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Abstract 20 

We have performed a high field magneto-absorption spectroscopy on silicon doped with 21 

a variety of single and double donor species. The magnetic field provides access to an 22 

experimental magnetic length, and the quadratic Zeeman effect in particular may be used 23 

to extract the wavefunction radius without reliance on previously determined effective 24 
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mass parameters. We were therefore able to determine the limits of validity for the 25 

standard one-band anisotropic effective mass model. We also provide improved 26 

parameters and use them for an independent check on the accuracy of effective mass 27 

theory. Finally, we show that the optically accessible excited state wavefunctions have the 28 

attractive property that interactions with neighbours are far more forgiving of position 29 

errors than (say) the ground state. 30 

 31 

Introduction 32 

Impurities in silicon provide a platform for classical microelectronics and quantum technology. 33 

Knowledge of the wavefunction extent is needed for prediction of the interaction between 34 

donors and their neighbours for tests of physics[1][2][3][4], device transport[5] and 35 

entanglement/gating[6][7][8][9]. With knowledge of the extent the atoms may be appropriately 36 

placed to optimize these interactions[10][11]. Qubit schemes being currently investigated that use 37 

excited states include a variety of species [6][12] including double donors like selenium[13]. 38 

Amazingly, in spite of their ubiquity and enormous technical importance, there is no 39 

measurement of the state radius of any isolated silicon impurity after more than six decades of 40 

research[14]. Regular arrays are desired for quantum computer architectures[7][8][9], for which 41 

information on the neighbour-neighbour interactions will be crucial - just as it is for free 42 

atoms[15]. Because wavefunctions decay exponentially, a rapid change in the coupling occurs 43 

as a function donor-donor separation[4] – this is the single impurity equivalent of the Mott 44 

metal-insulator transition – control of the coupling requires good information on the separation 45 

at which the change occurs. Indeed the simplest experimental way to access the wavefunction 46 

extent is via the metal-insulator transition for ground states and a similar transition occurs for 47 

excited states[16], however this is a complicated many-body problem and its precise details are 48 

unclear, so that it can only be used approximately for the ground state of single donors, not at 49 

all for double donors (because they produce half-full and full impurity bands respectively). 50 

Without knowledge of the wavefunction extent we cannot engineer the contact of the impurity 51 
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with readout electronics[5] external leads (source, drain, gates etc) or to know how much control 52 

is required to construct a dimer[4], a chain[6] or a lattice[3]. The questions we raise here are 53 

closely analogous to those for cold Rydberg atoms in magnetic traps, where the excited states 54 

are large and highly susceptible to magnetic fields (as in our case), and so are the dipole 55 

moments and interactions with neighbouring atoms which affects both the spectra[17] and the 56 

formation of condensates[18], though in this case the ion is fixed, and we have the extra 57 

complication of an anisotropic effective mass. 58 

 59 

Here we show that the wavefunction radius for excited states can be found directly from the 60 

ratio of the coefficients of the linear and quadratic Zeeman effects (LZE and QZE) without the 61 

need for any effective mass parameters, and provide the first radius measurement of hydrogenic 62 

impurity excited states. Effective Mass Theory (EMT)[14][19][20][21][23] may be used to predict the 63 

spectrum and the wavefunction radius from three parameters; two effective mass values and 64 

the permittivity. We provide a self-consistent set of parameters obtained only from the zero-65 

field spectrum and LZE, and use the resulting prediction for the QZE as an independent check 66 

on the validity of EMT. 67 

 68 

There are currently two primary methods to detect wavefunction properties experimentally: via 69 

electron spin resonance (ESR) which measures contact with the donor nucleus; or via 70 

tunnelling methods which measure contact with the surface/barrier nearby. ESR[24][25][26] is 71 

excellent for determining the central part of the wavefunction but not necessarily the long range 72 

part that would be responsible for coupling to neighbours. Recently images of the ground state 73 

wavefunction of near-surface impurities have been obtained from Scanning Tunneling 74 

Microscopy (STM)[27][28][29][30] which allows direct observation of the density where the donor 75 

wavefunctions touch the surface. The images are complicated to interpret with high accuracy 76 

because the signal due to the donor is a small modulation on top of the density due to the 77 

surface atoms, and a very careful Fourier Transform filtering and other processing is 78 
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required[28]. Tunneling spectroscopy of donors in contact with a barrier is also possible[31][32]. 79 

