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Abstract. In fluid dynamics, an interface splash singularity occurs when a locally smooth interface self-

intersects in finite time. We prove that for d-dimensional flows, d “ 2 or 3, the free-surface of a viscous water

wave, modeled by the incompressible Navier-Stokes equations with moving free-boundary, has a finite-time

splash singularity for a large class of specially prepared initial data. In particular, we prove that given a

sufficiently smooth initial boundary (which is close to self-intersection) and a divergence-free velocity field

designed to push the boundary towards self-intersection, the interface will indeed self-intersect in finite time.
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1 Introduction

1.1 The interface splash singularity

The fluid interface splash singularity was introduced by Castro, Córdoba, Fefferman, Gancedo, &
Gómez-Serrano in [8] in the context of the one-phase water waves problem. As shown in Figure 1.1, a
splash singularity occurs when a fluid interface remains locally smooth but self-intersects in finite time.
Using methods from complex analysis together with a conformal transformation of the equations,
Castro, Córdoba, Fefferman, Gancedo, & Gómez-Serrano [8] showed that a splash singularity occurs
in finite time for the 2-d water waves equations. In Coutand & Shkoller [16], we showed the existence
of a finite-time splash singularity for the one-phase incompressible Euler equations with free-boundary
in 3-d, using a very different approach, founded upon an approximation of the self-intersecting fluid
domain by a sequence of smooth fluid domains, each with non self-intersecting boundary. For one-
phase flow, it is the vacuum state on one side of the interface which permits this finite-time interface
self-intersection, and neither surface tension nor magnetic fields nor other inviscid regularizations of
the interface change this fact [7, 16], and even stationary solutions, having a splash singularity, have
been shown to exist (see Córdoba, Enciso, & Grubic [10]).

t<T

Fluid

t=T

x0

Fluid

Figure 1: The splash singularity at a point x0 occurs when a locally smooth interface self-intersects
in finite time t “ T .
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On the other hand, for the two-phase incompressible Euler equations, wherein the moving interface
is a vortex sheet1, it was proven by Fefferman, Ionescu, & Lie [20] and Coutand & Shkoller [17]
that a splash singularity cannot occur in finite-time while the interface remains locally smooth. In
particular, there is a fundamental difference in the behavior of the fluid interface when vacuum is
replaced with fluid in the mathematical model.

Since these results have been established for inviscid flows, it is natural to ask if splash singularities
can occur for viscous flows modeled by the incompressible Navier-Stokes equations with a moving
free-surface. Specifically, given well-prepared initial data, in which the initial boundary is smooth
but close to self-intersection, and the initial velocity2 is chosen so as to move the boundary towards
self-intersection, does the boundary in fact self-intersect in a finite amount of time?

Because the methods of constructing splash singularities for inviscid flows have relied on the
ability to flow backward-in-time, a new strategy must be devised to study the parabolic Navier-Stokes
equations. By using the change-of-variables employed in [8] together with stability estimates, Castro,
Córdoba, Fefferman, Gancedo, & Gómez-Serrano in [9] have shown the existence of finite-time splash
singularities for the Navier-Stokes equations. Herein, we give a different proof which is amenable
to any dimension of space d ě 2. Our idea is to prove that the time-of-existence as well as Sobolev
estimates for solutions to the free-surface Navier-Stokes equations can be made independent of the
distance ε between two nearby portions of the free-surface. In particular, we prove that there exists
initial data, allowing us to obtain a smooth self-intersecting geometry which is arbitrarily close to
any given domain with a splash singularity.

Herein, we present a rather simple proof of finite-time self-intersection, based on the construction
of fluid domains whose boundary curvature does not change very much (or does not change at
all) during the deformation of the domain as it moves closer toward self-intersection. Our stability
estimates fundamentally rely upon Sobolev inequalities and elliptic estimates whose constants depend
crucially on the curvature of the domain boundary, and hence our constructed geometries provide a
simple strategy for keeping such constants uniform. Our method not only works for the Navier-Stokes
equations, but also provides a simpler proof of self-intersection for the Euler problems previously
considered in [8, 16], whose methods relied upon rather technical constructions.

1.2 The Eulerian description of the Navier-Stokes free-boundary problem

For 0 ď t ď T , the evolution of a d-dimensional (d “ 2 or 3) one-phase, incompressible, viscous fluid
with a moving free boundary is modeled by the incompressible Navier-Stokes equations:

ut ` u ¨∇u`∇p “ ν∆u in Ωptq , (1a)

divu “ 0 in Ωptq , (1b)

ν Def u ¨ n´ p n “ 0 on Γptq , (1c)

VpΓptqq “ u ¨ n (1d)

u “ u0 on Ωp0q , (1e)

Ωp0q “ Ω0 . (1f)

The open subset Ωptq Ă Rd, d “ 2 or 3, denotes the time-dependent volume occupied by the fluid,
Γptq :“ BΩptq denotes the moving free-surface, VpΓptqq denotes normal velocity of Γptq, and nptq
denotes the exterior unit normal vector to the free-surface Γptq. The vector-field u “ pu1, .., udq

1For the vortex sheet problem, it is necessary to have surface tension in order to ensure well-posedness in Sobolev
spaces.

2For both the Navier-Stokes and Euler equations, an initial velocity field must be prescribed at time t “ 0; this
is in sharp contrast to Muskat-type problems, wherein the velocity field at time t “ 0 is determined by the initial
geometry of the domain.
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denotes the Eulerian velocity field, and p denotes the pressure function. We use the notation
∇ “ pB1, ..., Bdq to denote the gradient operator, and set Def u “ ∇u`∇uT , twice the symmetric
part of the gradient of velocity. We have normalized the equations to have all physical constants
equal to 1.

The pressure p is a solution to the following Dirichlet problem:

´∆p “ ui,j u
j ,i in Ωptq , (2a)

p “ n ¨ rν Def u ¨ ns on Γptq , (2b)

so that given an initial domain Ω and an initial velocity field u0, the initial pressure is obtained as
the solution of (2) at t “ 0.

Definition 1. Given a locally smooth, time-dependent fluid interface or free-boundary, if there
exists a time T ă 8 such that the interface ΓpT q self-intersects at a point while remaining locally
smooth, we call this point of self-intersection at time T a “splash” singularity.

