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Abstract

While several concrete waviness assessment methods are being developed to overcome the 

disadvantages of one assessment method over the other, the sparseness of measurements associated 

with each method prevents from achieving a better understanding of how elevations and 

undulations change across the surface. Assessing waviness over multiple one-dimensional (1D)-

survey lines may not accurately reflect the actual condition or waviness of the entire floor. The 

methodology presented in this paper presents a compliance-checking algorithm for detecting 

elements where dimensions exceed specified tolerance. It also enables assessment of a concrete 

surface in two-dimensional (2D) domain using the synergy of Terrestrial Laser Scanning (TLS) 

and Continuous Wavelet Transform (CWT). 2D CWT analysis provides information not only 

about the periods of the surface undulation, but also the location of such undulations. The validity 

of the methodology is established by running a test on point clouds obtained from a warehouse 

project near Gresham, Oregon. A rigorous comparison between one of the existing floor waviness 

measurement methods, the waviness index method, and the proposed method is made. The results 

showed that the proposed methodology delivers accurate results that enable the localization of 

surface undulations of various characteristic periods. Furthermore, the proposed method is more 

efficient in terms of time taken for acquiring the measurements, and is, thus, more cost efficient.
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1 1 Introduction 

2 As-built dimensions of cast-in-place concrete elements often differ from the dimensions 

3 originally specified in as-designed plans [1]. Dimensional Quality Control (QC) verifies that 

4 elements are constructed in compliance with the specified dimensional tolerances. For instance, 

5 when combining precast and cast-in-place elements, checking dimensional tolerance of all 

6 elements is necessary for ensuring acceptable performance of joints and interfacing materials [2]. 

7 In addition, failure to detect the imperfections in newly constructed surfaces during the earlier 

8 stages of construction causes delays in carrying out necessary repair works [3]. The repair, 

9 demolition, removal and replacement of defective concrete elements entail additional costs that 

10 could amount to as much as 12% of the project contract value [3-6]. Thus, upon the completion of 

11 concrete elements, it is crucial to carry out inspections in a timely manner. Furthermore, traditional 

12 inspection procedures related to dimensional QC are labor intensive and time consuming.    

13 Focusing on concrete slabs, several factors influence the dimensional quality of cast-in-

14 place concrete slabs, such as sweltering temperatures, placement and finishing techniques that are 

15 applied during construction. Proper regulation and control of these factors are essential for 

16 achieving specified levels of waviness and levelness. The defects resulting from the waviness of 

17 concrete slabs not only create aesthetic issues but also affect the efficiency of lift trucks and very 

18 narrow aisle (VNA) vehicles. Even if waviness present in slabs is not immediately noticeable, the 

19 waviness of the concrete slabs in industrial facilities, such as large warehouses, must be strictly 

20 examined since failing to detect waviness and deviations from the specified tolerances can greatly 

21 affect the operational activities that the floor is designed to handle [8]. Figure 1 illustrates how 

22 irregularities on the floor affect the stability of VNA trucks. Variations in elevation between the 

23 left and right wheels (d) of a VNA truck results in static lean (s) of VNA trucks. The static lean 

24 can potentially increase up to ten times due to the waviness present in concrete slabs [9]. 
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25

26 Figure 1 The effect of difference in elevation between the wheels on the static lean for a VNA

27 The methods for measuring concrete slab waviness, which are currently prevalent in the 

28 construction industry, require intensive human intervention, are tedious and time-consuming, and 

29 yet are based on sparse measurements. These methods entail the surveying of 1D lines for 

30 differences in elevations and characterizing undulations of specific periods.  

31 The Straightedge method involves laying a 10-ft (3.05 m) Straightedge across a survey line on 

32 the floor and measuring the distance between the Straightedge and the floor using a stainless steel 

33 slip gauge [1]. While the results obtained with this method are easily comprehensible, the process 

34 of laying out the Straightedge over large surface areas is labor-intensive and engenders random 

35 errors in the measurements [10]. In addition, this time-intensive method provides information 

36 about the deviations between as-built and as-designed points only at relatively few measured 

37 points. 

38 The introduction of the F-numbers method was aimed towards eradicating random errors in 

39 measurements, via the use of instruments that enable measurement of elevation differences at fix 

40 intervals to produce more accurate results. It provides the results in the form of two numbers: Floor 

41 Flatness (FF) and Floor Levelness (FL). FF describes the flatness associated with the measured 

42 floor surface point, whereas FL describes the levelness of the measured floor surface point. As 
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43 described in the ASTM E1155-14 standard [11], the measurements are carried out at intervals of 

44 1-ft along each survey line, and the measurements collected from multiple survey lines are 

45 statistically processed to generate FF and FL numbers that describe the conditions of the entire 

46 floor surface. In addition, results produced from the F-number method are in the form of flatness 

47 numbers (FF and FL values) that are hard to comprehend.