In either case, imaging and tunnelling spectroscopy are limited to near-interface states that are 80 

naturally strongly perturbed. ESR and tunneling spectroscopy have only been used to extract 81 

the state radius for the ground state. Extraction of ground state dimensions from the QZE is 82 

also possible, but more assumptions are required[33][34]. 83 

 84 

Fig. 1 Linear Zeeman effect. a) Lyman series of the Si:P,Sb co-doped sample. Labels indicate the excited 85 

state for three of the strongest Lyman series transitions. The colour scale indicates the transmission (dark 86 

blue =high transmission; light yellow = high absorption).  b) Splitting between the transitions for same n 87 

but different m, i.e. ℎ𝜐1s→𝑛p+ − ℎ𝜐1s→𝑛p− = 𝐸𝑛p+ − 𝐸𝑛p− against B. Data presented are for n=2 and 3 for 88 

all species used in this work (Si:X where X=Li,P,Sb,Bi,Mg,Se,Se2,S) showing they all follow the same 89 

field dependence. Inset bottom: Expanded scale section from main panel showing sixteen points at each 90 

field with a different colour symbol for each species/n combination (and only three examples are labelled 91 

due to the small scatter). Inset top: residuals from the linear fit (red) and from the non-parabolic model fit 92 

(blue) to the Si:P data from the main panel. 93 

 94 
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Experiment 96 

In this work we investigate the excited state wavefunction extent from the magnetic length. We 97 

investigated the QZE in bulk doped silicon with single substitutional donors Bi, Sb or P[35][36], 98 

the single interstitial donor Li, substitutional double donors S[38][39], Se[33][40], the interstitial 99 

double donor Mg[41], and double donor complexes S2 and Se2. The doping of each was in the 100 

range 1 x1014 to 2x1015 cm-3, low enough that the distance between the donors is far larger than 101 

the orbit radius of any of the states of interest. We performed infrared transmission 102 

spectroscopy at T=1.4K as a function of magnetic field up to B=30T, in the Faraday 103 

configuration. All the samples were cut into [001] wafers and bevelled to 1o to avoid Fabry-104 

Perot interference, and the resolution was 0.04 meV determined by residual water vapour 105 

absorption lines. Data for the Si:P and Si:Li samples were resolution limited. The transmitted 106 

intensity was recorded as a function of frequency and field, I(v,B). The median of I(v,B) across 107 

all magnetic fields at each frequency was used to find the field-independent background 108 

spectrum, Ibackground(v), and hence the transmission T(v,B)=I(v,B)/Ibackground(v), as in the example 109 

of Fig 1a (see [35] for more experimental details). The transmission spectrum shows well 110 

resolved absorption lines and clear evidence of the LZE (e.g. in the splitting of the 2p+ and 2p– 111 

transitions at low field) and the QZE (e.g. in the curvature of the 2p– at high field).  112 

 113 

Perturbation theory for excited states 114 

Effective mass theory (EMT) [14][19][20][21][22][23] predicts hydrogenic donor states very well using 115 

length, energy and field parameters 𝑎𝐵
∗ = 𝑎𝐵𝜖𝑟/𝑚𝑡

∗, 𝐸𝐻
∗ = 𝐸𝐻𝑚𝑡

∗/𝜖𝑟
2 and 𝐵𝑎

∗ =  ℏ/𝑒𝑎𝐵
∗2 =116 

ℏ𝑚𝑡
∗2/𝑒𝑎𝐵

2 𝜖𝑟
2 that are scaled from the atomic hydrogen Bohr radius, Hartree energy and atomic 117 

unit of magnetic field respectively by the relative effective mass 𝑚𝑡
∗ and relative dielectric 118 

constant 𝜖𝑟. Silicon is indirect and the conduction band minimum is far from k=0 near the six 119 

equivalent X-points of the Brillouin zone (along the <001> directions). These six valleys are 120 

anisotropic, characterized by a mass transverse to the valley axis 𝑚𝑡
∗ and a mass anisotropy 121 

parameter,  (=𝑚𝑡
∗/𝑚𝑙

∗ where 𝑚𝑙
∗ is the mass along the axis). According to the Kohn-122 
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Luttinger[19] EMT model, inter-valley interactions are to be ignored (or treated later by 123 

perturbation theory), and the single valley wavefunction is taken to be the product of a slowly 124 

varying envelope and quickly varying terms: 𝜓𝑗,𝜇(𝐫) = 𝑓𝑗,𝜇(𝐫)𝑒𝑖𝐤𝜇.𝐫 where 𝐤𝜇 is the 125 

momentum at the bottom of the valley with index  (i.e. 𝐤𝜇 is along x, -x, y, -y, z, -z and 126 

|𝐤𝜇|=0.85/a=k0 where a is the lattice constant) and j is an index (or set of indices) identifying 127 

which state within the valley. Using single-valley EMT works well for the excited state 128 

energies[14] (and our aim here is to assess the accuracy of the radius prediction for the excited 129 

states).  We ignored an additional lattice-periodic factor[19][22][23] since it does not influence any 130 

of what follows or the intended application of engineering donor-donor interactions. The 131 

envelope functions 𝑓𝑗,𝜇 are solutions of 𝐻̂𝜇𝑓𝑗,𝜇 = 𝜀𝑗𝑓𝑗,𝜇. In the case that a magnetic field is 132 

applied parallel to the axis of the z-valley, the Hamiltonian for that valley is[14][33][34][35][36]  133 