We prove that there exist smooth initial data for the Navier-Stokes equations (1) for which such
a splash singularity occurs in finite time.

1.3 Statement of the Main Theorem

Theorem 1 (Finite-time splash singularity). There exist

1. open bounded C8-class initial domains Ω Ă Rd, d “ 2 or 3, with N denoting the unit normal
vector field on BΩ, and

2. smooth divergence-free velocity fields u0 satisfying the compatibility condition

rDef u0 ¨N s ˆN “ 0 on BΩ ,

such that after a finite time T˚ ą 0, the solution to the Navier-Stokes equations (1) has a splash
singularity; that is, the interface ΓpT˚q self-intersects.

In Theorem 8, we show that the geometry of such a splash singularity can be prescribed arbitrarily
close (in the H3 norm) to any sufficiently smooth and prescribed self-intersecting domain.

1.4 Prior results for the incompressible Navier-Stokes equations with
moving free-surface

Local-in-time well-posedness of solutions to (1) have been known since the pioneering work of
Solonnikov [28, 29, 30]; his proof did not rely on energy estimates, but rather on Fourier-Laplace
transform techniques, which required the use of exponentially weighted anisotropic Sobolev-Slobodeskii
spaces with only fractional-order spatial derivatives for the analysis. Beale [5] proved local well-
posedness in a similar functional framework, and Abels [1] established the existence theory in the Lp

Sobolev space framework. Well-posedness in energy spaces was established by Coutand & Shkoller
in [12] for the case of surface tension on the free-boundary, and for Navier-Stokes fluid-structure
interaction problems wherein a viscous fluid is coupled to an elastic solid, in [13, 14]. Guo & Tice
[24] also used energy spaces for local well-posed for the case of zero surface tension.

Beale [6] established global existence of solutions to (1) for small perturbations of equilibrium.
More recent small-data global existence and decay results (both with and without surface tension)
can be found in [32], [27], [26], [21], [4], and [22, 23]. Recent results on the limit of zero viscosity and
the limit of zero surface tension can be found in [25], [19], and [33].

For the history of the well-posedness and singularity theory for the inviscid problem, we refer the
reader to the introduction in [15] and [17].
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1.5 Outline of the paper

In Section 2, we define our notation. In Section 3, we define a sequence of domains Ωε that we
use as the initial data for the splash singularity, wherein the boundary Γε of these domains is close
to self-intersection with a distance ε between two approaching portions of Γε. We convert the
Navier-Stokes equations to Lagrangian coordinates in Section 4, thus fixing the domain. In Section 5,
we present some preliminary lemmas which show that the constant appearing in elliptic estimates
and the Sobolev embedding theorem is independent of ε. In Section 6, we define the sequence of
initial divergence-free velocity fields that are guaranteed to satisfy the single compatibility condition
that we require, and whose norm is independent of ε. Section 7 is devoted to the basic a priori
estimates for the Navier-Stokes equations in Lagrangian coordinates; following our approach in [12],
we establish estimates for velocity v P L2p0, T ;H3pΩεqq X C0pr0, T s;H2pΩεqq which are independent

of ε. We then prove that the vertical component of velocity vp¨, tq at time t remains in an Opt
1
4 q

neighborhood of the vertical component of the initial velocity field. Using this fact, we prove the
main theorem in Section 8; we show that by choosing ε appropriately, a finite-time splash singularity
must occur at some time T˚ P p0, 10εq. We consider a completely arbitrary geometry for a splash
singularity in Section 9, by following our definition of a generalized splash domain from our previous
work in [16]. This, then, allows us to show in Section 10, that we can construct a splash singularity
for a geometry which is arbitrarily close in H3 to any prescribed H3 splash domain.

2 Notation, local coordinates, and some preliminary results

2.1 Notation for the gradient vector

Throughout the paper the symbol ∇ will be used to denote the d-dimensional gradient vector

∇ “
´

B
Bx1

, B
Bx2

, ..., B
Bxd

¯

.

2.2 Notation for partial differentiation and the Einstein summation con-
vention

The kth partial derivative of F will be denoted by F,k “
BF
Bxk

. Repeated Latin indices i, j, k, etc.,
are summed from 1 to d, and repeated Greek indices α, β, γ, etc., are summed from 1 to d´1. For

example, F,ii“
řd
i“1

B
2F

BxiBxi
, and F i,α I

αβGi,β “
řd
i“1

řd´1
α“1

ř2
β“1

BF i

Bxα
Iαβ BG

i

Bxβ
.

2.3 Tangential (or horizontal) derivatives

On each boundary chart Ul X Ω, for 1 ď l ď K, we let B̄ denote the tangential derivative whose
αth-component given by

B̄αf “

ˆ

B

Bxα
rf ˝ θls

˙

˝ θ´1
l “

ˆ

p∇f ˝ θlq
Bθl
Bxα

˙

˝ θ´1
l .

For functions defined directly on B` “ Bp0, 1q X txd ą 0u, B̄ is simply the horizontal derivative
B̄ “ pBx1

, ..., Bxd´1
q.
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2.4 Sobolev spaces

For integers k ě 0 and a bounded domain U of R3, we define the Sobolev space HkpUq pHkpU ;R3qq

to be the completion of C8pŪq pC8pŪ ;R3qq in the norm

}u}2k,U “
ÿ

|a|ďk

ż

U

|∇aupxq|2 ,

for a multi-index a P Z3
`, with the convention that |a| “ a1`a2`a3. When there is no possibility for

confusion, we write } ¨ }k for } ¨ }k,U . For real numbers s ě 0, the Sobolev spaces HspUq and the norms
} ¨ }s,U are defined by interpolation. We will write HspUq instead of HspU ;Rdq for vector-valued
functions.

2.5 Sobolev spaces on a surface Γ

For functions u P HkpΓq, k ě 0, we set

}u}2k,Γ “
ÿ

|a|ďk

ż

Γ

ˇ

ˇB̄aupxq
ˇ

ˇ

2
,

for a multi-index a P Z2
`. For real s ě 0, the Hilbert space HspΓq and the boundary norm | ¨ |s is

defined by interpolation. The negative-order Sobolev spaces H´spΓq are defined via duality. That is,
for real s ě 0, H´spΓq “ HspΓq1.

