Combining actors and STM: Actor-based program-
ming and Software Transactional Memory (STM) has been
recently been combined in [13], although their focus is con-
current agent-oriented cooperative actors in multi-threaded en-
vironments, in contrast to our treatment of actors as functional
nodes in dataflow graphs. STM and dataflow actor program-
ming is also combined in [14]. Their approach attaches two
synchronization points to actors. Actors block until:

1) data at inputs become available, which is the conven-
tional dataflow synchronization mechanism.

2) access to the transactional variables inside its atomic
code block are released by another actor.

This contrasts with our approach, which synchronizes access
to shared variables using the conventional dynamic dataflow
synchronization mechanism of input data availability (the
first of those blocking mechanisms), pattern matching on the
explicit shared memory protocol signals for actor firing.

b) Efficient Dataflow with Sharing: As the number of
parallel tasks increases on parallel hardware, access contention
and latency of dataflow communication also increases. At High
Performance Computing scale, existing approaches include
cache coherent memory subsystems to reduce copying costs
of MPI collective operations for data movement between
nodes [15]. At embedded FPGA scale, copying quickly be-
comes prohibitive due to lack of memory, so reusing memo-
ries for multiple dataflow buffers is desirable. The approach
in [16] statically analyses dataflow programs and computes
the minimum buffer requirements for edges between actors.
Rather than allocating memory for every edge buffer, the
compiler instead reuses memory for multiple edge buffers.
The approach is limited to SDF actors, whereas our approach
supports dynamic dataflow. Moreover, our approach focuses
on shared variables for internal actor data, rather than external
shared buffers for communication.

c) Read/Write locks: Readers-writer locks provides syn-
chronization primitives for concurrent access to variables
shared between threads. There are many implementations,
including pthread_rwlock_t in the POSIX standard, and
in languages inlcuding C#, Go and Rust. As with our approach
they support access policies that prioritise reads or writes
(Section III-C). Our actor prioritisation policy also offers a
functionality specific priority, whereby communication of high
priority computation is encapsulated into prioritised actors
(Section III-B).

III. DESIGN ARCHITECTURES

Our shared-variables synchronization architecture is based
on the use of a supervisor actor, called the Shared-Memory
Controller (SMC), which controls the access right of a single
shared (global) variable of a dataflow program network. Fig. 2
depicts the case of a dataflow program composed by a single
shared variable, M writers (i.e., actors that have write-only
privilege on that variable) and N readers (i.e., actors that have
write- read-only on that variable). In general, for each shared
variable available on the network, an SMC actor is used to
control a mutual exclusion access on the variable according to

the design specific requirements. The functionality of the SMC

Fig. 2. Dataflow network with a single Shared-Memory Controller (SMC).

is like the one exposed by a monitor: it does not synchronize
all actors at a specific point before allowing them to continue
(i.e., like barrier-like synchronization method) but allows them
to have both mutual exclusion and the ability to wait (lock)
for a certain condition to be true.

There are three variants of the SMC controller:
1) A generic request-go-done transaction protocol. When

simultaneous requests occur, the choice of which actor
to grant shared memory access to is non-deterministic
(Section III-A).

2) An extension of the generic protocol, prioritising shared
memory access requests given a predefined actor priority
sequence (Section III-B).

3) Another extension of the generic protocol, this time
prioritising read requests before write requests or vice
versa (Section III-C).

A. Generic Shared Memory Controller Protocol

Each reader/writer actor sends an access request using a
token through the respective request buffer to the SMC (i.e.,
READ_REQ_n for a reader and WRITE_REQ_m for a writer).
In other words, the actor fires a lock action transitioning from
FSM state s0 to s1, and successively switch to a waiting state
till an unlock token is received from the SMC through the un-
lock buffer (i.e., READ_GO_n for a reader and WRITE_GO_m
for a writer). The actor fires the memory operation (either
read or write) by firing the action, transitioning from FSM
states s1 to s2. The memory operation happens during the
execution of this action. The s1→ s2 transition consumes the
GO token from the SMC prior to the memory IO and produces
a DONE token (either READ_DONE_n or WRITE_DONE_n)
when exiting the action. An example is shown in Fig. 3,
showing the message sequence between an SMC, two readers
R1 and R2 and a writer W1. It shows that multiple readers may
read the shared variable, whilst memory write operations locks
the memory location to perform it. On a successful memory
IO transation, the FSM in readers and writers are reset from
s2 to s0 for the next shared memory transaction.