𝐻̂𝑧 = −
𝐸𝐻

∗ 𝑎𝐵
∗2

2
[

𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
+ 𝛾

𝜕2

𝜕𝑧2
] −

𝐸𝐻
∗ 𝑎𝐵

∗

𝑟
+

𝐸𝐻
∗ 𝐵𝐿𝑧

2𝐵𝑎
∗ℏ

+
𝐸𝐻

∗ 𝐵2(𝑥2 + 𝑦2)

8𝐵𝑎
∗2𝑎𝐵

∗2  (1) 

The first two terms comprise the zero-field Hamiltonian for hydrogen including the mass 134 

anisotropy, 𝐻̂0𝑧. We neglect tetrahedral corrections to the impurity potential[37]. The last two 135 

are respectively the LZE and QZE terms 𝐻̂1 and 𝐻̂2. For other valleys and field directions the 136 

Hamiltonian is more complex and we shall not concern ourselves with such cases. Comparison 137 

of the eigenvalues of Eqn (1) with the experimental zero field energy spectrum allows 138 

extraction/verification of 𝐸𝐻
∗  and 𝛾 only, and the LZE allows extraction of 𝐵𝑎

∗. If it is assumed 139 

Eqn (1) holds, and therefore 𝐵𝑎
∗ =  ℏ/𝑒𝑎𝐵

∗2, this is enough to predict 𝑎𝐵
∗ . In this work we 140 

measure the ratio of the QZE and LZE, which is a means to extract the radius directly, and 141 

provides in essence experimental measurement of 𝐵𝑎
∗𝑎𝐵

∗2 as a test of the validity of Eqn (1). In 142 

other words, whereas the zero-field spectrum and LZE can provide tests of the scaling rules 143 

given at the beginning of the paragraph for 𝐸𝐻
∗  and 𝐵𝑎

∗, only the QZE can test the scaling rule 144 

for 𝑎𝐵
∗  independently. 145 

 146 

Eqn (1) has cylindrical symmetry about z so the azimuthal dependence of the wavefunction 147 

envelope is 𝑒𝑖𝑚𝜙, which is an eigenfunction of the LZE term with quantum number m, the 148 
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magnetic quantum number. For our field direction (B//z)  𝐻̂1 commutes with 𝐻̂0𝑧 and 𝐻̂2 so 149 

there are no off-diagonal matrix elements of 𝐻̂1, and the magnetic quantum number, m, is 150 

conserved for all B. The LZE energy 𝐸1 = 𝜇𝐵
∗ 𝑚𝐵 is therefore well defined for all B. 𝐻̂0𝑧 and 151 

𝐻̂2 do not commute, but for sufficiently small field we can treat 𝐻̂2 by perturbation theory 152 

which produces  153 

𝐸(𝐵) = 𝐸0 + 𝜇𝐵
∗ 𝑚𝐵 +

𝑒𝜇𝐵
∗

4ℏ
𝜌0

2𝐵2 (2) 

where 𝜌0 is the value of the transverse radius 𝜌 = √〈𝑥2 + 𝑦2〉 at zero field. The effective Bohr 154 

magneton 𝜇𝐵
∗ = 𝐸𝐻

∗ /2𝐵𝑎
∗ = 𝑒𝐸𝐻

∗ 𝑎𝐵
∗2/2ℏ = 𝜇𝐵/𝑚𝑡

∗, and we substituted 𝐸𝐻
∗ /𝐵𝑎

∗2𝑎𝐵
∗2 = 2𝑒𝜇𝐵

∗ /ℏ. 155 

As we shall see, 𝐸(𝐵) becomes non-parabolic at high field because 𝜌 shrinks due to magnetic 156 

confinement so that the small perturbation approximation fails (when 𝐸2 = 𝑒𝜇𝐵
∗ 𝜌0

2𝐵2/4ℏ 157 

becomes significant compared with 𝐸0). In this case 𝐻̂0𝑧 and 𝐻̂2 are mixed and their 158 

contributions cannot be separated. We define an effective transverse radius, 𝜌̃, given by  159 

𝑑2𝐸

𝑑𝐵2
=

𝑒𝜇𝐵
∗

2ℏ
𝜌̃2 (3) 

which is equal to the actual transverse radius at low field i.e. 𝜌̃2(0) = 𝜌0
2 as shown by Eqn (2). 160 

It is useful to note that 𝐻̂0𝑧 and 𝐻̂2 have the same symmetry for B//z, so solving eigenvalues 161 

and eigenfunctions of Eqn (1) for 𝐵 ≠ 0 is no more difficult than for B=0. For other field 162 

directions 𝐻̂0𝑧, 𝐻̂1 and 𝐻̂2 are all mutually non-commuting and m is not a good quantum 163 

number.  164 

 165 

Linear Zeeman effect 166 

We require the ratio of the QZE and LZE terms in Eqn (2), and we start with the LZE. It is 167 

easy to extract 𝜇𝐵
∗  directly from the experimental field dependence for B//z because the linear 168 