2.6 The unit normal and tangent vectors

We let np¨, tq denote the outward unit normal vector to the moving boundary Γptq. When t “ 0, we
let Nε denote the outward unit normal to Γε. For each α “ 1, ..., d´ 1 and x P Γε , ταpxq denotes an
orthonormal basis of the (d´1)-dimensional tangent space to Γε at the point x.

3 The sequence of initial domains Ωε

We shall use, as initial data, a sequence of domains, whose two-dimensional cross-section resembles a
dinosaur neck arching over its body.

3.1 The “dinosaur wave” domains

Definition 2 (The domain Ω). Let Ω Ă Rd, d “ 2, 3, be a smooth bounded domain (as shown on
the left of Figure 2) with boundary Γ. We assume that there are three particular open subsets of Ω
as follows:

1. There exists an open subset ω Ă Ω such that its boundary Bω is a vertical circular cylinder of
radius 1 and of length h.

2. There exists an open subset ω` Ă Ω which is the lower-half of an open ball of radius 1, located
directly below the cylindrical region ω, and in contact with the cylindrical region ω. The “south
pole” of ω` is the point X` (see Figure 3).

3. There exists an open subset ω´ Ă Ω directly below, at a distance 1, from the “south pole” X`
of ω`, such that the points with maximal vertical coordinate in Bω´ X Γ form a subset of the
horizontal plane xd “ 0.
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4. Coordinates are assigned to subsets of Ω as follows:

(a) The origin of Rd is contained in Bω´ X Γ Ă txd “ 0u.

(b) The point X`, the “south pole” of ω`, has the coordinates Xα
` “ 0 for α “ 1, ..., d ´ 1

and Xd
` “ 1.

(c) The top boundary of the hemisphere ω` is the set tpxh, xdq P Rd : xd “ 2, |xh| ă 1u.

(d) The cylindrical region ω is given by tpxh, xdq P Rd : 2 ă xd ă 2` h, |xh| ă 1u.

ω

ω`

ω´
Ω

Γ

ωε

ωε`

ω´
Ωε

Γε

1
ε

Figure 2: Left. The “dinosaur wave” domain Ω with boundary Γ. Right. The sequence of “dinosaur waves” Ωε

with boundary Γε, ε ą 0, used as initial data for the Navier-Stokes splash singularity. In order to ensure that a splash

occurs, the “dinosaur neck” ωε stretches downward so that there is a distance ε between the two portions. The domains

Ωε simply stretch the neck of the dinosaur, and are identical to Ω away from the neck.

Definition 3 (The initial domains Ωε). For 0 ă ε ! 1, let Ω Ă Rd, d “ 2, 3, be a smooth bounded
domain (as shown on the right of Figure 2) with boundary Γε. We define the domain Ωε to be the
following modification of the domain Ω:

1. There exists an open subset ωε Ă Ωε, which is a vertical dilation of the domain ω, such that its
boundary Bωε X Γε is a vertical circular cylinder of radius r and of length h` 1´ ε.

2. There exists an open subset ωε` Ă Ωε which is the set ω` translated vertically downward a
distance 1´ ε; hence, ωε` is the lower-half of an open ball of radius 1, located directly below
the cylindrical region ωε, and in contact with the cylindrical region ωε. The “south pole” of
ωε` is the point Xε

`.

3. There exists an open subset ω´ Ă Ωε directly below, and a distance ε, from the “south pole”
Xε
` of ωε`, such that the points with maximal vertical coordinate in Bω´ X Γ form a subset

of the horizontal plane xd “ 0. We assume that Bω´ X Γ contains a d´1-dimensional ball of
radius

?
ε.

4. Coordinates are assigned to subsets of Ωε as follows:

(a) The origin of Rd is contained in Bω´ X Γ Ă txd “ 0u.

(b) The point Xε
`, the “south pole” of ωε`, has the coordinates Xα

` “ 0 for α “ 1, ..., d ´ 1
and Xd

` “ ε.

(c) The top boundary of the hemisphere ωε` is the set tpxh, xdq P Rd : xd “ ε` 1, |xh| ă 1u.

(d) The cylindrical region ωε is given by tpxh, xdq P Rd : ε` 1 ă xd ă ε` 1` h, |xh| ă 1u.

7



D. Coutand and S. Shkoller Splash singularity for the Navier-Stokes equations

3.2 Local coordinate charts for Ω and Ωε

3.2.1 Local charts for Ω

We let s ě 3 and 0 ă ε ! 1. Let Ω Ă Rd denote a smooth open set, and let tUlu
K
l“1 denote an open

covering of Γ “ BΩ, such that for each l P t1, 2, . . . ,Ku, with

B “ Bp0, 1q, denoting the open ball of radius 1 centered at the origin and,

B` “ B X txd ą 0u,

B0 “ B X txd “ 0u,

there exist C8 charts θl which satisfy

θl : B Ñ Ul is an C8 diffeomorphism, (3a)

θlpB
`q “ Ul X Ω, θlpB

0q “ Ul X Γ , (3b)

and det∇θl “ Cl for a constant Cl ą 0. We assume these boundary charts can be split into three
non empty categories; to do so, we introduce two additional length scales for the dinosaur neck. We
set

δ1 “
h

15

h

h` 3
and δ2 “

ˆ

15` 4h

h` 3

˙

h

15
ă

5h

15

these number being chosen so that,

0 ă δ1 ă δ2 ă
h

3
.