48 The Waviness Index (WI) method, as described in ASTM E1486-14 [12], was developed later 

49 because the F-number method provides information only about the floor undulations with periods 

50 of 1.5 to 4-ft (0.46 – 1.22 m) and 15 to 80-ft (4.6 – 24.4 m). In contrast, the WI method identifies 

51 various periods of floor undulations between 2-ft and 10-ft, which correspond to the periods of 

52 surface undulation that affect the operation of forklifts [13][8][14]. The results obtained using the 

53 WI method are expressed in inches and are relatively easier to comprehend. 

54 Despite having a significant advantage over the Straightedge and the F-number methods, the 

55 WI method shares similar drawbacks with those methods. Sparse measurements yielded by the 

56 three methods fail to guarantee that the collected data is an accurate representation of the geometric 

57 features of the surface. Although results may be repeatable with a certain error, they fail to capture 

58 the geometric details of the entire 2D floor surface and essentially do not impart information about 

59 the waviness of the 2D surface. Data collection from large surface areas using these methods 

60 demands significant amount of time and manual labor. Since these methods require measurement 

61 tools to be manually moved across the surface of the floor, the results obtained are prone to human 

62 error. Random errors, which potentially arise due to possible carelessness exerted while handling 

63 the measurement instruments, contribute toward inaccuracies in measurements. Moreover, the 

64 inability to retrieve similar results between different measurement sessions is one of the prominent 

65 drawbacks of these methods. And finally, applying these methods to measure the floor waviness 

66 of large floor areas, such as warehouse projects, is quite difficult. It is important to note that 

67 warehouse projects typically have floor surface areas that are larger than 4,000 m2. Consequently, 

68 using these methods for such projects generate results that are not repeatable. In addition, the 

69 obtained results are limited in the orientation of the defects and the range of wavelength.  

70 Furthermore, the inability to explicitly reveal the location of those undulations remains a 

71 disadvantage for these methods [8].
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72 The F-number and WI methods reflect the state-of-the-art practices in measuring the waviness 

73 of concrete slabs. To overcome the challenges arising with these methods, newer technologies, 

74 such as terrestrial laser scanning (TLS), can be leveraged to measure surface waviness in a more 

75 efficient manner. The ability of a TLS device to accurately capture the geometric information of 

76 concrete surfaces provides an opportunity to reconsider the assessment of surface waviness using 

77 traditional measurement instruments. 

78 The objective of this study is to develop a methodology that uses TLS to obtain accurate 

79 waviness information about newly constructed and existing concrete surfaces rapidly. This paper 

80 presents a methodology that applies the two-dimensional Continuous Wavelet Transform (2D 

81 CWT) to TLS point clouds to measure concrete slab surface waviness. The proposed methodology 

82 is designed to help carry out tolerance compliance control tasks for slabs based on project 

83 specifications describing their waviness tolerances. Uniquely, the methodology is able to perform 

84 an accurate and comprehensive assessment of the surface geometry in both spatial and frequency 

85 domains. The features pertaining to the proposed and existing methods are summarized in Table 

86 1.  

87 Table 1 Features and performance of existing standard methods and the proposed method for 

88 measuring floor flatness.

Method Straightedge F-Number Waviness Index 2D CWT

Periods of 

undulation 

detected

10’-20’ (3.05 – 

6.10 m)

1.5’ – 4’ (0.46 – 

1.22 m) (FF)

15’ – 80’ (4.57 

– 24.38 m). (FL)

2’ – 10’ (0.61 – 

3.05 m)

Any

Output Values in 

Inches

FF and FL values Values in 

Inches

Map showing 

detected 

undulations for 

various periods 

Fe
at

ur
es

Types of 

errors

Random and 

systematic error

Random error Random error Systematic error 

(±3 to ±6 mm)
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Data 

acquisition 

efficiency 

(approx.) 

(sec/m2)

7 4 4 2

Point 

Sampling  

Along 1D non-

parallel survey 

lines in 10-foot 

segments

Along 1D 

parallel survey 

lines in two 

orthogonal 

directions

Along 1D 

parallel survey 

lines in two 

orthogonal 

directions

Across 2D 

surface

Sparsity of 

measurements

No No No Yes

Localization 

of defects

No No No Yes

Visualization 

of region of 

defects

No No No Yes

Pe
rf

or
m

an
ce

 C
ri

te
ri

a 

A
ch

ie
ve

m
en

t

Repeatability No No No Yes

89

90 The rest of the paper is structured as follows. Section 2 provides background information 

91 on the utilization of TLS point clouds for project and QC, and the application of discrete and 

92 continuous wavelet transforms for surface characterization. Section 3 then introduces the proposed 