Zeeman energy is well defined and m is a good quantum number: we simply take the difference 169 

between the transition energies to the np+ and np– excited states: ℎ𝜐1s→𝑛p+ − ℎ𝜐1𝑠→𝑛p− =170 

𝐸𝑛p+ − 𝐸𝑛p− = 2𝜇𝐵
∗ 𝐵. Since 𝐻̂1 commutes with 𝐻̂0𝑧 and 𝐻̂2, the quadratic and zero-field terms 171 

cancel exactly. It can be seen from Fig 1b that this linear relationship holds very well, and the 172 

slope 2𝜇𝐵
∗ = 2𝜇𝐵/𝑚𝑡

∗ holds for all species and for both 2p± and 3p± excited states. At the 173 
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highest fields used, there is a slight departure from linearity – the slope decreases at higher 174 

energy (Fig 1b inset shows the residuals) which must have resulted from an effective mass 175 

increase. We presume that the mass increase arises due to the higher frequency Fourier 176 

components in the envelope-function introduced by the constriction with field, and therefore 177 

the increase is equal for both p+ and p– states with the same n. If the mass rises with field and 178 

is an even function, a suitable non-parabolicity correction to the form of Fig 1b is 𝐸𝑛p+ −179 

𝐸𝑛p− = 2𝜇𝐵
∗ 𝐵/(1 + 𝐵2/𝐵𝑛𝑝

2 ) and a fit to the Si:P 2p± data gives the values of 𝜇𝐵
∗  and 𝐵𝑛𝑝 in 180 

Table 1, which also shows the inferred value of 𝑚𝑡
∗.  181 

 182 

Fit parameters Value 

𝜇𝐵
∗   0.2978±0.0003meV/T 

𝐵𝑛𝑝  242±12T 

 0.2096±0.0002 

𝐸𝐻
∗   39.83±0.03meV 

Inferred parameters Value 

𝑚𝑡
∗  0.1944±0.0002 

𝑚𝑙
∗  0.927±0.001 

𝜖𝑟  11.52±0.01 

𝑎𝐵
∗   3.137±0.004 nm 

𝐵𝑎
∗  66.88±0.09 T 

Table 1.  Effective mass parameters obtained. 183 

 184 

Our value of 𝑚𝑡
∗ is 2.0±0.1% larger than the band edge value, 0.1905±0.0001 from cyclotron 185 

resonance for free electrons[20] and closer to that derived from the approach of Fig 1b by others 186 

(0.195 ± 0.002[42]), though with higher precision here; this is also presumably due to the non-187 

parabolicity, since the appropriate value for a donor is an average over a region of k-space 188 

around the c.b. minimum, the extent of which is given by the reciprocal of the wavefunction 189 

and evidently includes enough to noticeably increase 𝑚𝑡
∗. Applying the same fit procedure to 190 

the Si:P 3p± data produces a value of 𝜇𝐵
∗  that is 1.3±0.1% larger than the band edge value, i.e. 191 

the difference is less than for 2p± as would be expected for a state that is larger in real space 192 

and smaller in reciprocal space.  193 

 194 
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 195 

Fig. 2 Quadratic Zeeman effect. a) Transition energy, ℎ𝜐1s→np±, for Si:P for 2p± (squares) and 3p± 196 

(circles), with m=+1 transitions shown at positive field and m=-1 transitions shown at negative field. The 197 

fits described in the text produced the residuals shown as an inset, along with the weighting function used. 198 

b) The transverse radius. The effective transverse radius squared for the transition, i.e. 𝜌̃
𝑛p±

2
− 𝜌̃

1s

2
 found 199 

by applying Eqn (3) to the experimental ℎ𝜐1s→np±(𝐵) shown in (a), (filled symbols) using the Savitzky-200 

Golay method. Also shown is the theoretical effective transverse radius, i.e. Eqn (3) applied to 𝐸𝑛p±(𝐵) 201 

from EMT with the parameters from Table 1 (not a fit), solid lines. The open symbols show, 𝜌2, the actual 202 

