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ABSTRACT
This paper proposes a new algorithm to restore 3D single-
photon Lidar images obtained under challenging realistic sce-
narios which include imaging multilayered targets such as
semi-transparent surfaces or imaging through obscurants such
as scattering media (e.g., water, fog). The Data restoration
and exploitation is achieved by minimising an appropriate
cost-function accounting for the data Poisson statistics and
the available prior knowledge regarding the depth and reflec-
tivity estimates. The proposed algorithm takes into account
(i) the non-local spatial correlations between pixels, by using
a convex non-local total variation (TV) regularizer, and (ii)
the clustered nature of the returned photons, by using a col-
laborative sparse prior. The resulting minimization problem
is solved using the alternating direction method of multipliers
(ADMM) that offers good convergence properties. The al-
gorithm is validated using both synthetic and real data which
show the benefit of the proposed strategy in the sparse regime
due to a fast acquisition or in presence of a high background
due to obscurants.

Index Terms— Lidar waveform, Poisson statistics, image
restoration, ADMM, NR3D, collaborative sparsity.

1. INTRODUCTION

3D laser detection and ranging (Lidar) imaging provides rich
information regarding the depth profile and reflectivity of
observed targets. This is achieved by emitting laser pulses
and recording the arrival times of the reflected photons using
a time-correlated single-photon counting (TCSPC) module.
A histogram of photon counts with respect to (w.r.t.) time-of-
flight is then constructed for each pixel. For single-layered
surface compact objects, the histogram contains one peak
whose location and amplitude are related to the depth and
reflectivity of the observed target. In this paper, we are inter-
ested in challenging scenarios including: the sparse photon
regime that is encountered when reducing the acquisition
times or for long-range imaging [1]; the presence of multi-
peaks (due to imaging through semi-transparent surfaces or
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when the laser beam covers many depth surfaces) [2,3]; and a
high background level (e.g. imaging through obscurants) [4].

Although TCSPC-based ranging has a limited shot-noise
sensitivity and a fine surface-to-surface resolution, it often re-
quires a restoration step when acquired under real-world sce-
narios [2, 5, 6]. Many solutions have been proposed in the
literature; e.g., [5] considered a Markov chain Monte-Carlo
(MCMC) algorithm which showed promising results but a
high computational cost; [2,6] expressed the problem using a
convex formulation combining the data statistics and regular-
ization terms leading to faster results. However, the approach
in [2] assumes the sparsity of the received photons and may
lead to the detection of background noise as a target. The reg-
ularization in [6] showed good results for scenes presenting
objects well separated in depth, however, it might be inappro-
priate for targets with distributed depths which will occupy
the full depth histogram when considering all the pixels. Fur-
ther simplifications were adopted in [7], such as the presence
of one surface and a Gaussian system impulse response, lead-
ing to faster results. However, these assumptions may reduce
the impact of this algorithm in real scenarios.

In this paper, we propose a solution to restore 3D images
by minimizing a convex function combining the Poisson data
statistics, which is expressed using a linear formulation as
in [2, 6], with two regularization terms. Because of the data
fine resolution and cube sparsity (i.e., sparsity in the 3D do-
main), both regularizers operate on a low-pass filtered cube,
which shows better recovering properties. The first convex
term generalizes [6] by accounting for non-local spatial cor-
relations between the reflectivities. The second term assumes
the presence of a few number of peaks in each group of local
pixels, which is achieved using a local collaborative sparse
prior (group-sparsity) [8–10]. The parameters of the result-
ing formulation are then estimated using an alternating di-
rection method of multipliers (ADMM) algorithm [7,11–13].
The proposed approach is validated on synthetic and real data
showing good results under different conditions.

The paper is organized as follows. The observation model
is introduced in Section 2 followed by the description of the
proposed approach and estimation algorithm in Section 3. Re-
sults on synthetic and real data are presented in Section 4.
Conclusions and future work are finally reported in Section 5.
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2. OBSERVATION MODEL