B. SMC with Actor Priority

The first pioritiy-aware SMC controller prioritises requests
given a predefined priority order of actors. When handling

R1 SMC W1 R2

WRITE_REQ1 s0
lock

s1
write

WRITE_GO1

s2WRITE_DONE1

READ_REQ2 s0
lock

READ_REQ1s0
lock s1

read

READ_GO2

s1
read

READ_GO1

s2READ_DONE2

s2 READ_DONE1

Fig. 3. Example message sequence with readers R1 and R2 and writer W1

using the generic SMC (Section III-A).

new transaction requests, the SMC’s scheduler traverses this
priority sequence, serving the transaction request it finds by
sending an unblock message. When the SMC is notified that
an actor has completed the atomic operation, it schedules the
next one (if any) or waits for new requests at the input ports.
The state machine of the SMC controller for prioritising actor
requests is shown in Fig. 4, which has three states and ten
transitions between them.

Fig. 4. Actor priority.

C. SMC with Read-Write or Write-Read priority

As an alternative to port (i.e. actor) priorities, the other
priority-aware SMC design sequences requests according to
whether they are read or write requests. That is, the SMC
prioritises read requests ahead of any write requests, or vice
versa. The state machine of the SMC controller for prioritising
actor requests is shown in Fig. 5, which is larger than the FSM
for actor priority (Fig. 4), with five states and fifteen transitions
between them.

IV. RVC-CAL LANGUAGE EXTENSION

A. Shared Dataflow Variables

In the following section we illustrate how the standardized
RVC-CAL language has been extended to support the shared
variable functionality. The proposed shared variables solution

Fig. 5. Read/Write priority.

is supported by the use of a @shared tag as an extension to
the RVC-CAL language. An example of its use is shown in
Fig. 6. Variables to be implemented as shared variables among
multiple actors are tagged with the same ID in each actor, e.g.
the sv1 ID in Figs 6a and 6b.

actor SvWri ter () i n t I ==> i n t Y :

@shared (id= ” sv1 ”)
i n t cn t := 0 ;

produce : action I : [i] ==> Y : [cnt]
guard cnt < 3
do

cnt := cnt + 1 ;
end

end

(a) SvWriter.cal

actor SvReader () i n t I ==> i n t Y :

@shared (id= ” sv1 ”)
i n t cn t := 0 ;

produce : action I : [x] ==> Y:[− cnt] end

(b) SvReader.cal

Fig. 6. RVC-CAL actors sharing a single shared variable. variable

B. Using the SMC Protocols

To interact with shared variables, an actor must:
1) Have an @shared tag attached to the internal variable.
2) Be connected to the SMC actor responsible for protect-

ing transactions on memory for the shared variable.
3) Honour the SMC transaction protocol (Section III) when

communicating with the SMC corresponding to that
shared variable.

C. Software Implementation

The support for @shared tags is part of the XRONOS [17]
CAL to C++ low-level code generation backend implemented
by the authors. This is a code generation backend of the
widely used Open RVC-CAL Compiler (Orcc) [18]. Through

XRONOS, each actor is transformed into a C++ class that
contains the functions corresponding to action computation
and its internal actor FSM scheduling. The dataflow graph is
transformed into a C++ executable file with a main function
that instantiates actors and creates FIFOs, implemented as
lock-free circular buffers, and executes actor schedulers until
the program terminates. All shared variables are declared in
this file and are defined as extern static C++ variables in actor
header files, thus all actors point to the same memory region
when reading/writing to a shared RVC-CAL variable.