(as opposed to effective) transverse radius squared 〈𝑥2 + 𝑦2〉 of the excited states from the EMT 203 

wavefunctions (with the same parameters, not a fit). The effective radius, 𝜌̃, and actual radius, 𝜌, are clearly 204 

the same at small field. 205 

 206 

Quadratic Zeeman effect 207 

It is also easy to extract the transverse radius directly from the experiment. The second 208 

derivative of the transition energy is, from Eqn (3), 
2ℏ

𝑒𝜇𝐵
∗

𝑑2

𝑑𝐵2 ℎ𝜐1s→𝑛p± =
2ℏ

𝑒𝜇𝐵
∗

𝑑2

𝑑𝐵2 [𝐸𝑛p± −209 

𝐸1s] = 𝜌̃𝑛p±
2 − 𝜌̃1s

2 . Since 𝐻̂1 commutes with 𝐻̂0𝑧 and 𝐻̂2, the radius and its constriction with 210 
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field do not depend on m, and hence the transverse radius at zero field 𝜌𝑛p−
2 (0) = 𝜌𝑛p+

2 (0). 211 

Therefore, in order to extract the double derivative at B=0 more accurately we may plot the 212 

transition energy vs field for 1s→np+ and 1s→np– back to back (Fig 2a). The experimental 213 

results for 𝜌̃𝑛p±
2 − 𝜌̃1s

2  for Si:P is shown in Fig 2b. Although we can see approximately the 214 

zero-field value from the figure, data extracted from derivatives of experimental data are 215 

always noisy, and it is preferably to extract the radius from fitting the raw data. We therefore 216 

need an analytical approximation for the QZE. Noting that the experimental dependence on 217 

Fig 2b resembles a Lorentzian with zero-field value 𝜌0
2, i.e. 𝜌̃2 ≈ 𝜌0

2(1 + 𝐵2/𝐵𝑐
2)−1, where 𝐵𝑐 218 

is a parameter describing the field scale at which the constriction occurs, a suitable form is 219 

𝐸2(𝐵) =
𝑒𝜇𝐵

∗

2ℏ
𝜌0

2𝐵𝑐
2𝑔(𝐵/𝐵𝑐) where 𝑔(𝑥) = 𝑥 arctan(𝑥) −

1

2
ln(𝑥2 + 1) (the double derivative 220 

of which produces the desired Lorentzian). We therefore performed a fit of  221 

𝐸(𝐵) = 𝐸0 +
𝜇𝐵

∗

1 + 𝐵2/𝐵𝑛𝑝
2

[𝐵 +
𝑒

2ℏ
𝜌0

2𝐵𝑐
2𝑔 (

𝐵

𝐵𝑐
)] (4) 

with free parameters 𝜌0, 𝐸0 and 𝐵𝑐 (and fixed 𝐵𝑛𝑝, 𝜇𝐵
∗  determined above). Crucially the factor 222 

𝑒𝜌0
2/2ℏ, i.e. the ratio of the coefficients of the linear term and the QZE, does not depend on 223 

any effective mass parameters. The fit was weighted towards the data around B=0 (since this 224 

is where 𝜌2 = 𝜌̃2) with a quadratic weighting function shown in the inset of Fig 2a along with 225 

the residuals. We obtained values for the zero field radius of 𝜌2p±
2 − 𝜌1s

2 =159±1nm2 and 226 

𝜌3p±
2 − 𝜌1s

2 =611±5nm2, and the corresponding values of 𝐸0, the zero-field transition energy, 227 

were 39.161±0.001meV and 42.453±0.001meV respectively.  228 

 229 

Separating the ground state contribution to the transition QZE 230 

For hydrogen we expect 𝜌1s
2 /𝜌𝑛p±

2 = 𝑛−4 and in Si:P the 1s radius is further reduced by the 231 

central cell correction (CCC) – a short range potential that includes changes to the coulomb 232 

potential where the electron penetrates into the ion core and increases the binding energy, so 233 

𝜌1s
2  contributes negligibly to the QZE of the 1s → 𝑛p± transition. In this approximation 234 

𝜌2p±=12.61±0.03nm and 𝜌3p±=24.7±0.1nm. The ratio of these values is not exactly 4/9 simply 235 

because of the effect of mass anisotropy. Note that so far we have not used any EMT 236 
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calculations or any assumed effective mass parameters, we only took the form of Eqn (2) to be 237 

correct.  238 

 239 

The effective mass approximation is not expected to hold for the ground state, which is small, 240 

and also subject to the CCC. The precise functional form of the CCC is unknown; only its 241 

symmetry and the end effect on the energy of the ground state are known. EMT is therefore 242 

untrustworthy for the ground state. The CCC mixes the six valley 1s states, and the resulting 243 

lowest energy component is the one labelled 1s(A1) (except in the case of Si:Li). Because this 244 

mixing introduces valleys transverse to the field for which Eqns 1 & 2 do not hold, 𝜌̃1𝑠(𝐴1)(0) 245 

is not simply related to the actual zero field transverse radius 𝜌1𝑠(𝐴1). We performed Tight 246 

Binding calculations[43] in the range 0-30T, and extracted values of radius, and of the effective 247 

transverse radius by fitting a quadratic to 𝐸1𝑠(𝐴1)(𝐵), as shown in Table 2. The calculations 248 

were done with the sp3d5s* model [44], in supercells with side L = 48a = 26 nm. On-site 249 

corrections were included on the impurity atom [45]. We can see that 𝜌̃1𝑠(𝐴1)
2 (0) is about 1% of 250 

