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Highlights 

 We treated the reactive crystallisation of paracetamol as a single process and optimized 

the solubility for crystallisation first, from which reaction stoichiometry was 

retrospectively determined. 

 The effects of water and temperature on reaction kinetics and crystal properties were 

jointly investigated for the first time. 

 Paracetamol form I particles with high purity were produced due to various amounts of 

water in reaction. 4'-acetoxyacetanilide was the main product in the reaction without 

water. 

 

Abstract 

By considering both reaction and crystallization of paracetamol as a single process for the 

purpose of continuous operation, the solubility for crystallization was firstly optimized, from 

which suitable concentrations of reagents for the reaction were then determined. The effects of 

water content and reaction temperature on reaction kinetics and mechanism as well as crystal 

properties were jointly investigated, for the first time, using chromatographic methods; 

paracetamol form I particles with high purity (99%) were produced with the presence of water, 

while 4'-acetoxyacetanilide was the main product in the absence of water.  

Keywords: Paracetamol; Synthesis; Kinetic study; Water effect; Reactive crystallization; 

Crystal properties 
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1 Introduction 

Paracetamol (Acetaminophen) is a widely used analgesic drug[1], traditionally  

manufactured by acetylating 4-aminophenol with a small stoichiometric excess of acetic 

anhydride in an aqueous medium [2-4]. Many variations in reaction have since been 

implemented to enhance productivity and product properties, for instance, Baron et al[5] 

dissolved 4-aminophenol in hot acetic acid, treated it with carbon, filtered it out, the filtrate 

was further treated with acetic anhydride at 85 °C; Young[6] added ammonium hydroxide to 

increase product purity; Ness and Warner[7] hydrogenated p-nitrophenol to p-aminophenol and 

concurrently acetylated the p-aminophenol to paracetamol; Caldeira[8] used phosphoric acid 

as the catalyst. Either a precipitation or crystallization step was then used to isolate paracetamol 

particles under limited control, affecting crystal properties [9-14], i.e. two separate unit 

operations are the norm for reactive crystallization. In this work, we treat the reactive 

crystallization as a single process for the purpose of continuous operation, we optimize 

solubility for crystallization as the first protocol, the concentrations of reactants that deliver the 

optimized solubility are retrospectively determined. By maintaining the targeted ratio of acetic 

acid to water in the reaction that optimizes the solubility, the effects of water and temperature 

on reaction kinetics, mechanism and crystal properties were jointly investigated; these are new 

from previous studies in this area. We demonstrate that by manipulate reaction conditions, we 

can achieve the control over crystal properties. 
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2 Experimental set up and procedures 

2.1 Chemicals and analytical methods 

4-Aminophenmol (Sigma Aldrich UK Ltd.; purity, ≥ 99 % HPLC grade; mp, 187.5 ºC; 

MW, 109.13 g mol-1) was sourced in the form of light brown crystalline solid. Paracetamol 

(GlaxoSmithKline Pharmaceutical Company; purity, 99.8 %; mp, 169 ºC; MW, 151.16 g mol-

1) was purchased for the purpose of comparison with crystals produced. 4'-Acetoxyacetanilide 

(TCI AMERICA; purity, ≥99.0 % HPLC, Nitrogen; mp, 155 ºC; MW, 193.20 g mol-1) was 

purchased for the identification and calibration of the intermediate product. Acetic anhydride 

(purity, 99+ % pure; density, 1.08 g cm-3; MW, 102.09 g mol-1) and methanol (purity, HPLC 

grade; density, 792 kg m-3; MW, 32.04 g mol-1) were also sourced. Distilled water (density, 1 

g cm-3; MW, 18.02 g mol-1) was prepared in-house. 