93 method for characterizing surface waviness of concrete slabs and discusses the various stages of 

94 pre-processing and processing the TLS point cloud data. The proposed methodology is validated 

95 using data obtained from a warehouse construction project. The experimental results are provided 

96 and discussed in Section 4. The final section draws conclusions and discusses directions for future 

97 research.
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98 2 Research Background

99 2.1 Dimensional Tolerances for Floor Flatness and Waviness

100 The dimensions of newly constructed and existing building elements can vary, slightly or 

101 significantly, from the dimensions specified in the design documents [1]. Tolerances, or allowable 

102 deviations in those dimensions, are typically specified during the design phase for different 

103 measures such as length, width, thickness, perpendicularity, or verticality. Standard ACI 117-90, 

104 for example, provides a comprehensive list of tolerance criteria for cast-in-place concrete 

105 elements, such as vertical, lateral, and level alignments, and cross-sectional dimensions. The 

106 specified dimensional tolerances are an output of economical and practical considerations [15]. 

107 The role of QC inspectors is to ensure that the appropriate/specified tolerance values are achieved 

108 as construction progresses. Inaccuracies in the geometry of concrete elements during construction 

109 arise from improper establishment of a reference system for controlling the alignment, manual 

110 measurements, poor workmanship and in some cases, the method used for measurement [16]. 

111 2.2 TLS Point Clouds for Project Control

112 Acquisition of accurate project as-built data is crucial for dimensional quality control 

113 measurements, so that informed decisions can be made in a timely manner. TLS is a modern 

114 surveying technology that has been gaining increasing popularity in the Architectural, 

115 Engineering, Construction and Facilities Management (AEC&FM) industry. The versatility of the 

116 TLS technology has been tested in various fields of AEC&FM. For example, TLS has been used 

117 in remotely assessing the conditions of environments where human access is difficult or dangerous 

118 [17], for generating BIMs that represent the as-built conditions of building facilities [18], as well 

119 as construction progress control [15–19]. 

120 2.2.1 TLS Point Clouds for Quality Control

121 The use of TLS for dimensional QC is gaining interest due to its ability to rapidly provide 

122 inspectors with project as-built data in the form of both dense and accurate 3D point clouds (sub 

123 mm to mm-level accuracy) [24]. Using TLS not only solves the problems associated with accuracy 

124 and repeatability, but also enables the acquisition of data that represents the geometry of entire 

125 surfaces, thereby addressing the data sparsity limitations of existing surveying methods. Focusing 
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126 on flatness measurement, compared to existing measurement tools employed in current standard 

127 flatness measurement methods, TLS thus offers an efficient way of collecting dense as-built data 

128 covering entire slab surface. 

129 Regarding the processing of TLS data for QC, Fuchs et al. [25] and Shafer and Weber [26] 

130 developed deformation monitoring algorithms to find the differences in positions of TLS data 

131 points with respect to a reference surface. In [27], a color map generated from the TLS data was 

132 used to assess the flatness of facades in a multi-story building and the additional costs arising from 

133 placing excess mortar on these facades was evaluated based on the volumetric quantities derived 

134 from TLS data. In [28], a methodology that identifies the geometric irregularities in precast 

135 concrete elements by comparing as-built data obtained from TLS and as-designed data obtained 

136 from BIM was developed. Tang et al. [7] developed three algorithms which helped in finding the 

137 difference in elevation of the points in the point cloud with respect to a plane taken from a BIM 

138 model or a plane specified by the user. The method described in [29] used an elevation map where 

139 each interval in height were represented with different colors. This approach represented the height 

140 of each point with respect to a reference plane obtained from a BIM model. All the proposed 

141 methodologies and existing approaches detected areas where different degrees of deviations 

142 occurred, however they have failed to characterize the waviness or the periods of surface 

143 undulations. 

144 Using 3D point clouds obtained from TLS and as-designed geometry information from BIM, 

145 Bosché and Guenet [30] developed an approach based on BIM and TLS data to assess whether the 

146 geometry of as-is elements adhere to the specified surface flatness tolerances. An experiment was 

147 conducted to compare the results obtained using the proposed method with the ones obtained from 

148 Straightedge and F-number methods. The digital application of Straightedge and F-Number, as 

149 presented in that study, significantly reduces the time required for data collection and analysis, 

150 compared to traditional methods. However, flatness analysis remains conducted along sparsely 

151 surveyed 1D survey lines, which delivers results limited in spatial and wavelength resolution. 