V. EXPERIMENTAL RESULTS

For the scope of this work, an High-Efficiency Video Coding
(HEVC) decoder, also known as MPEG-H Part 2, implemented
with the RVC-CAL dataflow language has been used to
analyze the acceleration that can be obtained by a dataflow
program when the shared variable formalism illustrated in this
work is used. The top-level network of the basic MPEG-HEVC
decoder [19] is shown in Fig. 7. This design, used in the

Fig. 7. HEVC RVC-CAL decoder top-level network. Blue boxes are actors,
yellow boxes are sub-networks (i.e., composition of actors). The overall design
is composed of 32 actors, 112 buffers, and 745 actor internal variables.

following as base line comparison for the shared variable im-
plementation, is composed of 32 actors, 112 buffers, and 745
actor internal variables. The main functional components are
a bit-stream parser, motion prediction, intra-prediction, inter-
prediction, IDCT, reconstruct coding unit, select coding unit,
deblocking filter, sample adaptive offset filter, and decoding
picture buffer block. The input to the decoder is a compressed
4:2:0 bit-stream and output is the decoded video sequence.
A collection of different HEVC anchor bitstreams [20], with
different resolution and quantization parameter (QP) values,
has been used as input sequences in order to compare the
performances for different design versions. Experiments have
been performed on an Intel i7-5960X CPU equipped with
32GB of memory.

The base HEVC design has been initially executed using
one core partitioning. Table I summarizes the performance re-
sults in terms of frame per second (fps) obtained for bitstreams
with a resolution from 416x240 pixels and a variable QP from
22 to 37. Performances vary from 6 fps (i.e., high resolution,
small QP) to 223 fps (i.e., small resolution, high QP). The
first modification changes the base design by introducing only
a single shared variable placed between the deblocking filter
and the sample adaptive offset filter since in the original
design the entire frame-buffer (i.e., a multidimensional array
containing the reconstructed pictures) is transferred from one
filter to the other using FIFO queues. As such, increasing the
image resolution, the number of transfered and identical data
increase accordingly. Performances of this modified design
configuration, denoted by 1-SV-1C in Table I, vary from 6
fps (i.e., high resolution, small QP) to 225 fps (i.e., small
resolution, high QP). Hence, the second step identifies all
variables that could be shared among actors. Buffers that
impact on the overall program execution time (and decrease
the fps performance as a consequence) were identified using
the TURNUS design space exploration framework [21] that
the authors have developed, that is based on the analysis of
the program post-mortem execution trace graph [22]. This
information has been successfully used to highlight parts of the
design where (identical) data exchange through FIFO queues
can be removed by introducing shared variables among actors.
Performances of the new design, denoted by SV-1C in Table I,
vary from 29 fps (i.e., high resolution, small QP) to 1030 fps
(i.e., small resolution, high QP). The last modification is of
the mapping of the SV-1C design to multiple cores in order
to verify the effectiveness of this approach also on multi-core
configurations. Actors have been partitioned on four different
CPU cores using the mapping heuristic algorithms available
in the TURNUS frameworks. Performances of this design
configuration, denoted by SV-4C in Table I, vary from 37
fps (i.e., high resolution, small QP) to 2523 fps (i.e., small
resolution, high QP). The overall performance improvements
summary is depicted in Fig. 8.

Input Sequence Base 1-SV-1C SV-1C SV-4C
Name Resolution QP fps fps speed-up fps speed-up fps speed-up

BQSquare 416x240

22 128 162 1.27 316 2.47 494 3.86
27 159 191 1.20 579 3.64 925 5.82
32 195 231 1.18 1056 5.42 1531 7.85
37 223 255 1.14 1730 7.76 2523 11.31

BQMall 832x480

22 44 70 1.59 144 3.27 262 5.95
27 50 78 1.56 227 4.54 424 8.48
32 55 86 1.56 343 6.24 572 10.40
37 59 90 1.53 496 8.41 807 13.68