The set ω “ tpxh, xdq P Rd : 2 ă xd ă 2` h, |xh| ă 1u of the dinosaur neck with be split into three
sets:

2 ď xd ď 2`
h

3
, 2`

h

3
ď xd ď 2`

2h

3
, 2`

2h

3
ď xd ď 2` h (4)

and the “middle” cylinder 2` h
3 ď xd ď 2` 2h

3 will be further refined using the smaller cylinder

t2`
h

3
` δ1 ď xd ď 2`

h

3
` δ2u Ă t2`

h

3
ď xd ď 2`

2h

3
u . (5)

We define three distinct sets of indices l for our boundary charts θl, which depend on the location of
θlpB

`q with respect to the vertical interval (5) as follows:

• We choose the first K1 charts such that

ω X t2`
h

3
` δ1 ă xd ă 2`

h

3
` δ2u Ă

K1
ď

l“1

θlpB
`q Ă ω X t2`

h

3
ă xd ă 2`

2h

3
u . (6)

• For K1 ` 1 ď l ď K2, θlpB
`q Ć ω and θlpB

`q X ω` “ H and

θlpB
`q X ω X t2`

h

3
` δ1 ă xd ă 2`

h

3
` δ2u “ H . (7)

• For K2 ` 1 ď l ď K, θlpB
`q Ć ω and θlpB

`q X ω` ‰ H and

θlpB
`q X ω X t2`

h

3
` δ1 ă xd ă 2`

h

3
` δ2u “ H . (8)
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We also have that the images of any charts θl for K1 ` 1 ď l ď K2 does not intersect any of the
images of the charts θl for K2 ` 1 ď l ď K.

We now repeat this indexing construction for the interior charts. For L ą K, we let tUlu
L
l“K`1

denote a family of open sets contained in Ω such that tUlu
L
l“1 is an open cover of Ω and there exist

smooth diffeomorphisms θl : B Ñ Ul with det∇θl equal to a constant Cl ą 0 (which is always
possible by the construction of [18]).

Just as for the case of the boundary charts and repeating our construction in (6)–(8), we split
the index l on the interior charts into three non empty categories:

• We choose our charts θl for K ` 1 ď l ď L1 such that

ω X t2`
h

3
` δ1 ă xd ă 2`

h

3
` δ2u Ă Y

L1

l“K`1θlpBq Ă ω X t2`
h

3
ă xd ă 2`

2h

3
u . (9)

• For L1 ` 1 ď l ď L2, θlpBq Ć ω and θlpBq X ω` “ H and

θlpBq X ω X t2`
h

3
` δ1 ă xd ă 2`

h

3
` δ2u “ H . (10)

• For L2 ` 1 ď l ď L, θlpBq Ć ω and θlpBq X ω` ‰ H and

θlpBq X ω X t2`
h

3
` δ1 ă xd ă 2`

h

3
` δ2u “ H . (11)

Furthermore, we have that the images of any of the charts θl for L1 ` 1 ď l ď L2 does not intersect
any of the images of the charts θl for L2 ` 1 ď l ď L.

Definition 4. We set

Bl “ B` (upper half-ball) for l “ 1, ...,K and, Bl “ B (ball) for l “ K ` 1, ..., L . (12)

We introduce the sets of indices I1, I2, and I3 as follows:

I1 “ t1 ď l ď K1u Y tK ` 1 ď l ď L1u ,

I2 “ tK1 ` 1 ď l ď K2u Y tL1 ` 1 ď l ď L2u , (13)

I3 “ tK2 ` 1 ď l ď Ku Y tL2 ` 1 ď l ď Lu .

These indices correspond to the following regions in Ω:

I1: Middle region of the “dinosaur neck” ω.

ω X t2`
h

3
` δ1 ă xd ă 2`

h

3
` δ2u Ă

ď

lPI1

θlpBlq Ă ω X t2`
h

3
ă xd ă 2`

2h

3
u .

I2: Above the middle region.

θlpBlq Ă ω X txd ą 2`
h

3
` δ2u .

I3: Below the middle region.

θlpBlq Ă ω X txd ă 2`
h

3
` δ1u .

9
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We also assume that
ωXω̌c Ă

ď

lPI2

θlpBlq

where ω̌ denotes the (bottom third) shortened cylindrical region

ω̌ “ tpxh, xdq P Rd : 2 ă xd ă 2`
2h

3
, |xh| ă 1u

of length 2h
3 , so that the vertical length of ωXω̌c is h

3 .
We finally assume that

ωXω̃c Ă
ď

lPI3

θlpBlq

where ω̃ denotes the (top third) shortened cylindrical region

ω̃ “ tpxh, xdq P Rd : 2`
h

3
ă xd ă 2` h, |xh| ă 1u

of length 2h
3 , so that the vertical length of ωXω̃c is h

3 .

3.2.2 Local charts for Ωε

We next explain how the system of coordinate charts tθlu
L
l“1 can be modified to be a system of

coordinate charts on the domains Ωε; for ε ą 0 sufficiently small, we use the following three steps to
define the new charts θεl :

1. For l P I1, we define the vertically dilated charts (which cover a middle cylinder
˝
ω with length

dilated from h
3 to h

3 ` 1´ ε)
θεl “ F εpθlq ,

with

F εpx1, ..., xdq “

ˆ

x1, ...,
h` 3` 3ε

h
pxd ´ 2´

h

3
q `

h

3
` 1´ ε

˙

. (14)

Note that F ε sends any point with xd “ 2` h
3 in ω (respectively xd “ 2` 2h

3 ) to a point with

xd “ 1´ ε` h
3 (respectively xd “ 2` 2h

3 ) in Ωε.

2. For l P I2, we set θεl “ θl.

3. For l P I3, we define the vertically-translated charts θεl “ θl ´ p1´ εqed.

Note that

det∇θεl “
"

h`3`3ε
h Cl , l P I1

Cl , l P I2 Y I3
,

where we recall that the charts θl were chosen such that det∇θl “ Cl for a constant Cl ą 0. In
summary, for l P I1, the charts θεl are dilated using (14), for l P I2 the charts θεl “ θl and are not
changed, while for l P I3 the charts θεl “ θl ´ p1´ εqed are merely translated in the vertical direction.

3.2.3 Cut-off functions on charts covering Ω

Let tξlu
L
l“1 denote a smooth partition of unity, subordinate to the covering tUlu

L
l“1; i.e., ξl P C

8
c pUlq,

0 ď ξl ď 1, and
řL
l“1 ξl “ 1. With Bl defined in (12), for each l “ 1, ..., L, we set ζl “ ξl ˝ θl, so that

ζl P C
8
c pBlq whenever the charts θl are smooth.

10
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3.2.4 Cut-off functions supported on the charts covering Ωε

We next define cut-off functions ξεl which are supported on the image of the charts θεl as follows:

ξεl ˝ θ
ε
l “ ξl ˝ θl .