The Lidar system operates by sending light pulses and de-
tecting the returned photons and their time of flight from the
target. This operation can be repeated for each pixel loca-
tion when using a scanning system (e.g., raster scan systems
[14]) or by directly acquiring an array of pixels (e.g., array
based systems [15]). For both approaches, a histogram can
be constructed for each pixel by representing the number of
received counts with respect to their times-of-arrival. More
precisely, the Lidar observation can be gathered in the matrix
yn,t , where n ∈ {1, · · · , N} and t ∈ {1, · · · ,K}, which
represents the number of photon counts within the tth bin of
the nth pixel, where N,K are the number of pixels and time
bins, respectively. If the laser beam is reflected by a single
surface, the histogram will contain a single peak whose am-
plitude and position are related to the target’s reflectivity and
depth, respectively. However, when the observed scene con-
tains semi-transparent surfaces, obscurants or the laser beam
covers many depth surfaces, the returned signal may contain
multiple peaks, located at distances related to the observed
depths. This paper principally deals with the multi-peaks and
a high level of noise cases due to imaging through obscurants
and semi-transparent surfaces. Assuming the observed pho-
ton counts yn,t are distributed according to a Poisson distri-
bution P (.) as follows [16, 17]

yn,t ∼ P (sn,t) (1)
where

sn,t =

Mn∑
m=1

[rn,mg (t− kn,mT )] + bn (2)

and Mn is the number of layers in the nth pixel, T is the time
resolution of the system, kn,m ≥ 0 is the range’s position of
themth object from the sensor (related to its depth), rn,m ≥ 0
is the mth reflectivity of the target, bn ≥ 0 denotes the back-
ground and dark counts of the detector, and g(.) represents the
system impulse response (SIR) assumed to be known from
the calibration step. The discrete time version of (2), when
considering K time bins, can be expressed as a linear system
(convolution by the SIR) as follows [2]

sn = Gxn (3)

where G = [g1, · · · , gK ,1K×1] is a K × (K + 1) matrix
gathering shifted impulse responses, 1i×j denotes the (i× j)
matrix of 1, gi = [g(T−iT ), g(2T−iT ), · · · , g(KT−iT )]>
is a (K×1) vector representing the discrete impulse response
centered at iT and xn is a (K + 1) × 1 vector whose value
are zero except for xn(kn,m) = rn,m,∀m, and xn(K+1) =
bn. Using (3), straightforward computations show that the
negative-log-likelihood associated with the discrete observa-
tions yn,k ∼ P [(Gxn)k] is given by

Ln (xn) = Hn (Gxn) (4)

whereHn : RK → R ∪ {−∞,+∞} is given by

Hn (z) =
K∑
k=1

{
zk − yn,k log

[
z
(+)
k

]
+ iR+

(zk)
}

(5)

where z(+)
k = max {0, zk} and iR+

(x) is the indicator func-
tion that imposes non-negativity (iR+

(x) = 0 if x belongs to
the non-negative orthant and +∞ otherwise). Finally, assum-
ing independence among the observed pixels conditional on
X leads to the following negative-log of the joint likelihood

L (X) = − log [P (Y |X)] =
∑
n

Ln (xn) (6)

where Y (resp. X) is a K × N (resp. (K + 1) × N ) ma-
trix gathering the vectors yn (resp. xn). The goal is then to
estimate the sparse matrix X , where the positions and values
of the non-zero elements correspond to the target depths and
intensities, respectively.

3. REGULARIZED PROBLEM

Estimating the matrix X is an ill-posed inverse problem that
requires the introduction of prior knowledge (or regulariza-
tion terms) related to the target depths and reflectivities in ad-
dition to the data fidelity term L (X) in (6), as follows

C (X) = L (X) + iR+
(X) + τ1φ1 (X) + τ2φ2 (X) (7)

where τ1 > 0, τ2 > 0 are two regularization parameters,
iR+ (X) =

∑
n,k iR+ (xn,k) and φ1, φ2 are two regulariza-

tion functions associated with depth and reflectivity, as de-
tailed in the next sub-sections.

3.1. Priors on the support: depth regularization

The detected photons associated with a target are generally
clustered inside the cube in contrast to the background counts
that spread over the full cube. This paper accounts for this ef-
fect by combining the priors used in [2, 6, 18] and provides a
solution to their limitations. To separate the noise from the
signal return, we assume sparsity of the latter on a down-
sampled image. This will detect cluster of returns that are
probably due to the target, while it will eliminate the isolated
counts due to noise. An `2,1 mixed norm is used to impose
collaborative sparsity [8, 10], i.e., sparsity on small cubes ob-
tained by grouping local pixels and depth bins, as follows

φ1 (X) = ||diag(v)KFX(:)||2,1 (8)

where X(:) ∈ R(K+1)N×1 denotes the vectorization of the
matrix X , F ∈ RKN×(K+1)N is a matrix that selects the
first K rows of X and discard the background row, K :
RKN×1 → RSb×NB is a linear operator that provides an
Sb × NB matrix as an output where its column gathers the
Sb elements of a bloc of size Sb = (rb × cb × tb) and NB
denotes the number of these blocs in the data cube and v ∈
RNB×1 contains weights for each bloc. One can also express



φ1 (X) as follows φ1 (X) =
∑NB

i=1 vi

√(∑
(t,n)∈νi x

2
n,t

)
,

where νi contains the pixel and time bin indices of the ith
bloc.