ChinaSpeed 1024x768

22 21 44 2.10 69 3.29 130 6.19
27 25 48 1.92 102 4.08 192 7.68
32 27 53 1.96 150 5.56 287 10.63
37 31 59 1.90 224 7.23 413 13.32

Johnny 1280x720

22 26 55 2.12 206 7.92 349 13.42
27 30 62 2.07 391 13.03 575 19.17
32 32 68 2.13 529 16.53 710 22.19
37 34 70 2.06 622 18.29 811 23.85

BQTerrace 1920x1080

22 6 17 2.83 26 4.33 37 6.17
27 8 28 3.50 49 6.13 89 11.13
32 10 39 3.90 99 9.90 170 17.00
37 11 40 3.64 146 13.27 237 21.55

TABLE I
RVC-CAL HEVC DECODER: BASE VERSION, 1 SHARED VARIABLE

(1-SV-1C) AND COMPLETE SHARED VARIABLES (SV-1C ON 1 CORE, AND
SV-4C ON 4 CORES) DESIGN RESULTS FOR DIFFERENT INPUT SEQUENCES

(VARYING RESOLUTION AND QP VALUE).

(a) BQSquare - 416x240 (b) BQMall - 832x480

(c) ChinaSpeed - 1024x768 (d) Johnny - 1280x720

(e) BQTerrace - 1920x1080 (f) Average speed-up

Fig. 8. RVC-CAL HEVC decoder: base version, 1 shared variable (1-SV-
1C) and complete shared variables (SV-1C on 1 core, and SV-4C on 4 cores)
design results for different input sequences (varying resolution and QP value).

VI. CONCLUSIONS

This paper presents shared-variable synchronization ap-
proaches for dynamic dataflow programming languages. It
combines an @shared RVC-CAL language extension with a
shared memory controller (SMC) protocol for multiple actors
to reuse one memory region for data sharing. The frames per
second performance of an HEVC decoder has a ×21 speedup
using the approach.

Future work could investigate program analysis on dataflow
programs that make use of the @shared primitive and the
SMC protocol to ensure that 1) all actors using the same
shared variable tags are connected to the same SMC, and 2)
that these actors conform to the SMC protocol (Section III).
We have developed a software implementation of the RVC-
CAL language extension that supports shared dataflow vari-
ables. In future we intend on developing an FPGA hardware
implementation of the @shared language construct and the
SMC protocol to reduce memory requirements on low memory
embedded architectures. The long-term ambition is to abstract
the SMC from explicit use in programs i.e. remove the need
to implement Section IV-B manually, and instead, infer those
steps during compilation for all occurrences of @shared tags.

ACKNOWLEDGEMENT

We acknowledge the support of the Engineering and Physi-
cal Research Council, grant reference EP/N028201/1 (Border
Patrol: Improving Smart Device Security through Type-Aware
Systems Design).

REFERENCES

[1] Jeronimo Castrillon and Rainer Leupers, Programming Heterogeneous
MPSoCs: Tool Flows to Close the Software Productivity Gap, Springer
Publishing Company, Incorporated, 2013.

[2] M. Mattavelli, “MPEG reconfigurable video representation,” in The
MPEG Representation of Digital Media, Leonardo Chiariglione, Ed.,
pp. 231–247. Springer New York, 2012.

[3] M. Mattavelli, J. Janneck, and M. Raulet, “MPEG reconfigurable video
coding,” in Handbook of Signal Processing Systems, S. S. Bhattacharyya,
E. F. Deprettere, R. Leupers, and J. Takala, Eds., pp. 43–67. Springer
US, 2010.

[4] E. S. Jang, Mattavelli M., M. Preda, M. Raulet, and H. Sun, “Re-
configurable media coding: An overview,” Signal Processing: Image
Communication, vol. 28, no. 10, pp. 1215–1223, 2013.

[5] J. Dennis, “First version of a data flow procedure language,” in
Symposium on Programming, 1974, pp. 362–376.

[6] G. Kahn, “The Semantics of Simple Language for Parallel Program-
ming,” in IFIP Congress, 1974, pp. 471–475.