 

The purity of product particles was analyzed using the Agilent1100 Series HPLC System, 

and the chromatograph column was a reverse phase ZORBAX SB-C8 (4.6×150 mm; 5 µm 

packing). The UV detector was set at 243 nm and the mobile phase running throughout the 

system was a mixture of methanol and water with a mass ratio of 1:3. The mass spectrometry 

measurement was carried out at the School of Chemistry, the University of Edinburgh. The 

concentration of paracetamol was analyzed by a UV-Vis spectrophotometer (Hewlett-Packard 

Model 8453) based on the characteristic UV absorbance peak at 243 nm. The calibration 

experiments were carried out from six known concentrations of 0, 0.3, 0.5, 0.7, 1.0, 1.3 g L-1. 

A linear relationship of the absorbance, A, as a function of the concentration, C, was established 

as: A = 0.0015 + 0.686 C (g L-1), with a correlation coefficient of 0.9984.  
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The crystal size distributions were analyzed by a Mastersizer 3000™ (HYDRO, Malvern); 

the polymorphism of crystals by PXRD (Chemistry Department, Heriot-Watt University with 

the scanning range from 5 º to 85 º) and a Leica ATC 2000 Trinocular Microscope; the molecule 

structures of the products by the AV300 Proton Nuclear Magnetic Resonance spectroscopy (1H 

NMR). 

 

2.2 Experiments procedures 

In the synthesis, paracetamol is produced with acetic acid as a side product, which is 

also the solvent for the following crystallization process. In order to maximize the solubility of 

paracetamol, a range of solubility were examined by mixing acetic acid with various water 

contents at different temperatures. 10 mg of paracetamol was firstly weighted in a 10 mL 

scintillation vial; the solutions of water and acetic acid with six different ratios (Acetic 

acid:Water = 0:10, 3:7, 5:5, 7:3, 8:2 and 10:0) were then carefully titrated into the vial by a 

micropipette with intermittent shaking until all solids had been dissolved. The solubility data 

at temperatures of 20, 35, 50, 65, and 75 °C were determined in a water bath, and each 

measurement was repeated three times. The solubilities of paracetamol in various solvents were 

calculated by dividing the weight of paracetamol solid by the total weight of solvents added to 

the vial, from which the amounts of reactants required to deliver such solubility in the said ratio 

of acetic acid to water can then be back-calculated.  

 

Once the ratio and the amounts of reactants have been determined, the reaction was then 

proceeded by charging 4-aminophenol (10 g or 0.09 mol), acetic anhydride (35 g or 0.34 mol) 

and different amounts of water into a pre-heated 250 ml jacked reactor at 50 °C and at 200 rpm. 

The reactor was heated up to the desired constant temperature for the reaction to commence. 
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13 samples were taken at regular time intervals during the reaction process using a pipette with 

an accurate volume of 0.3 ml; quenched and diluted 10,000 times with the mobile phase 

solution (Methanol:Water = 1:3). The overall reaction time was about 60 min. The 

crystallization was thereafter immediately initiated by cooling the solution to 20 °C at a fixed 

cooling rate of 1.2 °C min-1. A vacuum filtration was performed at the end of the crystallization 

at 20 oC and crystals were washed with distilled water and dried in an oven for 24 hours. 

 

Some specific conditions are outlined below: 

A) Water content effects – water contents of 0 g, 10 g (or 0.55 mol), and 20 g (or 1.11 mol) 

were used in reaction at a fixed operating condition of 70 °C and 200 rpm;  

B) Temperature effects – this was investigated by performing the synthesis at four reaction 

temperatures (50 °C, 60 °C, 70 °C and 80 °C) at a fixed water content of 20 g (1.11 mol). 