𝜌𝑛p±
2 − 𝜌̃1𝑠(𝐴1)

2 (0) or less (note we abbreviated 𝜌̃1𝑠(𝐴1)
2  to 𝜌1𝑠

2  at the end of the previous section), 251 

and this confirms that it may be neglected for the purpose of studying the excited states.  252 

 253 

 𝑟1𝑠(𝐴1) (nm) 𝜌
1𝑠(𝐴1)

 (nm) 𝑒𝜇𝐵
∗

4ℏ
𝜌̃

1𝑠(𝐴1)
2

 (neV/T2) 𝜌̃
1𝑠(𝐴1)
2

 (nm2) 

P 2.481 2.026 255 2.240 
As 2.125 1.735 181 1.590 
Sb 2.608 2.130 284 2.495 
Bi 1.630 1.331 99 0.870 

Table 2.  Tight Binding results. The zero-field 3D radius 𝑟1𝑠(𝐴1) = √3〈𝑧2〉 (and the 2D radius 254 

𝜌1𝑠(𝐴1) = √2

3
𝑟1𝑠(𝐴1)) were calculated from the TB wavefunctions. The QZE field tuning constant was 255 

found by calculating the binding energy from 0-30T and fitting with a quadratic. For the conversion to 𝜌̃
𝐴1

2
, 256 

we used the value of 𝜇
𝐵
∗  in Table 1. 257 

 258 

 259 
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 260 

Figure 3. Experimentally determined values of the zero-field energy splittings between excited states for 261 

different donor centres in silicon. Centres are displayed in order of binding energy. Data from Ref [46] are 262 

also included as open symbols. Error bars are from Gaussian fits (this work, or in the case of [46] the 263 

instrumental resolution).  264 

 265 

Exact diagonalization of single valley QZE 266 

We also investigated the detailed predictions of EMT by finding the eigen-values and eigen-267 

functions of Eqn (1). Three independent parameters are required in Eqn (1) are: 𝐸𝐻
∗ , 𝑎𝐵

∗  and  268 

(recall that 𝐵𝑎
∗ =  ℏ/𝑒𝑎𝐵

∗2), which may be found from 𝜖𝑟 , 𝑚𝑡
∗ and  or vice-versa. We follow 269 

the procedure of Faulkner[21] to extract 𝐸𝐻
∗  (which determines the energy scale) and  (which 270 

determines the fractional splitting between the p0 and p± states) by comparison of the zero field 271 

energy spectrum with the eigenvalues of 𝐻̂0𝑧𝑓𝑗,𝑧 = 𝜀𝑗𝑓𝑗,𝑧 (i.e. in zero field), except that whereas 272 

Faulkner used a multivariate minimisation of variational solutions, we calculated f with a 273 

Lanczos method[35] (although our theoretical results for 𝐸𝑛𝑝𝑚/𝐸𝐻
∗  for different values of  all 274 

agree extremely well with the earlier variational results). Faulkner noted that 𝐺 = (𝐸2𝑝± −275 

𝐸2𝑝0)/(𝐸3𝑝± − 𝐸2𝑝±) depends only on . Taking the value of the ratio to be G=1.543±0.001 276 

appropriate for Si:P (Fig 3) gives the value of  shown in Table 1. With this value the theoretical 277 

splitting 𝐸3𝑝± − 𝐸2𝑝±=0.08243𝐸𝐻
∗  (and this is very insensitive to ; it changes by only 0.1% 278 

over the range =0.18 to 0.22). Taking the experimental 𝐸3𝑝± − 𝐸2𝑝±=3.283±0.002 meV 279 

3.24

3.25

3.26

3.27

3.28

3.29

nat Si:P28Si:PSeSe 2
S2BiPSb

E
3p

- 
E

2p
 (
m

eV
)

Li
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1.55

1.56

1.57
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(E
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appropriate for Si:P (Fig 3) results in the value of 𝐸𝐻
∗  shown in Table 1. Faulkner’s values of 280 

=0.2079 and 𝐸𝐻
∗ =39.89meV (from G=1.555 and 𝐸3𝑝± − 𝐸2𝑝±=3.28meV) are very slightly 281 

different simply through use of better samples with sharper lines here. There is a very small 282 

variation among species (~1%) in both experimental parameters on Fig 3 though the values for 283 