152 Bosché and Biotteau [8] developed a method that applies 1D CWT to TLS data to characterize 

153 surface undulation  periods. That approach addresses the limitation of previous works in 

154 wavelength resolution, i.e. the approach examines surface waviness at a wider range of 

155 wavelengths or characteristic periods. However, the study remains based on measurements along 
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156 1D lines that do not enable an analysis of flatness in all possible directions, and  still provide results 

157 with limited spatial resolution. Valero and Bosche [31] presented preliminary results on the 

158 application of the 2D CWT to TLS data and compared the results with the WI method using 

159 laboratory experiments. The work presented here expands on this and delivers a 2D analysis of 

160 surface data in a more comprehensive manner using a larger and more representative concrete slab 

161 as case study.

162 2.3 Wavelet Transform for Surface Characterization

163 Wavelet Transform (WT) has a wide range of applications in engineering, some of which 

164 include seismic signal analysis [32], sound pattern analysis [33] and quantum mechanics [34]. WT 

165 is also widely used in the area of surface texture characterization, where  it is used to break down 

166 the 2D profiles of surfaces into the roughness and waviness components [35]. WT has been applied 

167 to characterize surface roughness and waviness in several studies, and it has many applications in 

168 the field of point cloud processing such as point cloud de-noising and rock surface roughness 

169 quantification [31–33]. A technique using 1D WT for characterizing different types of surfaces 

170 was introduced by Chen et al. [39]. Josso et al. [40] performed 2D multi-scaled decomposition 

171 using images instead of profiles. Stępień and Makieła [41] applied 2D WT to analyze the 

172 deviations of cylindrical surfaces. Jiang et al. [42], Coiffman and Maggioni [43] and Hussein et al. 

173 [44] described the concepts of lifting wavelets and diffusion wavelets and used them for surface 

174 filtering. WT can be extended from 1D analysis to multi-dimensional signals as well [8][45]. Some 

175 applications of 2D CWT include characterizing the wavelengths of landslide areas and identifying 

176 the regions having high risk of landslides using topographic images [46]. Additional information 

177 about the different types of wavelets and the application of wavelet transform, can be found in [47] 

178 and [48]. And, as reviewed above, the CWT has been previously suggested in [8] and  [31] for use 

179 in construction surface flatness assessment.

180 2.4 Continuous Wavelet Transform 

181 The continuous wavelet transform (CWT) of a given function is the inner product of the 

182 function with the scaled and shifted versions of the mother wavelet [47]. The output of the inner 

183 product is the wavelet coefficient at a specific time or location and scale [48]. In order for a 
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184 function, (t) ϵ L2 ( ), to qualify as a mother wavelet, it has to satisfy a condition known as the 𝜓 ℝ

185 admissibility condition as stated below [49]:

186 ( 1 )0 <  𝐶𝜓: = ∫∞
‒ ∞

|𝜓(𝜔)|
|𝜔| 𝑑𝜔 <  ∞

187 where, Cψ is the admissibility condition and  is the angular (or radian) frequency. This 𝜔

188 condition can also be written as [49]: 

189 ( 2 )𝛹(0) = ∫∞
‒ ∞𝜓(𝑡)𝑑𝑡 = 0

190 This implies that the function (t) has to move above and below the t-axis in a wave-like ψ

191 manner with decaying properties. Figure 2 demonstrates such properties with the example of a 

192 typical wavelet function commonly known as the Mexican Hat wavelet. 

193

194 Figure 2 1D (left) and 2D (right) Mexican Hat Wavelet

195 CWT can be used to describe the time and frequency components of a temporal signal in 

196 detail. 1D CWT involves taking the original function and displaying the output function in terms 

197 of two variables, which are time and scale. The spectral information about a 2D signal for any 

198 scale s and location (x, y) is given by the 2D CWT [50], that is an extension of the 1D CWT and 

199 can be represented as follows [51]:

200  ( 3 )𝐶𝑊𝑇 (𝑎, 𝑏, 𝑠) =
1
𝑠∫∞

‒ ∞
∫∞

‒ ∞𝑔(𝑥,𝑦)𝜓𝑎𝑏𝑠(𝑥,𝑦) 𝑑𝑥𝑑𝑦

201 where, abs(x,y) is the mother wavelet, g(x,y) is the continuous 2D signal, s is the scale 𝜓

202 (dilating parameter) and (a,b) represents the location (translating parameter). 
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203 Different values of the translating and dilating parameters of the mother wavelet help in 

204 describing the different frequencies of undulations present in the surface [52]. The convolution of 

205  and g provides the wavelengths (or periods) of the undulations present in the surface. The 𝜓  

206 coefficients CWT (a, b, s) quantify the degree of correlation between the wavelet    and the 𝜓

207 function g at each point. In this way, apart from analyzing signals in time and frequency, the CWT 

208 can be extended to analyze signals, together in space and scale (space-scale analysis). 