  

3 Results and discussion 

3.1 Optimization of solubility and determination of reactants contents 

Acetic acid is the main solvent for paracetamol according to the reaction scheme, the 

solubilities of paracetamol in the mixtures of acetic acid and water were measured and shown 

in Fig. 1. In terms of the solubility of paracetamol in water, these range from about 0.009 to 

0.049 g g-1 water for temperatures from 20 °C to 75 °C in this work and are comparable with 

literature data, e.g. from 0.010 to 0.035 g g-1 water for temperatures from 20 °C to 55 °C[15, 

16]; 0.021 g ml-1 water at 30 °C[17]; of 0.017 g g-1 water[18]. Granberg and Rasmuson[18] 

also reported the solubility of paracetamol in acetic acid as 0.083 g g-1 at 30 °C, which is slightly 

higher than our data of 0.053 g g-1 acetic acid. Operational errors from the gravimetric method 

might be the main reason for the difference.  
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Fig. 1. Solubility of paracetamol in different ratios of acetic acid to water 

 

As shown in Fig. 1, the highest solubility occurred when the mass ratio of acetic acid 

to water was at 7:3; the solubility increased from 96.83 to 401.23 g kg-1
solvent

 with the increasing 

reaction temperature from 20 °C to 75 °C, the latter was the reaction temperature. From the 

maximized solubility, the amounts of reactants were reversely calculated based on the reaction 

stoichiometry. In order to make up the desired ratio of 7:3 acetic acid to water, about 14.48 g 

(0.13 mol) 4-aminophenol should theoretically be reacting with an excessive amount of acetic 

anhydride (36.55 g or 0.36 mol) in the 250 ml reactor at 75 °C, the extra acetic anhydride is 

then converted to acetic acid via a hydrolysis with water. In practice, however, the mass of 

crystals generated at the end of crystallization was so large that the mixing condition was 

adversely affected. On balance, the contents of 4-aminophenol and acetic anhydride were 

accordingly reduced by 30 % to 10 g (0.09 mol) and 35 g (0.34 mol) respectively; the 

temperature to 70 °C, this gives the best controls over both good supersaturation and better 

mixing. 

 

3.2 Effect of water content on reaction mechanism 
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Water in the paracetamol synthesis generally helps the hydrolysis of acetic anhydride, 

promoting the formation of paracetamol, however, there have been very few studies on the 

effects of water on reaction kinetics and crystal properties. In this work, the effects of water 

content on reaction kinetics and mechanism were fully examined; we added 0 g, 10 g (0.55 

mol) and 20 g (1.11 mol) distilled water into the synthesis, Fig. 2 shows the profiles of 

concentrations of paracetamol with and without water. It is clear that the rising curve becomes 

steeper with water and the degree of steepness increases with the increasing amount of water. 

From the general reaction mechanism (nucleophilic addition-elimination) of paracetamol 

synthesis[14], on one hand, the lone pair of electrons on the amine of 4-aminophenol attacks 

the C=O bond of acetic anhydride to cause it polarized. Nitrogen has then a positive charge but 

regains electrons by losing a proton. The negative charge on the oxygen comes back in to 

reform the C=O bond. This leads to the other C-O bond to break and forms acetic acid as a by-

product, while paracetamol is the product from the amide bond formation process. When water 

is added, the hydrolysis reaction between acetic anhydride and water generates H+, these free 

hydrogen ions increase the reactivity in the solution, thus improve the reaction performance, 

as shown in Fig. 2 that the more the added water, the quicker the level off becomes.  

 

On the other hand, however, the excessive acetic anhydride in this work also leads to a 

reduction of paracetamol, with 4’-acetoxyacetanilide being detected in the solution. This can 

be postulated from the fact that the amount of diacetamate formed in the presence of the excess 

of acetic anhydride is very small and unstable in solution; is quickly hydrolyzed until an 

equilibrium has been reached. The fluctuations of the concentration of paracetamol near 10 

minutes during the reaction in Fig. 2 are the clear evidence. 
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Fig. 2. Concentration of paracetamol with different water contents (Temperature = 70 

°C) 

 

To understand better the reaction mechanism with the presence of water, we analyzed the 

samples taken from the reacting solution using the LC-MS, Fig. 3 shows the chemical 

structures of paracetamol and diacetamate: the first peak at 3 min is the paracetamol molecular 

with a total density of 152.0647 g mol-1, and the second peak at 4.7 min is an diacetamate of 