With the set Bl defined in (12), and setting ζl “ ξεl ˝θ
ε
l , we see that (by definition) }ζl}k,Bl is bounded

by a constant which is independent of ε.
With the set of indices I1, I2, and I3 defined in (13), given our expressions for θεl , we have that

for any x P Ωε,

L
ÿ

l“1

ξεl pxq “
ÿ

lPI2

ξlpxq `
ÿ

lPI3

ξlpx` p1´ εqedq `
ÿ

lPI1

ξlpx1, x2, g
εpxdqq , (15)

where gε is the inverse of F εd (defined in (14)) with

gεpxdq “
h

h` 3` 3ε
pxd ´ 1´

h

3
` εq ` 2`

h

3
. (16)

The following three possibilities exist for a lower-bound of the sum
řL
l“1 ξ

ε
l pxq:

i) If x P pωε Y ωε`q
c X Ωε or x P ωε X txd ě 2` 2h

3 u, then,

L
ÿ

l“1

ξεl pxq “
ÿ

lPI2

ξlpxq “ 1 . (17)

ii) If x P ωε` or x P ωε X txd ď 1´ ε` h
3 u, then,

L
ÿ

l“1

ξεl pxq “
ÿ

lPI3

ξlpx` p1´ εqedq “ 1 . (18)

iii) If x P ωεXt1´ ε` h
3 ď xd ď 2` 2h

3 u, then x is in the middle cylindrical region of the dinosaur

neck
˝
ω whose length is stretched from h

3 to h
3 ` 1´ ε, which means that the vertical derivative

Bxdξ
ε
l pxq can change with ε, and in turn, the sum

řL
l“1 ξ

ε
l pxq may drop below the value of

1. As we do not a priori know what this lower-bound will be, we add more charts into this
region (with corresponding cut-off functions) in such a way as to ensure that we indeed have a
lower-bound of 1 on the sum of the ξεl pxq for each x in this region.

Specifically, we add an additional L̃ local charts θl to our domain Ω; of these additional L̃
charts, we add K additional boundary charts and L additional interior charts so that L̃ “ K`L.
We then choose the positive integers K1, K2, L1 and L2, such that the indices L` 1 ď l ď L̃
are split into

L` 1 ď l ď L`K1 , L`K1 ` 1 ď l ď L`K2 , L`K2 ` 1 ď l ď L`K ,

L`K` 1 ď l ď L`K` L1 , L`K` L1 ` 1 ď l ď L`K` L2 , L`K` L2 ` 1 ď l ď L` L̃ .

The integers K1, K2, L1, and L2 are chosen by repeating the index construction for the integers
K1, K2, L1, and L2 in (6)–(11), but with a modification in the vertical splitting of the dinosaur
neck ω in (4), in which

h

3
is replaced by

2h

5
,

2h

3
is replaced by

3h

5
.

11
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Following Definition 4, we introduce the sets of indices I1, I2, and I3 as follows:

I1 “ tL` 1 ď l ď L`K1u Y tL`K ` 1 ď l ď L`K ` L1u ,

I2 “ tL`K1 ` 1 ď l ď L`K2u Y tL`K ` L1 ` 1 ď l ď L`K ` L2u ,

I3 “ tL`K2 ` 1 ď l ď L`Ku Y tL`K ` L2 ` 1 ď l ď L` L̃u .

We define

δ̃1 “
δ1
10

and δ̃2 “
δ2
10

these number being chosen so that,

0 ă δ̃1 ă δ̃2 ă
h

30
.

The indices I1, I2, and I3 correspond to the following regions in Ω:

I1: Middle region of the “dinosaur neck.”

ω X t2`
2h

5
` δ̃1 ă xd ă 2`

2h

5
` δ̃2u Ă

ď

lPI1

θlpBlq Ă ω X t2`
2h

5
ă xd ă 2`

3h

5
u .

I2: Above the middle region.

Each chart θlpBlq Ă ω X txd ą 2`
2h

5
` δ̃2u .

I3: Below the middle region.

Each chart θlpBlq Ă ω X txd ă 2`
2h

5
` δ̃1u .

We define the additional charts for the dilated region Ωε as follows:

1. For l P I1, we define the vertically dilated charts

θεl “ Fεpθlq ,

with

Fεpx1, ..., xdq “

ˆ

x1, ...,
h` 5` 5ε

h
pxd ´ 2´

2h

5
q `

2h

5
` 1´ ε

˙

.

Note that Fε sends any point with xd “ 2` 2h
5 in ω (respectively xd “ 2` 3h

5 ) to a point

with xd “ 1´ ε` 2h
5 (respectively xd “ 2` 3h

5 ) in Ωε, and the inverse function Gε is given
by

Gεpxdq “
h

h` 5` 5ε
pxd ´ 1´

2h

5
` εq ` 2`

2h

5
.

The set ω “ tpxh, xdq P Rd : 2 ă xd ă 2` h, |xh| ă 1u of the dinosaur neck is split into
three sets:

2 ď xd ď 2`
2h

5
, 2`

2h

5
ď xd ď 2`

3h

5
, 2`

3h

5
ď xd ď 2` h

and the “middle” cylinder 2` 2h
5 ď xd ď 2` 3h

5 will be further refined using the smaller
cylinder

t2`
2h

5
` δ̃1 ď xd ď 2`

2h

5
` δ̃2u Ă t2`

2h

5
ď xd ď 2`

3h

5
u .

12
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2. For l P I2, we set θεl “ θl.

3. For l P I3, we define the vertically-translated charts θεl “ θl ´ p1´ εqed.

Note that

det∇θεl “
"

h`5`5ε
h Cl , l P I1

Cl , l P I2 Y I3
,

where we recall that the charts θl were chosen such that det∇θl “ Cl for a constant Cl ą 0.

We denote by tξlu
L`L̃
l“L`1 a smooth partition of unity associated to the covering tθlpBlquL`L̃l“L`1.