209 Different wavelets can be used as the mother wavelet to detect different types of 

210 undulations. The selection of an appropriate type of wavelet determines how efficiently the 

211 different components of a signal are extracted [53]. The geometric shapes of the wavelet is 

212 considered an important criteria when selecting the type of mother wavelet in [54]. The 

213 resemblance between the shape of the wavelet and the geometric features of a signal provides a 

214 cue for the selection of an appropriate wavelet. The defects present in as-built or as-is concrete 

215 surfaces resembles waves in the form of small bumps and dips, and the shape of 2D Mexican Hat 

216 wavelet closely resembles the shape of the surface undulations present on concrete surfaces, as 

217 shown in Figure 2. The Mexican Hat wavelet is a real and isotropic wavelet that is good for 

218 detecting contour features [55][56]. The use of different values of the translation and scale 

219 parameters of the mother wavelet enable the detection of undulations corresponding to different 

220 characteristic periods in the point cloud data. Therefore, it is chosen as the mother wavelet in this 

221 study. 2D Mexican Hat wavelet in spatial domain is depicted as follows: 

222 (x,y) = ( 4 )𝜓
1

2𝜋(2 ‒ 𝑥2 ‒ 𝑦2) ∗ 𝑒 ‒
1
2(𝑥2 + 𝑦2)

223

224 2.5 Contribution

225 Floor flatness testing is typically performed to assess how well the contractor has performed 

226 the work based on the specifications. Failure to carry out floor flatness measurements within a 

227 specific time window may yield inaccurate results and does not accurately reflect the contractor’s 

228 performance. This can be attributed to the increase in curling of the joints and cracks in the concrete 

229 slabs with the age of concrete. Therefore, the American Concrete Institute (ACI 117-10) [57] 

230 requires that floor flatness testing on any concrete slab should be performed within 24 hours for 
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231 best results, and no later than 72 hours, after the concrete placement, unless clearly stated otherwise 

232 in the specifications. 

233 The major contribution of this paper is to present a new approach for floor flatness control 

234 using the 2D CWT applied to TLS data. The approach builds on preliminary works published in 

235 [33], but presents and analyses it in a more comprehensive manner. In particular, a warehouse 

236 concrete slab having been scanned within 10 hours of having been poured is used as a 

237 representative real-life case study. The overall time required for scanning the worksite is less than 

238 the time associated with data collection using the traditional methods of waviness measurement. 

239 The waviness results obtained using the proposed approach are validated by establishing a 

240 correlation between results obtained using the proposed approach and the WI method. The 

241 correlation shows that the proposed method generates results that supersede those that are obtained 

242 using the WI method.  

243 3 Proposed Methodology

244 The proposed methodology, as summarized in Figure 3, follows the approaches developed in 

245 [31] in order to characterize surface waviness. The raw 3D point cloud consists of data points from 

246 a concrete slab as well as its surrounding environment, including workers, equipment and 

247 surrounding buildings. The point cloud is typically the result of multiple laser scans co-registered 

248 using a standard (reliable) target-based approach. First, the raw point cloud is pre-processed to 

249 isolate the area of interest, the concrete slab in this case, from the raw point cloud. The next step 

250 is to develop a depth map, which is used as input to the 2D CWT. The areas with undulations 

251 corresponding to various characteristic periods are identified after applying the 2D CWT with the 

252 Mexican Hat wavelet. 
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253  

254

255 Figure 3 Overview of the research methodology

256 3.1 Data pre-processing

257 As stated in the overview of the research methodology, the raw point cloud data should be 

258 pre-processed before 2D CWT can be applied to it. The input is a raw point cloud that may be the 

259 result of the co-registration of multiple scans collected during the scanning process. The noise 

260 present in the registered point cloud data is removed using a corresponding functionality provided 

261 by a commercial point cloud processing software, leaving a clean point cloud of the area of interest 

262 (i.e. concrete slab). The pre-processed point cloud corresponding to the slab surface is aligned 

263 (parallel) to the xy plane, which is likely to be the case already. Accordingly, z coordinates 

264 represent the elevation of each point, facilitating further analysis. 

265 In order to analyze the frequencies of undulations present on the surface, the point cloud 

266 data should have equispaced rows and columns along the x and y axes [58]. Because raw point 

267 cloud data from slabs typically has a random arrangement, it is converted into a regular grid, with 

268 intervals along the x and y axes were both set to p = 1 cm. This sampling interval ensures robust 

269 localization of defects across the 2D surface. Triangulation-based linear interpolation is used to 

270 obtain the values of z-coordinates at each grid point. Consequently, a 2D depth map is created, 

271 which represents the height of the surface for points at p = 1 cm intervals along the x- and y-axes.
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272 3.2 Detection of Undulations using 2D Continuous Wavelet Transform 

273  The depth map resulting from the previous operation is used as the input “signal” to the 2D 

274 CWT. The scale a at which the CWT is applied relates to a few parameters, as in Equation 5 [48]:

275 a =  = ( 5 )
𝑓𝑐

𝑓 . 𝛿𝑝 
𝑇 . 𝑓𝑐

𝛿𝑝 

276 where f represents the frequency of the undulation, T the characteristic period of the signal, 