194.0706 g mol-1, the latter is also the molecular weight of 4’-acetoxyacetanilide. With this 

knowledge, the reaction scheme for paracetamol synthesis with and without water can now be 

illustrated in Fig. 4. We see that the synthesis of paracetamol (Reaction (1) in Fig. 4) and the 

reaction between excess acetic anhydride and water (Reaction (2) in Fig. 4) are the two main 

reactions. When water is absent in the system, diacetamate is formed as a side product (Side 

reaction in Fig. 4). When water is added, the excess acetic anhydride is more likely to react 

with water, rather than to consume the –OH bonds of paracetamol molecules. As a result, the 

acetic acid generated from reactions (1) and (2) together with water left in the system are the 

solvent for the follow-on cooling crystallization of paracetamol. 
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Fig. 3.  Sample analysis by LC-MS 
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Fig. 4. The reaction scheme for paracetamol synthesis with and without water (a, 4-

aminophenol; b, acetic anhydride; c, paracetamol; d, acetic acid; e, water; f, 4’-

acetoxyacetanilide) 

 

3.3 Effect of temperature on reaction rate constant 

From the reaction viewpoint, higher temperature leads to higher reaction rate. In the 

following experiments, reaction temperatures of 50 °C, 60 °C, 70 °C and 80 °C were studied 

at a fixed water content of 20 g (1.11 mol), Fig. 5 shows the profiles of the concentrations of 

paracetamol as a function of time. We see a common trend with an immediate increase in the 

concentration in the first five minutes of synthesis, then quick leveling off. As expected, higher 

concentrations of paracetamol were obtained for higher temperatures.  
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Fig. 5. Concentration of paracetamol at different temperatures (water content = 20 g) 

 

The data points in the first 5 minutes were then employed to extract the kinetics of the 

paracetamol synthesis. Because acetic anhydride was added in excess, this 2nd order reaction 

becomes a pseudo first-order reaction. Based on the limiting reagent of 4-aminophenol, we 

have: 

 

rR = −
dCA

dt
= kCA                                                                                                             (1) 

 

where rR is the generation rate of paracetamol (g L-1 min-1); CA and CA0 are the concentrations 

of 4-aminophenol at any time and at t = 0 (g L-1) and 𝑘 is the reaction rate constant. By plotting 

ln (
C𝐴0

𝐶A
) vs time, we obtained a straight line fit that confirms the order of the reaction; the slope 

of the trend line is the rate constants, k; Table 1 summarizes the rate constants at various 

temperatures. Following the Arrhenius equation, the activation energy for this reaction was 

determined as 37.31 KJ mol-1. 
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Table 1. Influence of temperature on the rate constant of paracetamol synthesis 

Temperature T (K) Correlation coefficient Rate constant, k (min-1) 

323 0.7903 0.61 

333 0.9733 0.94 

343 0.9947 1.41 

353 0.8645 1.99 

 

Few literature has been found on the kinetics involving 4-aminophenol and excess acetic 

anhydride; one work close to our study involved almost equalmolar reactants and a 2nd order 

reaction kinetics was evaluated with a rate constant of 0.66 ml mg-1 min-1[8]. It should be 

noticed that although the reaction between paracetamol and 4'-acetoxyacetanilide is affected 

by complex conditions (concentration, mixing, temperature, water content, PH and etc.), the 

reaction kinetics evaluated above is still applicable as the hydrolysis step has much faster 

kinetics and the overall kinetics is dominated by that of the slowest step. This is supported by 

the work of Lee et al[3] and Srabovic et al[14]. The reaction time in our work is approximately 

10 minutes, which agrees with the literature results of from 3 to 15 minutes[5, 6, 8].  