Si:P from the different experiments (this work and [46]) are remarkably consistent (differing 284 

by 0.05%). It is difficult to see a pattern in the values, and although the error bars are in some 285 

cases quite large compared with the variation, the case of Si:Li is notably different from Si:P 286 

within their respective error-bars (other species having larger error due to the broader, weaker 287 

lines), which is probably due the (very small but detectable) effects of the CCC on the excited 288 

states concerned.  289 

 290 

Faulkner took 𝑚𝑡
∗=0.1905 (the band edge value from Hensel’s earlier cyclotron resonance of 291 

free electrons[20]) and used his value of 𝐸𝐻
∗  to extract 𝜖𝑟. Using our result for 𝑚𝑡

∗ from the LZE 292 

from the same experiment (see above) is preferable for self-consistency, and results in the 293 

values of 𝜖𝑟 , 𝑎𝐵
∗  etc shown in Table 1. 294 

 295 

We calculated the eigenvalues of 𝐻̂0𝑧 + 𝐻̂1 + 𝐻̂2 as a function of magnetic field along the 296 

valley axis with the Lanczos procedure. We extracted the transverse radius from the excited 297 

state wavefunctions: Fig 2b open symbols show 𝜌2 = 〈𝑥2 + 𝑦2〉 at a range of fields, and the 298 

zero-field values are given in Table 3. There are two ways to find the theoretical effective 299 

transverse radius 𝜌̃ at zero field. Firstly we calculated the effective radius 𝜌̃2(𝐵) from the 300 

double derivative of the EMT results for 𝐸(𝐵) using Eqn (3) (Fig 2b solid lines), and the zero-301 

field value agrees very well with the zero-field value of the theoretical 𝜌 (Fig 2b open symbols) 302 

as expected, which confirms the validity of Eqns (2) and (3). Then, to assess the procedure that 303 

was used to find the experimental 𝜌0 we performed a fit of Eqn (4) to the theoretical 𝐸(𝐵). In 304 

this case for the 2p± and 3p± we obtained 𝜌0  = 4.08 and 7.86 atomic units, i.e. 12.8 and 24.7 305 

nm respectively. These values agree very well with the experimental values given earlier from 306 
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the fits of Eqn (4) to the experimental data, but are about 1% and 2% less, respectively, than 307 

the exact 𝜌0 obtained from the theoretical wavefunctions (Table 3). This discrepancy is too 308 

small to be visible on Fig 2b. It arises just because of the fact that our fitting process took the 309 

QZE radius constriction with field, 𝜌̃(𝐵), to be a Lorentzian function, which is an imperfect 310 

approximation. There may also be an additional systematic error in the experiment due to the 311 

fact we neglected the contribution of the ground state (which would raise the experimental 312 

results by about 1% and 0.2% respectively). 313 

 314  
-E (meV) t (nm) l (nm) r (nm) 0 (nm) ’ (=l2/t2) 

1s 30.539 2.41 1.33 3.66 3.40 0.31  
 

     

2p0 11.463 4.42 4.48 7.69 6.25 1.02 

3p0 5.468 8.59 11.59 16.79 12.15 1.82 

4p0 3.297 12.36 21.42 27.65 17.49 3.00 

4f0 2.330 22.45 15.09 35.15 31.75 0.45 

5p0 2.225 16.97 32.96 40.78 24.01 3.77 

6p0 1.623 21.55 48.03 56.89 30.48 4.97 

5f0 1.504 35.33 27.99 57.27 49.96 0.63  
 

     

2p± 6.396 9.18 3.85 13.54 12.98 0.18 

3p± 3.113 17.83 13.04 28.39 25.21 0.54 

4p± 2.181 23.37 16.69 37.02 33.05 0.51 

4f± 1.887 28.86 23.56 47.13 40.81 0.67 

5p± 1.445 33.28 36.69 59.67 47.06 1.22 

5f± 1.255 45.10 33.51 72.04 63.77 0.55 

6p± 1.067 41.72 53.82 79.86 59.01 1.66 
Table 3. Single valley state dimensions from EMT produced with the Lanczos method in zero field. The quantities 315 

listed are 𝑡 = √〈𝑥2〉 = √〈𝑦2〉, 𝑙 = √〈𝑧2〉, 𝑟 = √2𝑡2 + 𝑙2, 𝜌0 = √2𝑡 and 𝛾′ = 𝑙2/𝑡2. The effective mass 316 
parameters used were from Table 1. The 1s state mentioned is the single valley EMT state (ignoring the CCC). 317 

 318 

 319 

Discussion 320 

We return to the motivation for this work, which was to examine the possibility for engineering 321 

overlap between neighbouring impurities for the purposes of quantum information 322 

applications. So far in this work we considered only the slowly varying envelope function, and 323 
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the need for obtaining high precision values for its radius. It is also important to remember that 324 

the wavefunction is modulated by quickly varying terms, and that these terms interfere for 325 

multi-valley wavefunctions[22][23]. Since valley interference is more commonly discussed in 326 

respect of the different components of the 1s ground state we illustrate the point with those 327 

states first. The single valley 1s states are mixed by the CCC and their degeneracy is lifted, and 328 