We then repeat our previous construction of the functions ξεl and just as in (17)–(18), we have
the following two analogous cases:

a. If x P pωε Y ωε`q
c X Ωε or x P ωε X txd ě 2` 3h

5 u, and therefore if

x P ωε X t2`
3h

5
ď xd ď 2`

2h

3
u ,

then
L`L̃
ÿ

l“L`1

ξεl pxq “
ÿ

lPI2

ξεl pxq “ 1 . (19)

b. If x P ωε` or x P ωε X txd ď 1´ ε` 2h
5 u, and therefore if

x P ωε X t1´ ε`
h

3
ď xd ď 1´ ε`

2h

5
u ,

then
L`L̃
ÿ

l“L`1

ξεl pxq “
ÿ

lPI3

ξεl pxq “ 1 . (20)

In equations (19) and (20), we have shown that the additional l “ L` 1, ..., L` L̃ partition
functions sum to 1, while the original l “ 1, ..., L partition functions sum to a number greater
than zero.

The remaining possibility is that

x P ωε X t1´ ε`
2h

5
ď xd ď 2`

3h

5
u,

in which case,

2`
h

3
`

h

15

h

h` 3` 3ε
ď gεpxq ď 2`

h

3
` h

1` 4h
15 ` ε

3` h` 3ε
,

and thus since

lim
εÑ0

2`
h

3
`

h

15

h

h` 3` 3ε
“ 2`

h

3
` δ1 , and lim

εÑ0
2`

h

3
` h

1` 4h
15 ` ε

3` h` 3ε
“ 2`

h

3
` δ2 ,

we have from the assumptions (7), (8), (10) and (11) that (for ε ą 0 small enough)
ÿ

lPI2

ξlpx1, ..., g
εpxdqq “ 0 “

ÿ

lPI3

ξlpx1, ..., g
εpxdqq ,

and so
ÿ

lPI1

ξlpx1, ..., g
εpxdqq “ 1 .

13
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Together with (15), we have established that

L
ÿ

l“1

ξεl pxq “ 1 . (21)

In this remaining case, we have shown that the original l “ 1, ..., L partition functions sum to 1,
while the additional l “ L` 1, ..., L` L̃ partition functions some to a number greater than zero.

We then use the open covering tθεl pBqu
L`L̃
l“1 of Ωε, with the associated compactly supported

functions tξεl u
L`L̃
l“1 . Using (17), (18), (19), (20) and (21), it follows that the functions tξεl u

L`L̃
l“1 satisfy

L`L̃
ÿ

l“1

ξεl pxq ě 1 @x P Ωε , (22)

and we have therefore established the strictly positive uniform-in-ε lower-bound for the functions

tξεl u
L`L̃
l“1 .

4 The Lagrangian description of the Navier-Stokes free-boundary
problem

For ε ą 0, we let Ωε with boundary Γε be given by Definition 3, and we transform the system (1)
into a system of equations set on this reference domain. To do so, we shall employ the Lagrangian
coordinates.

The Lagrangian flow map ηp¨, tq is the solution of the ηtpx, tq “ upηpx, tq, tq for t ą 0 with initial
condition ηpx, 0q “ 0. Since div u “ 0, it follows that det∇η “ 1. For each instant of time t for
which the flow is well-defined, we have

ηp¨, tq : Ωε Ñ Ωptq is a diffeomorphism;

furthermore, thanks to (1d),
Γptq “ ηpΓε, tq .

Notationally, we keep the dependence on ε ą 0 implicit, except for the initial domain and boundary.
Next, we define

v “ u ˝ η (Lagrangian velocity),

q “ p ˝ η (Lagrangian pressure),

A “ r∇ηs´1 (inverse of the deformation tensor) ,

gαβ “ η,α ¨η,β α, β “ 1, .., d´ 1 (induced metric on Γ) ,

g “ detpgαβq .

We also define the Lagrangian analogue of some of the fundamental differential operators present in
this equation:

divη v “ pdiv uq ˝ η “ vi,j A
j
i ,

curlη v “ pcurluq ˝ η or rcurlη vsi “ εijkv
k,r A

r
j ,

Defη v “ pDef uq ˝ η or rDefη vs
i
j “ vi,r A

r
j ` v

j ,r A
r
i ,

∆ηv “ p∆uq ˝ η “ pA
j
rA

k
rv,k q,j .

14
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The Lagrangian version of equations (1) is given on the fixed reference domain Ωε by

ηp¨, tq “ e`

ż t

0

vp¨, sqds in Ωε ˆ r0, T s , (23a)

vt `A
T∇q “ ν∆ηv in Ωε ˆ p0, T s , (23b)

divη v “ 0 in Ωε ˆ r0, T s , (23c)

ν Defη v ¨ n´ qn “ 0 on Γε ˆ r0, T s , (23d)

pη, vq “ pe, u0q in Ωε ˆ tt “ 0u , (23e)

where epxq “ x denotes the identity map on Ω, and where we write n for npηq in the Lagrangian
description; in particular, the unit normal vector n at the point ηpx, tq can be expressed in terms of
the cofactor matrix A and the time t “ 0 normal vector Nε as

n “ ATNε{|A
TNε| .

Due to (23c),
∆ηv “ divη Defη v ,

so that (23d) can be viewed as the natural boundary condition. The variables η, v, and q have an a
priori dependence on ε ą 0, but we do not explicitly write this.

Local-in-time existence and uniqueness of solutions to (23) have been known since the pioneering
work of Solonnikov [28]. We shall establish a priori estimates for (23) with the initial domain Ωε and
with divergence-free initial velocity fields satisfying the single compatibility condition

rDef uε0 ¨N
εs ¨ τ εα “ 0 on Γε , (24)

where N ε denotes the outward unit normal to Γε and τ εα, α “ 1, .., d´ 1, denotes the d´1 tangent
vectors to Γε.

We will show that both the a priori estimates and the time of existence for solutions are independent
of the distance ε ą 0 between the falling dinosaur head Xε

` and the flat trough Bω´ X txd “ 0u
(see Figure 2). To do so, we shall rely on some basic lemmas that provide us constants which are
independent of ε.