3.2. Priors on the counts: regularized intensity

To restore the observed count values, the proposed regu-
larization term will exploit the non-local spatial correlation
between count values of the image. Non-local approaches
have shown promising results to restore natural images (es-
pecially textured images) and represent a key ingredient in
most state-of-the-art algorithms [19–21]. In this paper, we
consider photon-starved regime in which the histograms are
sparse and prevent the direct application of spatial correlation
regularizations. To solve this problem, the spatial regulariza-
tion is performed on a low-pass filtered image in the range
dimension which improves the separation between the target
features and the background noise as highlighted in [6, 22].
To achieve this, each pixel is connected to the other similar
pixels in the image (through the consideration of similarity
weights W ) and will benefit from their information to im-
prove its estimate. Under these considerations, the proposed
regularization term can be mathematically expressed as

φ2 (X) = ||HwDhFX(:)||2F (9)

where Dh ∈ RKhN×KN is a matrix summing the photon
counts of each #h successive time bins,Kh is the integer part
of the division K/h, and Hw ∈ RndKhN×KhN is a block-
circulant-circulant-block matrix which computes weighted
differences between each pixel and other nd pixels located in
a fixed field (e.g., a large bloc of neighbourhood pixels). More
precisely, the operator Hw : RKhN → RndKhN performs
the following operation

||Hwz||2F =

N∑
n=1

nd∑
i=1

Kh∑
`=1

w2
i,n

(
HDiff
i z`

)2∣∣∣
n

(10)

where z` ∈ RN×1 denotes the `th column of a matrix
Z ∈ RN×Kh built from z ∈ RKhN×1 as follows Z =
[z1, ...,zKh

], HDiff
i ∈ RN×N computes the difference be-

tween each pixel and that located at the ith direction (we
consider nd predefined directions or shifts), w2

i,n are the
weights associated with the nth pixel and ith direction, and
x|n selects the nth element of x. For simplicity, we treat the
matrices HDiff

i with periodic boundary conditions as cyclic
convolutions. This non-local total variation can also be ex-
pressed in matrix form as follows

||Hwz||2F =

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
{
IKh
⊗
[
diag(w1:)H

Diff
1

]}
z

...{
IKh
⊗
[
diag(wnd:)H

Diff
nd

]}
z

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

F

(11)

where ⊗ denotes the Kronecker product and IKh
is the iden-

tity matrix, wi: ∈ RN are the weights associated with the ith
direction, and diag is the diagonalization operator.

3.3. Choice of the weights

Setting the weights w,v should reflect our prior knowledge
about possible spatial correlations and target’s depths. Such
information can be extracted from complimentary imaging
modalities of the same scene leading to a fusion task. For sim-
plicity, this paper only use the Lidar data to fix these weights.
For this, a low-pass spatial filter is applied to the data cube to
fill missing pixels and reduce the noise. The classical cross-
correlation is then applied iteratively in the resulting data to
extract the main kp peaks of each pixels leading to kp depth
and intensity images. The sum of these intensity images (de-
noted I) is used to fix the weights w as follows (see also [23])

wij = max

[
0.5, exp

(
−|Ii − Ij |

σw

)]
. (12)

To fix v, we build a data cube ỹ by associating to each cross-
correlation depth location the corresponding intensity value.
The resulting cube is then downsampled to form NB groups
of size Sb. The groups with higher intensities are assigned
lower coefficient values v as follows

vi = max

[
0.5, exp

(
−
∑

(t,n)∈νi ỹn,t

σv

)]
(13)

where σw, σv are fixed parameters (see [23]).

3.4. Estimation algorithm

The minimization of the convex function C(t) in (7) can
be achieved using many convex programming algorithms
[12, 24–26]. In this paper, we consider the ADMM variant
proposed in [25] that has shown good performance in several
fields [7, 27–30] while requiring a reduced computational
cost. This algorithm is theoretically ensured to reach a min-
imum of C(t). More details regarding this algorithm and its
convergence properties are available in [25, 26].