277 and fc, the main frequency component of the Fourier Transform of the mother wavelet. For the 

278 Mexican Hat wavelet, fc = 0.252 cm-1.

279 The output of applying the 2D CWT is a series of scalograms that report the CWT response at each 

280 grid point on the depth map. These maps are meaningful to some extent, but should be further 

281 processed to accurately define the exact characteristic period at each location. Indeed, a wavy 

282 region will result in peak responses at several scales, i.e. frequencies, as can be seen in Figure 77 

283 for example. However, not all those peaks correspond to defects whose size matches the period 

284 associated to that scale.  For this, we follow the strategy initially suggested in Valero and Bosché 

285 in [31]. First, peak values (i.e. local maxima) are detected in each 2D CWT response map. Next, 

286 different isolines are then calculated around each peak, which connect pixels with the same CWT 

287 response. These isolines may describe irregular shapes whose mathematical analysis, and further 

288 comparison with other defects, can be truly complex. Therefore, areas enclosed by isolines are 

289 described by means of ellipses, and the two main axes of each ellipse are determined to be used as 

290 reference values. If any of the axes matches the period associated to the scale of interest, a surface 

291 deviation is detected in that area for that particular period.

292 The result of this process is a set of clear waviness defect detections at all the scales/periods 

293 considered, which can be combined in a single diagram.

294 3.3 Correspondence between WI and 2D CWT methods.

295 The correspondence between the WI method and the 2D CWT method in terms of their 

296 response to similar surface wavelengths (or periods) is shown in Table 2. The k values of the WI 

297 method correspond to characteristic periods of different lengths. The corresponding CWT scales 

298 for each of these k values are calculated using equation 5 with 1 cm. The characteristic  𝛿𝑝 =
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299 periods (T) selected in this table represent the floor undulations, with periods of 2, 4, 6, 8 and 10 

300 ft, that are the focus of the WI method.

301 Table 2 Continuous Wavelet Transform scales and equivalent Waviness Index [8]

Characteristic period 
(T) [cm]

CWT scale (a) Waviness Index 
(k values)

61 15 1

121.9 30 2

182.9 45 3

243.8 60 4

304.8 75 5

302 4 Experimental Results

303 4.1 Data Collection and Pre-Processing

304 An in-situ concrete slab from a warehouse project in Gresham, Oregon was scanned after 

305 5-6 hours of placement. The surface of the concrete slab was sturdy enough for foot traffic and for 

306 setting up the tripod of the scanner. The concrete slab of the warehouse building was scanned using 

307 a Leica ScanStation P40 3D laser scanner. The scanner has 8” horizontal and 8” vertical angular 

308 accuracy. The 3D position accuracy is ±3mm at 50 m and ±6 mm at 100 m [59]. 

309 Figure 4 shows the plan view of the concrete slab as well as one of the 3D point clouds captured. 

310 The area of interest with a surface area of approximately 1500 m2 is highlighted in both the plan 

311 view and the point cloud. It was determined that scans taken from four different locations would 

312 be sufficient to capture the surface with sufficient detail. Six targets were placed at different 

313 locations on site to facilitate the point cloud registration process. 
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314

315 Figure 4 The floor plan (left) and the 3D point cloud (right) of the warehouse building. The area 

316 of interest is highlighted in red.

317 The overall scanning process, including setup, scanning, dismantling and re-locating, took 

318 approximately 45 minutes. The data pre-processing stage, comprising of registering the point 

319 clouds in the same coordinate system and removing the noise, took 50 minutes. The raw point 

320 clouds, i.e. laser scans including noise, were first imported into a commercial point cloud 

321 processing software. The four laser scans were registered under the same coordinate system using 

322 the targets placed at strategic locations on the construction site. After the registration was 

323 complete, the point cloud of the area of interest was manually isolated from the rest. The point 

324 cloud corresponding to the slab section of interest had approximately 100,000,000 points. Figure 

325 5 shows an image of the scan after registration and noise removal.
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326

327 Figure 5 Top view of the point cloud of the area of interest obtained after the registration of the 

328 four scans and noise removal. The color scale represents elevation values in cm.

329 4.2 Data Processing

330 Following pre-processing, the point cloud is converted into a 3242 x 4629 depth map with 1 

331 cm intervals in both horizontal and vertical directions, with the z-coordinates at each grid point 

332 calculated as described in Section 3.1. Figure 6 shows the resulting depth map. As seen in Figure 

333 6, the height of the concrete slab with respect to the xy plane, varies most in the interval of -2 cm 

334 to 2 cm. Thus, the color map was adjusted accordingly to highlight the height differences between 

335 various areas across the floor. 
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336

337 Figure 6 Depth map derived from the TLS data, with color map limits set to [-1, 1] cm (left) and 

338 [-2, 2] cm (right)

339 4.3 CWT Results

340 4.3.1 CWT Scalogram  

341 Figure 7 presents the results obtained using the scales (a) 15, 30, 45, 60 and 75 of the 

342 mother wavelet. The regions where the input “signal” strongly correlates with the mother wavelet 

343 applied at the scales above are highlighted in yellow in Figure 7.