 

3.3 Effect of water content on supersaturation 

The mixture of acetic acid and water is the solvent for crystallization after the reaction, 

different amounts of water used in the reaction step affect the solvent compositions as shown 

in Table 2, in turn the saturation and solubility. The degree of supersaturation is calculated for 

different water concentrations (see Fig. 6), according to the solubility of paracetamol in these 

aqueous acetic acid solutions. We see in Fig. 6 that less water leads to higher supersaturation, 

in turn smaller particle sizes. This is expected as higher supersaturation favours nucleation. The 
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morphology of paracetamol crystals went through from needles to rod-like shape with the 

increase of water in the synthesis, the degree of the agglomerations seems to decrease with the 

increase of water content (Fig. 7). The morphologies in our work are similar to these of previous 

studies by Sudha and Srinivasan [17]and Prasad et al[19]. The exception is for the crystals on 

the top left of Fig. 7, these were confirmed as 4'-acetoxyacetanilide particles of high purity by 

NMR. With excess acetic anhydride and in the absence of water in the reaction system, the 

nucleophilic addition-elimination takes place on both –NH and –OH functional groups, 4’-

acetoxyacetanilide cannot be hydrolyzed to form paracetamol, as shown in the reaction scheme 

above. In addition, the solubility of paracetamol is much higher than that of the side product 

[18, 19]. In summary, 4'-acetoxyacetanilide is the product from this reactive crystallization 

without water, while paracetamol with the presence of water. Both products are of high purities 

as there is no visible impurity peak shown in the NMR data. In addition, 20 g of water content 

is the best condition for the desired crystal polymorph. 

 

Table 2. Solvent compositions with different amount of water after reaction 

Samples Water content Solvent composition (mass ratio) (Acetic acid w%) 

S1 0 g (0 mol) Acetic acid : Acetic anhydride = 2 : 9 (no water) 

S2 5 g (0.28 mol) Acetic acid : Water = 226 : 3 (98.69 w%) 

S3 10 g (0.55 mol) Acetic acid : Water = 13 : 2 (86.67 w%) 

S4 20 g (1.11 mol) Acetic acid: Water=7:3 (70 w %) 
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Fig. 6. The supersaturation and crystal size as a function of water contents 

 

Fig. 7. The effect of water content on crystals morphology 

  

3.5 Effect of temperature on supersaturation 

In continuous reactive crystallization, the temperature at the end of reaction will be the 

starting temperature of crystallization. For a constant temperature of 20 °C at the end of 

crystallization, the higher the reaction temperature, the larger the supercooling, in turn the 

supersaturation (see Fig.8), the smaller the crystal size. The morphology of crystal products at 
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different temperatures is shown in Fig. 9; no visible change in crystal shapes are seen, whereas 

the mean crystals sizes decreased when the temperature increased from 50 to 80 °C. To perform 

the reaction at lower temperatures while having little effect on product quality has both 

operational and environmental benefits. Generally, the crystals from the reaction temperature 

of 70 °C had uniform morphology and better size distribution. 

 

 

Fig. 8. The supersaturation and crystal size as a function of reaction temperature 

 

 

Fig. 9. The effect of temperature on crystals morphology 
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3.6 Crystal properties 

From a large number of experiments carried out, paracetamol alone was produced from 

reactions with 10 g and 20g of water at temperatures from 50 °C to 80 °C, whereas 4'-

acetoxyacetanilide was identified with 0 g and 5 g of water. Paracetamol particles with a high 

purity (~99 %) were made when enough water (≥ 10 g, or 0.55 mol) were present, while 

temperature had little effect on the product purity.  

In general, the variations in shapes among each solvent system are quite similar. Non-

centrosymmetric growth and crystal shapes in Figs. 7 and 9 agree with previous results 

predicted by steady–state morphologies [20, 21]. Sharp needle shaped crystals were observed 

for the reaction with less water concentration (5 g H2O). Apart from the effect of high 

supersaturation, the presence of by-product is probably another reason for the development of 

needle-shaped crystals. Similar polymorphic forms were reported[22], involving aqueous 

solution containing 4'-acetoxyacetanilide. 