4. RESULTS

4.1. Results on synthetic data

This section assesses the proposed approach using a synthetic
bowling data generated using a real physical scene from the
Middlebury dataset [22, 31]. The depth and reflectivity im-
ages in Fig. 1 have been used to generate a 123× 139× 300
data cube following model (1) while considering a real im-
pulse response g(.) and bn = 4,∀n. The proposed algo-
rithm, denoted Nonlocal Restoration of 3D (NR3D) images,
is evaluated while varying the signal number of photons-
per-pixel (PPP) and the signal-to-background (SBR) ratio
(ratio between signal and background counts) as presented
in Table 1. NR3D is run using (rb, cb, tb, h) = (4, 4, 50, 5)
and is compared to the classical cross-correlation approach
applied to noisy data (denoted by classical) and background-
free data (denoted by BF-classical or BFC). The NR3D



regularization parameters are manually selected to pro-
vide best visual results when testing the following intervals
τ1 = (1, 10, 100) and τ2 = (0.01, 0.1, 1). Table 1 shows the
SRE = 10 log10

(
||x||2
||x−x̂||2

)
results, where x (resp. x̂) is the

reference (resp. estimated) depth or reflectivity image ob-
tained using BFC on the highest Signal PPP data. This Table
highlights the benefit of NR3D, which performs better than
the BF-classical as it uses the information of adjacent pixels
to restore the data. Note finally that negative reflectivity SREs
are due to the presence of missing pixels for reduced PPP.

Fig. 1. Synthetic image (123 × 139 pixels) of a bowling
scene. (Top-left) Depth map, (top-right) reflectivity and (bot-
tom) point cloud combining depth and reflectivity.

Table 1. SRE (in dB) of the restored depth and reflectivity
images w.r.t. SBR and signal photon-per-pixel (ppp).

Signal PPP 5 2 0.8 0.4 0.2
SBR 1.25 0.5 0.2 0.1 0.05

Depth
BFC 17.9 8.7 3.6 1.9 1.0

Class. 11.5 5.3 2.9 2.2 1.9
NR3D 19.8 14.0 11.0 7.5 5.0

Reflect.

BFC 7.3 3.5 −0.4 −3.5 −6.9
Class. 6.6 1.4 −6.5 −13.1 −19.6
NR3D 13.3 13.0 8.4 9.8 3.2

4.2. Results on real data

This section highlights the benefit of NR3D to restore sparse
data obtained under reduced acquisition times. The consid-
ered data is a (142 × 142 pixels) real image of a life-sized
polystyrene head acquired at a distance of 40m in 2014 on the
Edinburgh Campus of Heriot-Watt University. The data was
acquired using a large acquisition time of 30ms per-pixel (ap-
proximately 10 minutes for full image). However, the TCSPC
system [14, 32] delivers time tagged data allowing the con-
struction of histograms with reduced acquisition times (see
[33] for more details regarding the imaging system). We then
use NR3D to restore data obtained with 6ms, 300µs and 60µs,

and compare the results to the classical algorithm, and RDI-
TV [7]. Note that RDI-TV assumes the presence of one peak
and known missing pixel positions, i.e., it is optimized for this
scenario and can be seen as a reference (see [7] for more de-
tails). Fig. 2 shows the depth maps obtained using the three
algorithms. As expected, the classical algorithm presents bad
results when reducing the acquisition time. Although NR3D
assumes the presence of multi-peaks, it still performs very
well in presence of one peak and delivers results that are of
similar quality to RDI-TV. This highlights the robustness of
NR3D to missing pixels.

Fig. 2. Depth maps (142 × 142 pixels) of a life-sized
polystyrene head acquired using different acquisition times.
(First row) classical cross-correlation, (second row) RDI-TV,
(third row) proposed NR3D algorithm.

5. CONCLUSIONS

This paper presented a new optimization based algorithm to
restore single-photon 3D images. The method constructs a
convex cost-function accounting for the Poisson statistics of
the data, the non-local correlations between pixels and the lo-
cal sparsity of detected depths. The resulting problem was
solved using a fast ADMM algorithm that has good conver-
gence properties. The approach was validated using synthetic
and real data showing its benefit for processing sparse data
corrupted with a high background level. It is worth noting
that the approach assumes the presence of multi-peaks, an in-
teresting property which was not highlighted here for space
limitations. In addition, the approach can use the information
of other modalities to set the weights, which allows its future
use to perform multi-modal data fusion. Future work includes
the application of this method to restore 3D images acquired
through obscurants such as water, fog or smoke.
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