344 The point cloud in Figure 5 and the depth maps in Figure 6 show that the surface of the investigated 

345 slab is relatively flat with a few “peaks”. For the entire slab surface, the average value of the 

346 deviation in the z-axis was 0.0 cm with a standard deviation of 0.3 cm. Figure 7(a) represents the 

347 regions where the wavelength of the undulations present on the surface correlates with the mother 

348 wavelet of scale 15. The scalogram shows that the regions near (1900 cm, 3100 cm) has an 

349 undulation of this characteristic period present on the slab surface. Figure 7 (b) shows regions near 

350 (1900 cm, 3100 cm) and (2400 cm, 1700 cm) have undulations that correspond to the mother 

351 wavelet of scale 30. Similarly, the scalograms in Figure 7 (c), (d) and (e) show that the region near 

352 (2400 cm, 1700 cm), (300 cm, 3400 cm) and (4200 cm, 2400 cm) have undulations corresponding 

353 to scales 45, 60 and 75. The region near (2400 cm, 1700 cm) shows responses for all these three 

354 scales. Thus, the identification of the scale which has the top response at that location is necessary. 

355 Furthermore, such analysis is an added advantage of using the proposed 2D CWT method and 

356 cannot be done using the WI method.
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357

358

359

360
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361 Figure 7 The coefficients obtained from the wavelet transformation corresponding to scales 15 

362 (a), 30 (b), 45 (c), 60 (d) and 75 (e) are plotted on the map. The areas in the slabs where 

363 undulations corresponding to these scales are present are shown.

364 4.3.2 Surface analysis and automatic defect detection

365 Figure 8 illustrates regions, enclosed by ellipses, where potential defects have been 

366 identified for two of the five scales in Figure 7. Note that no defective regions were found for the 

367 other three scales. 

368

369 Figure 8 Potential defective areas for a) 61cm (±2cm) and b) 244cm (±2cm).

370 The advantage of our approach is that it combines dense 3D data from TLS with the 2D CWT that 

371 can support the analysis of waviness with essentially any characteristic period (i.e. wavelength). 

372 This enables our approach to study waviness not just for a few discrete wavelengths (like the 5 

373 above), but for dense and large ranges of wavelengths. This is demonstrated in Figure 9 that 

374 summarizes the potential defects on the slab for any wavelength within the continuous range of 20 

375 to 400 cm.  
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376

377 Figure 9 Detected defects for periods between 20 and 400 cm.

378 4.4  Comparison of Results with WI method

379 The ASTM E1486-14 standard describes the test method for measuring the waviness of 

380 concrete floors using the WI method. In a similar way to [8], we propose to apply the WI method 

381 as defined in this standard, but using the digitized slab surface as the surface of application (instead 

382 of the real slab). Referring to this standard, 103 survey lines along the x-axis and 148 lines along 

383 the y-axis were defined on the slab, as shown in Figure 10. The lines are spaced at 1-ft intervals. 

384 This is much denser that what would normally be achieved in normal practice, but is useful to 

385 conduct the comparison with the proposed CWT approach.
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386

387 Figure 10 The 251 survey lines (103 along the x-axis and 148 along the y-axis) that are defined 
388 across the slab surface. 

389 The length adjusted RMS deviation (LAD) responses are calculated for each line. The survey lines 

390 are parallel to each other and are spaced at a distance of 30.5 cm (1ft). Survey points with a spacing 

391 s=30.5 cm (1ft) are measured along those lines. The standard defines chord length as the length of 

392 the imaginary line joining two points on the surface of the concrete floor. The chord length is equal 

393 to 2ks, where k= {1, 2, 3, 4 and 5}. The vertical distance between the midpoint of the chord and 

394 the survey point on the surface, Dkj, is calculated using the following formula,

395 Dkj = hj+k -0.5(hj+hj+2k)                                                                     (6)

396 where, hj+k, hj and hj+2k represent the heights of the survey point and the two end points of the 

397 chord, respectively. These heights are obtained from the depth map calculated in section 4.2. 