(apart from Si:Li) the ground state has A1 symmetry, meaning that the final wavefunction has 329 

the form Ψ1𝑠(𝐴1)(𝐫) = 1

√6
∑ 𝜓1𝑠,𝜇(𝐫)𝜇 = 1

√6
∑ cos(𝑘0𝑥𝜈)𝑓1𝑠,𝜈(𝐫)𝜈  where  runs over x, y, z, i.e. 330 

there is a fast-oscillating, cosinusoidal term in each of the three dimensions. This state is 331 

therefore quickly oscillating in all three dimensions, as shown in Fig 4 (bottom left). Note that 332 

for the ease of illustration we put the lattice-periodic functions 𝑢(𝐫) = 1 since it does not affect 333 

the general conclusions. Wavefunction plots for 1s(A1) with fewer approximations are 334 

available elsewhere[22][23]. The conduction band minima are 85% of the way from the  to the 335 

X-point, i.e. k0=0.85/a and so the cos(𝑘0𝑥𝜈) oscillation does not repeat with the lattice 336 

spacing. This means that there is a large change in wavefunction amplitude from atomic site to 337 

atomic site, which makes control over the overlaps difficult because they are extremely 338 

sensitive to position errors. We point out now that a significant advantage that can be obtained 339 

by using excited states to produce the coupling e.g. using the Stoneham-Fisher-Greenland 340 

scheme[6]. The advantage arises from the different valley interference. The high energy 341 

components of the ground state have E or T2 symmetry, and form a doublet and a triplet 342 

respectively. The three T2 states are quickly varying due to the valley interference in only one 343 

direction each: for example, one is Ψ1𝑠(𝑇2𝑧)(𝐫) = √2sin(𝑘0𝑧)𝑓1𝑠,𝑧(𝐫), shown in Fig 4 (bottom 344 

middle). These T2 states are optically accessible from 1s(A1) for light polarised along z, 345 

although with much smaller oscillator strength than to the excited states with odd-parity 346 

envelopes such as the 2p– state. These T2 states would be very forgiving of position errors in 347 

two of the three dimensions (x and y in the case of the Ψ1𝑠(𝑇2𝑧) state illustrated). The E states 348 

oscillate with k0 in two dimensions (x,y) and are therefore forgiving of positioning errors in the 349 

other dimension (z). Returning to the odd-parity excited states of our experiment above, the 350 
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same advantage is obtained for the 2p– state in the z-valley, Ψ2𝑝−(𝑇2𝑧)(𝐫) =351 

√2cos(𝑘0𝑧)𝑓2𝑝−,𝑧(𝐫), which is also varying in only the z-direction (Fig 4 bottom right), and 352 

likewise the 2p+ state. Note that the envelope 𝑓2𝑝−,𝑧(𝑟) is the same as the single valley EMT 353 

used earlier, since the CCC has no effect on excited states. It appears there is a strong 354 

motivation for utilizing the coupling between impurities mediated by THz pulses polarised in 355 

the plane, such as in schemes where the atoms in the ground 1s(A1) state are well isolated from 356 

each other, but during their excursion into the excited state they interact[6]. There may even be 357 

good reasons to investigate further donor species for which 1s(E,T2) is the ground state, such 358 

as Si:Li. 359 

 360 

 361 

 362 

 363 

Fig 4. The wavefunctions. The top row shows the six ground state envelope functions: the colour scale 364 

shows the probability density increasing from black (zero density) to white, on a spherical surface around 365 

the donor averaged over a valley interference oscillation period. The bottom row shows some example 366 

wavefunctions including the valley interference term (but not the cell-periodic term). The brightness shows 367 

the probability density on some illustrative surfaces around the donor, and the colour scale shows the 368 

wavefunction phase. The donor is at r=0 at the central vertex of the image and the length scale is shown 369 

in units of 𝑎0
∗ . The 1s(T2) state shown is the z-valley component (last one on the top row). All illustrations 370 

take the lattice periodic part of the wavefunction 𝑢(𝐫) = 1 simplicity. 371 
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 372 

 373 

Conclusion 374 

In conclusion, we have measured the silicon donor excited state radii experimentally for the 375 

first time. We found an analytic form for the field dependence of the radius that fits the data 376 

very well, and agrees also with the results of a Lanczos solution to effective mass theory 377 

validating the EMT scaling rules. We showed that non-parabolicity effects become detectable 378 

above about 10T, and indeed that there is a detectable (0.7%) difference in the zero-field 379 

effective masses for the 2p± and 3p± states due to the higher frequency Fourier components in 380 

more tightly bound states the former. We provide high precision effective mass parameters for 381 

low (and zero) field. The excited state radii do not vary by more than 2% among a wide variety 382 

of species including double donors, and they provide a major advantages for donor-donor 383 

coupling due to the more favourable valley interference effects. 384 

 385 

 386 
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