All crystals with water are of Form I, see the PXRD patterns in Fig. 10 which are the 

same with these from Nichols and Frampton[23], while a different X-ray diffraction pattern is 

displayed for the crystals in absence of water; these hexagonal crystals are 4'-

acetoxyacetanilide. This supports the NMR results. The size distribution of paracetamol is 

shown in Fig. 11 with D50 = 84.3 µm and is slightly broader when compared with the work of 

Fujiwara and Chow[16] in a supersaturation- controlled seeded batch crystallization. 

Agglomerations occurring during the crystallization step could be the potential reason for this. 

We found that there was less agglomerations for reactions with higher water contents, as the 

polarity of the solvent increases with the concentration of water. This agrees with previous 

study[24, 25] in that agglomerates became weaker in more polar solvents.   
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Fig. 10. Powder X-ray diffractions for purchased and produced paracetamol with 

different water contents 

 

 

Fig. 11. Crystal size distribution for paracetamol particles 

 

4 Conclusions 

In this work, the reactive crystallization of paracetamol is considered as a single process 

for the purpose of continuous operation. The solubility for crystallization was optimized first, 

5 10 15 20 25 30 35 40 45 50

 

 

2 Theta (degree)

 Purchased

 20g water

 10g water

 5g water

 0g water

ACCEPTED M
ANUSCRIP

T



19 

 

from which suitable reagent concentrations were determined. We investigated the effects of 

reaction temperature and water content on reaction kinetics and mechanism as well as product 

quality jointly for the first time; Form I crystals with high purity were obtained with the 

presence of water, and 4'-acetoxyacetanilide without water. The understanding gained and the 

process conditions identified from this work are the basis for continuous operation, which will 

be our next communication. 

 

Acknowledgments 

Authors wish to acknowledge the EPSRC Centre for Innovative Manufacturing in 

Continuous Manufacturing and Crystallization (Grants EP/I033459/1 and EP/K503289/1) and 

the Heriot-Watt University for funding this research. We thank Juliet Adelakun, Arabella 

Mclaughlin, Guillermo Jimeno Millor, Ross Laska and Francisca Navarro Fuentes in COBRA 

for their assistances.  Thanks also go to Alan Taylor from the University of Edinburgh and 

Georgina Rosair at Heriot-Watt University for their assistance with LC-MS and PXRD 

measurements.  

  

ACCEPTED M
ANUSCRIP

T



20 

 

 

References 

[1] D. Lednicer, The organic chemistry of drug synthesis, Wiley-Interscience, New York, 2007. 

[2] F. Ellis, Paracetamol - a curriculum resource, Royal Society of Chemistry, London, 2002. 

[3] T. Lee, H.Y. Lin, H.L. Lee, Engineering reaction and crystallization and the impact on 

filtration, drying, and dissolution behaviors: the study of acetaminophen (paracetamol) by 

in-process controls, Organic Process Research & Development, 17 (2013), pp. 1168-1178. 

[4] H.L. Lee, H.Y. Lin, T. Lee, Large-scale crystallization of a pure metastable polymorph by 

reaction coupling, Organic Process Research and Development, 18 (2014), pp. 539-545. 

[5] F.A. Baron, H.L. Schulman, A.E. Weinberg, Preparation of N-acetyl-p-aminophenol, US 

Patents, 3,917,695 (1975). 

[6] D.W. Young, Preparation of nu-acetyl-p-aminophenol, US Patents, 3,113,150 (1963). 

[7] J.H. Van Ness, J.B. Warner, Preparation of N-acetyl-p-aminophenol, US Patents, 4,670,589 

(1987). 

[8] R.L.F. De Caldeira, An assessment of cross-contamination issues in the context of chemical 

and pharmaceutical processes using a continuous oscillatory baffled reactor, Heriot-Watt 

University, PhD Thesis (2010). 

[9] D. Acevedo, Z.K. Nagy, Systematic classification of unseeded batch crystallization systems 

for achievable shape and size analysis, Journal of Crystal Growth, 394 (2014), pp. 97-105. 