5 The constants for elliptic estimates and Sobolev inequali-
ties are independent of ε

We consider the following linear Stokes problem

´∆u`∇p “ f in Ωε , (25a)

div u “ φ in Ωε , (25b)

u “ g on Γε , (25c)

Lemma 2 (Estimates for the Stokes problem on Ωε). Suppose that for integers k ě 3, f P Hk´2pΩεq,
φ P Hk´1pΩεq, and g P Hk´1{2pΓεq, and

ş

Ωε
φpxqdx “

ş

Γε
g ¨ N dS. Then, there exists a unique

solution u P HkpΩεq and p P Hk´1pΩεq{R to the Stokes problem (25). Moreover, there is a constant
C depending only on Ω, but independent of ε ą 0, such that

}u}k,Ωε ` }p}k´1,Ωε ď C
`

}f}k´2,Ωε ` }φ}k´1,Ωε ` |g|k´1{2,Γε
˘

. (26)

15
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Proof. The estimate (26) is well-known on the domain Ω; see, for example, [2]. The corresponding
elliptic estimate on the sequence of domains Ωε follows by localization using the charts θεl , defined in
Section 3.2. With the domains Bl defined by (12), following the elliptic estimates of [2] and using
the Sobolev embedding theorem to bound the Hk´1pBlq-class coefficients arising from polynomial
combinations of components of ∇θεl , we have that

}ζlu ˝ θ
ε
l }k,Bl ` }ζlp ˝ θ

ε
l }k´1,Bl ď D1p}∇θεl }k´1,Blq

`

}f}k´2,Ωε ` }φ}k´1,Ωε ` |g|k´1{2,Γε
˘

, (27)

where D1 is a polynomial function that does not depend on ε.
As we shall explain, since the charts θεl are modifications of the charts θl by vertical dilation with

lower and upper bound that is uniform in ε, the constant for the elliptic estimate in each chart is
independent of ε ą 0. This follows from our explicit formulas for θεl in Section 3.2.2; for each ε and
each θεl , using the definition of the dilation F ε given by (14), we have that

}∇θεl }k´1,Bl ď
h` 3` 3ε

h
}∇θl}k´1,Bl ď p1`

4

h
q}∇θl}k´1,Bl , (28)

for ε ą 0 small enough. Using the bound (28) in the elliptic estimate (27), there exists a constant
D2 ą 0 independent of ε, such that

}ζlu ˝ θ
ε
l }k,Bl ` }ζlp ˝ θ

ε
l }k´1,Bl ď D2

`

}f}k´2,Ωε ` }φ}k´1,Ωε ` |g|k´1{2,Γε
˘

. (29)

Moreover, for a polynomial function D3 ą 0 which is independent of ε,

}∇pθεl q´1}k´1,θlpBlq ď D3p}∇θl}k´1,Blq . (30)

To prove (30), we begin with the L2 estimate. We define

Aεl pxq “ r∇θεl pxqs´1 , J εl “ detr∇θεl pxqs , and A
ε
l “ Aεl {J εl ,

with A denoting the cofactor matrix. Recall that J εl is equal to a constant given by either Cl or
h`3`3ε

h Cl, so that 1{J εl ď 1{Cl. By the inverse function theorem, ∇ypθεl q´1pyq “ Aεl pxq so that

}∇pθεl q´1}20,θlpBlq “

ż

θlpBlq
|∇ypθεl q´1pyq|2dy

“

ż

Bl
|Aεl pxqq|2J εl dx “

ż

Bl
|A ε

l pxqq|
2rJ εl s´1dx ď C´1

l

ż

Bl
|∇θεl |2pd´1qdx

and hence, using (28), we see that

}∇pθεl q´1}20,θlpBlq ď D3p}∇θl}k´1,Blq .

Next, for the H1 estimate, we use the chain-rule identity that B
Byi
“ rAεl ski B

Bxk
and write

}∇∇pθεl q´1}20,θlpBlq “

ż

θlpBlq

B

Byi
∇ypθεl q´1pyq

B

Byi
∇ypθεl q´1pyq dy

“

ż

Bl
rAεl ski

B

Bxk
prAεl srsq rAεl s

j
i

B

Bxj
prAεl srsq J εl dx .

Using the identity
B

Bxk
prAεl srsq “ ´rAεl srm

B2rθεl s
m

BxjBxk
rAεl sjs ,
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we have that

}∇∇pθεl q´1}20,θlpBlq ď C´5
l

ż

Bl
|∇θεl |6pd´1q |∇2θεl |

2dx ď D3p}∇θl}k´1,Blq ,

the last inequality coming from the Sobolev embedding theorem and the fact that k ě 3. The
estimate for ∇k´1∇pθεl q´1 follows in the same manner, and we obtain (30).

Since
řL`L̃
l“1 ξεl ě 1 from (22) in Ωε this proves the lemma.

Lemma 3 (Sobolev constant on Ωε). Independent of ε, there exists a constant C ą 0 which depends
only on the domain Ω, such that

@u P HspΩεq , s ą d{2 , max
xPΩε

|upxq| ď C}u}s,Ωε .

Proof. By Morrey’s inequality, for 1 ď l ď L,

@u P HspΩεq , s ą d{2 , max
Bl
|u ˝ θεl | ď C1}u ˝ θ

ε
l }s,Bl , (31)

for some C1 ą 0 independent of ε. Now, depending on the index l, θεl is either equal to θl , a vertical
translation of θl, or a vertical dilation of θl given by the map F ε in (14) (see Section 3.2). Thus, as
we proved in (28), for ε ą 0 small enough,

}∇θεl }s´1,Bl ď p1`
4

h
q}∇θl}s´1,Bl . (32)

By the chain rule, using (32) in (31) shows that we have the existence of a constant C2 ą 0
(independent of ε ą 0 small enough) such that

@u P HspΩεq , s ą d{2 , max
Bl
|u ˝ θεl | ď C2}u}s,θεl pBlq . (33)

Given that the θεl pBlq provide a cover of Ωε, we indeed have proved the lemma.

The same argument also proves the following

Lemma 4 (Sobolev constant on Γε). Independent of ε, there exists a constant C ą 0 which depends
only on Γ, such that

@u P HspΓεq , s ą
d

2
´

1

2
, max

xPΓε
|upxq| ď C}u}s,Γε .

Lemma 5 (Trace theorem on Ωε). Independent of ε, there exists a constant C ą 0 which depends
only on the domain Ω, such that for s P p 1

2 , 3s

}u}s´ 1
2 ,Γ

ε ď C}u}s,Ωε @u P HspΩεq .