398 After the deviation Dkj is calculated, the length adjusted RMS deviation (LADk) is calculated using 

399 equation 7. 
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400 LADl,k =                                                                              (7)
𝐿𝑟

2𝑘𝑠[∑𝑗𝑚𝑎𝑥𝑙,𝑘
𝑖 = 1 (𝐷𝑙,𝑘,𝑗)2]

𝑗𝑚𝑎𝑥𝑙,𝑘

401 where Lr corresponds to the reference length of 1 ft.  corresponds to the total number of jma𝑥𝑘

402 deviation calculations with a chord length 2ks along a survey line and l denotes the survey line 

403 being tested. 

404 Similarly, the 2D CWT responses at the jth sampled location, CWTl,a,j, for scales 15, 30, 45, 60 and 

405 75 were obtained in section 4.3.1. These scales correspond to the WI k-values 1, 2, 3, 4 and 5 

406 respectively. It is proposed that the CWT responses for each of the 210 lines for those 5 scales, 

407 CWTl,a,  be calculated using the similar formula:

408 CWTl,a =                                                                       (8)                                                             
∑𝑗𝑚𝑎𝑥𝑙,𝑎

𝑖 = 1 𝐶𝑊𝑇2
𝑙,𝑎,𝑗

𝑗𝑚𝑎𝑥𝑙,𝑎

409 where  corresponds to number of locations at which the 2D CWT response have been jma𝑥𝑘

410 calculated. 

411 The correlation between the LADl,k and CWTl,a responses is calculated to compare the surface 

412 waviness results obtained using the WI and 2D CWT methods. 15 survey lines along the x-axis 

413 and 15 survey lines along the y-axis, as shown in Figure 11, are randomly selected (out of the 

414 previously defined 251 lines), to illustrate the correlation results presented in Figure 12 and Figure 

415 13. The correlation coefficients, denoted by r2, are included in the top left-hand corner of each 

416 graph. The values indicate a strong correlation between the results obtained using the WI and 2D 

417 CWT methods. This strongly validates the value of the proposed approach, which has the 

418 additional advantage of being able to more precisely define defects’ wavelengths and locations 

419 (including actual orientation). 
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420  

421 Figure 11 The 30 survey lines (15 along each axis) that were selected for the generation of 
422 correlation results.

423  
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424 Figure 12 Correlation between LADl,k and CWTl,a responses for the five characteristic undulation 

425 periods [61, 121.9, 182.9, 243.8, 304.8] cm, along 16 lines along the x-axis shown in Figure 11.

426  

427 Figure 13 Correlation between LADl,k and CWTl,a responses for the five characteristic undulation 
428 periods [61, 121.9, 182.9, 243.8, 304.8] cm, along 16 lines along the y-axis shown in Figure 11.

429

430 The proposed approach overcomes all of the drawbacks of traditional waviness assessment 

431 methods mentioned earlier. The 2D CWT method enables a comprehensive analysis of the 

432 waviness of 2D surfaces, both in the spatial and wavelength domains. In contrast to the F-number 

433 and WI methods, the output of the CWT-based approach enables easy visual representations of 

434 where waviness defects are located on the surface (as shown in Figure 7). This can help users with 

435 minimal knowledge about 3D TLS or 2D CWT to quickly determine where surface corrections 

436 should be applied, for example. 

437 5 Conclusions

438 TLS technology has a promising future in the construction industry owing to its ability to 

439 rapidly and accurately capture and record as-built conditions. Research efforts are being 

440 concentrated to identify specific areas, which could particularly benefit from the application of 

441 TLS. Dimensional QC is one such area. The analysis performed using the 2D CWT for QC 

442 provides great flexibility for examining the surface undulations with a wide range of characteristic 
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443 periods. The localization property of 2D CWT highlights regions on the surface and helps in 

444 compliance assessment and corrective work planning. 

445 The proposed approach in this paper demonstrates how TLS data of a concrete surface can be used 

446 to characterize waviness by implementing 2D CWT, using Mexican Hat Wavelet as the mother 

447 wavelet. The comparative analysis of the various methods of measuring waviness in concrete slabs 

448 reveals that the 2D CWT method provides results that strongly correlate with those of the WI 

449 method (the current state of the art), but has numerous advantages over it and other existing 

450 methods.

451 Future research efforts can be directed toward improving the practicality of implementing laser 

452 scanning for measuring floor surface waviness. The method proposed in this paper can be used in 

453 conjunction with augmented reality devices to enable the visualization of undulations 

454 corresponding to various characteristic periods on site. The proposed method can be further 

455 improved by developing algorithms for automatically removing noise and generating scan plans 

456 to estimate optimal scanning positions. For this study, manual effort was required for preparing 

457 scan plans, setting up the scanner and collecting the point cloud data.  A LiDAR integrated 

458 Unmanned Aerial Vehicle (UAV) can also be used to collect the scans and automated registration 

459 of laser scans can be further explored. Finally, a comparative analysis on using TLS and LiDAR 

460 equipped UAVs for surface quality assessment can be conducted. 
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