[10] C. Lindenberg, M. Krättli, J. Cornel, M. Mazzotti, J.r. Brozio, Design and optimization of 

a combined cooling/antisolvent crystallization process, Crystal Growth and Design, 9 

(2008), pp. 1124-1136. 

[11] J.W. Mullin, Crystallization, Butterworth-Heinemann, Oxford, 2001. 

ACCEPTED M
ANUSCRIP

T



21 

 

[12] S. Ferguson, F. Ortner, J. Quon, L. Peeva, A. Livingston, B.L. Trout, A.S. Myerson, Use 

of continuous MSMPR crystallization with integrated nanofiltration membrane recycle for 

enhanced yield and purity in API crystallization, Crystal Growth & Design, 14 (2013), pp. 

617-627. 

[13] A.J. Alvarez, A.S. Myerson, Continuous plug flow crystallization of pharmaceutical 

compounds, Crystal Growth & Design, 10 (2010), pp. 2219-2228. 

[14] M. Srabovic, M. Huremovic, B. Catovic, S. Muratovic, A. Taletovic, Design synthesis and 

crystallization of acetaminophen, Journal of Chemical, Biological and Physical Sciences, 

7 (2017), pp. 218-230. 

[15] Z.K. Nagy, M. Fujiwara, X.Y. Woo, R.D. Braatz, Determination of the kinetic parameters 

for the crystallization of paracetamol from water using metastable zone width 

experiments, Industrial & Engineering Chemistry Research, 47 (2008), pp. 1245-1252. 

[16] M. Fujiwara, P.S. Chow, D.L. Ma, R.D. Braatz, Paracetamol crystallization using laser 

backscattering and ATR-FTIR spectroscopy: metastability, agglomeration, and control, 

Crystal Growth & Design, 2 (2002), pp. 363-370. 

[17] C. Sudha, K. Srinivasan, Understanding the effect of solvent polarity on the habit 

modification of monoclinic paracetamol in terms of molecular recognition at the solvent 

crystal/interface, Crystal Research and Technology, 49 (2014), pp. 865-872. 

[18] R.A. Granberg, Å.C. Rasmuson, Solubility of paracetamol in pure solvents, Journal of 

Chemical & Engineering Data, 44 (1999), pp. 1391-1395. 

[19] K.V. Prasad, R.I. Ristic, D.B. Sheen, J.N. Sherwood, Crystallization of paracetamol from 

solution in the presence and absence of impurity, International journal of pharmaceutics, 

215 (2001), pp. 29-44. 

[20] J. Li, M.F. Doherty, Steady state morphologies of paracetamol crystal from different 

solvents, Crystal Growth & Design, 17 (2017), pp. 659-670. 

ACCEPTED M
ANUSCRIP

T



22 

 

[21] Z.B. Kuvadia, M.F. Doherty, Effect of structurally similar additives on crystal habit of 

organic molecular crystals at low supersaturation, Crystal Growth & Design, 13 (2013), 

pp. 1412-1428. 

[22] A.-L. Chow, P. Chow, W. Zhongshan, D. Grant, Modification of acetaminophen crystals: 

influence of growth in aqueous solutions containing p-acetoxyacetanilide on crystal 

properties, International Journal of Pharmaceutics, 24 (1985), pp. 239-258. 

[23] G. Nichols, C.S. Frampton, Physicochemical characterization of the orthorhombic 

polymorph of paracetamol crystallized from solution, Journal of Pharmaceutical Sciences, 

87 (1998), pp. 684-693. 

[24] E.M. Ålander, Å.C. Rasmuson, Mechanisms of crystal agglomeration of paracetamol in 

acetone - water mixtures, Industrial & engineering chemistry research, 44 (2005), pp. 

5788-5794. 

[25] E.M. Ålander, M.S. Uusi-Penttilä, Å.C. Rasmuson, Agglomeration of paracetamol during 

crystallization in pure and mixed solvents, Industrial & engineering chemistry research, 

43 (2004), pp. 629-637. 

 

ACCEPTED M
ANUSCRIP

T