[7] E. Lee and D. Messerschmitt, “Static scheduling of synchronous data
flow programs for digital signal processing,” IEEE Trans. Comput., vol.
36, no. 1, pp. 24–35, 1987.

[8] E. Lee and T. Parks, “Dataflow process networks,” Proceedings of the
IEEE, vol. 83, no. 5, pp. 773 –801, may 1995.

[9] W. Johnston, J. Hanna, and R. Millar, “Advances in dataflow program-
ming languages,” ACM Computing Surveys (CSUR), vol. 36, no. 1, pp.
1–34, 2004.

[10] ISO/IEC 23001-4:2011, “Information technology - MPEG systems
technologies - Part 4: Codec configuration representation,” 2011.

[11] Tim Harris, James Larus, and Ravi Rajwar, Transactional Memory, 2Nd
Edition, Morgan and Claypool Publishers, 2nd edition, 2010.

[12] Tim Harris, Simon Marlow, Simon Peyton-Jones, and Maurice Herlihy,
“Composable memory transactions,” in Proceedings of the tenth ACM
SIGPLAN symposium on Principles and practice of parallel program-
ming. ACM, 2005, pp. 48–60.

[13] Janwillem Swalens, Joeri De Koster, and Wolfgang De Meuter, “Trans-
actional Actors: Communication in Transactions,” in Proceedings of the
4th ACM SIGPLAN International Workshop on Software Engineering for
Parallel Systems, New York, NY, USA, 2017, SEPS 2017, pp. 31–41,
ACM.

[14] V. Gajinov, S. Stipic, O. S. Unsal, T. Harris, E. Ayguadé, and A. Cristal,
“Integrating dataflow abstractions into the shared memory model,” in
2012 IEEE 24th International Symposium on Computer Architecture and
High Performance Computing, Oct 2012, pp. 243–251.

[15] Amith R. Mamidala, Daniel Faraj, Sameer Kumar, Douglas Miller,
Michael Blocksome, Thomas Gooding, Philip Heidelberger, and Gábor
Dózsa, “Optimizing MPI Collectives Using Efficient Intra-node Com-
munication Techniques over the Blue Gene/P Supercomputer,” in
25th International Symposium on Parallel and Distributed Processing,
IPDPS 2011, Anchorage, Alaska, USA, 16-20 May 2011 - Workshop
Proceedings. 2011, pp. 771–780, IEEE.

[16] Praveen K. Murthy and Shuvra S. Bhattacharyya, “Shared Memory
Implementations of Synchronous Dataflow Specifications,” in 2000
Design, Automation and Test in Europe (DATE 2000), 27-30 March
2000, Paris, France. 2000, pp. 404–410, IEEE Computer Society / ACM.

[17] S. Casale-Brunet, E. Bezati, and M. Mattavelli, “Programming models
and methods for heterogeneous parallel embedded systems,” in 2016
IEEE 10th International Symposium on Embedded Multicore/Many-core
Systems-on-Chip (MCSOC), Sept 2016, pp. 289–296.

[18] “Orcc,” http://github.com/orcc/orcc, online, accessed May 2018.
[19] “Orc-Aps,” http://github.com/orcc/orc-apps, online, accessed May 2018.
[20] “HEVC Anchor Bitstreams,” ftp://ftp.kw.bbc.co.uk/hevc/hm-10.

0-anchors/bitstreams/lp main/, online, accessed May 2018.
[21] Simone Casale-Brunet, “Analysis and optimization of dynamic dataflow

programs,” 2015.
[22] S. Casale-Brunet and M. Mattavelli, “Execution trace graph of dataflow

process networks,” IEEE Transactions on Multi-Scale Computing
Systems, pp. 1–1, 2018.

http://github.com/orcc/orcc
http://github.com/orcc/orc-apps
ftp://ftp.kw.bbc.co.uk/hevc/hm-10.0-anchors/bitstreams/lp_main/
ftp://ftp.kw.bbc.co.uk/hevc/hm-10.0-anchors/bitstreams/lp_main/