Proof. From the standard trace theorem in B`, we have the existence of a constant C1 ą 0
(independent of ε ą 0 small enough) such that for any boundary chart,

}u ˝ θεl }s´ 1
2 ,B0

ď C}u ˝ θεl }s,B` @u P HspΩεq .

by differentiating the (inverse) dilation map gε in (16), we see that for ε ą 0 small enough,

}∇θl}s´1,B` ď }∇θεl }s´1,B` ď p1`
4

h
q}∇θl}s´1,B` . (34)

This implies that by the chain rule, we have the existence of a constant C2 ą 0 (independent of ε ą 0
small enough) such that

}u}s´ 1
2 ,θ

ε
l pB0q

ď C2}u}s,θεl pB`q @u P H
spΩεq .

Since Γε is the union of all θεl pB0q, 1 ď l ď K, the above inequality implies the result.
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6 The sequence of initial velocity fields uε0

6.1 Constructing the sequence of initial velocity fields uε0

As described in Definition 3, near the intended splash (or self-intersection) point, the open set
Ωε consists of two sets: the upper set ωε` and the lower set ω´ whose boundary contains the flat
“dinosaur belly” at xd “ 0, as shown in Figure 3. We We let Xε

` denote the point which has the
smallest vertical coordinate in Bωε`. Directly below, we let X´ be the point in Bω´ X txd “ 0u with
the same horizontal coordinate as Xε

`. Without loss of generality, we set X´ to be the origin of Rd.

ωε`
N
Xε
`

N
X´

ω´

Figure 3: In a neighborhood of the intended splash point, we suppose that Ωε consists of two sets: the upper set ωε`
and the lower set ω´ containing the horizontally flat “dinosaur belly.” The point Xε

` is at a distance ε from the set

ω´ and the point X´ is assumed to be the origin in Rd.

We choose a smooth function bε0 P C
8pΓεq such that bε0 “ ´1 in a small neighborhood of Xε

` on
Bωε`, bε0 “ 0 on Bω´, bε0 “ 0 on Bωε X Γε,

ş

Γε
bε0 dS “ 0, and satisfying the estimate

}bε0}2.5,Γε ď m0 ă 8 , (35)

where m0 does not depend on ε.
We define the initial velocity field uε0 at t “ 0 as the solution to the following Stokes problem:

´∆uε0 `∇rε0 “ 0 in Ωε , (36a)

div uε0 “ 0 in Ωε , (36b)

rDef uε0 ¨N
εs ¨ τ εα “ 0 on Γε , (36c)

uε0 ¨N
ε “ bε0 on Γε , (36d)

with N ε denoting the outward unit normal to Γε and τ εα, α “ 1, 2 denoting an orthonormal basis of
the tangent space to Γε (if the dimension d “ 2, then there is only one tangent vector). Using the
regularity theory of this elliptic system (see, for example, [31] or [3] and references therein), together
with the proof of Lemma 2, for a constant independent of ε ą 0,

}uε0}3,Ωε ď C}bε0}2.5,Γε ď Cm0 . (37)

The boundary condition (36c) ensures that uε0 satisfies (24).

6.2 The initial pressure function pε0

The initial pressure function pε0 at t “ 0 then satisfies

´∆pε0 “ pu
ε
0q
i,j pu

ε
0q
j ,i in Ωε , (38a)

pε0 “ N ε
0 ¨ rν Def uε0 ¨N

ε
0s on Γε , (38b)
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so that using the same proof as that of Lemma 2, we have the following ε-independent elliptic
estimate:

}pε0}2,Ωε ď C
“

}uε0}
2
3,Ωε ` }u

ε
0}3,Ωε

‰

, (39)

where C ą 0 does not depend on ε ą 0 small enough. Using (37) in (39) shows that

}pε0}2,Ωε ď C
“

Cm0 ` Cm
2
0

‰

“ Ppm0q , (40)

where we use P to denote a generic polynomial function that depends only on Ω (since the elliptic
constant C depends on Ω).

7 A priori estimates

Let Ωε denote the dinosaur domain shown in Figure 2, and let θl denote the system of local charts
for Ωε as defined in (3). By denoting ηl “ η ˝ θl we see that

ηlptq : B` Ñ Ωptq for l “ 1, ...,K .

We set vl “ u ˝ ηl, ql “ p ˝ ηl and Al “ rDηls
´1, Jl “ Cl (where Cl ą 0 is a constant, and al “ JlAl.

The unit normal nl is defined as g´
1
2
Bηl
Bx1

ˆ
Bηl
Bx2

if d “ 3 and by g´
1
2
Bηl
Bx1

K
if d “ 2.

It follows that for l “ 1, ...,K,

ηlptq “ θl `

ż t

0

vl in B` ˆ r0, T s , (41a)

Btvl `A
T
l ∇ql “ ∆ηlvl in B` ˆ p0, T s , (41b)

divηl vl “ 0 in B` ˆ r0, T s , (41c)

ν Defηl vl ¨ nl ´ ql nl “ 0 on B0 ˆ r0, T s , (41d)

pηl, vlq “ pθl, u0 ˝ θlq in B` ˆ tt “ 0u , (41e)

where we have set ν “ 1.

Definition 5 (Higher-order energy function). For each t P r0, T s, we define the higher-order energy
function

Eεptq “ 1` }ηp¨, tq}23,Ωε ` }vp¨, tq}
2
2,Ωε `

ż t

0

}vp¨, sq}23,Ωεds`

ż t

0

}qp¨, sq}22,Ωεds

` }vtp¨, tq}
2
0,Ωε `

ż t

0

}vtp¨, sq}
2
1,Ωεds

We then set M0 “ PpEεp0qq where P denotes a generic polynomial whose coefficients depend only on
Ω. The constant M0 is then equal to Ppm0q, a polynomial function of the constant m0 introduced in
(37).

Remark 1. Given that u0 P H
2pΩεq satisfies the compatibility conditions:

div uε0 “ 0 in Ωε , (42a)

rDef uε0 ¨N
εs ¨ τ εα “ 0 on Γε , (42b)

it follows from the energy estimates (that we next obtain) together classical existence theorems for
the free-boundary Navier-Stokes problem, that (1) admits a unique solution for some time T ε ą 0,
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which has the regularity:

v P L8p0, T ε;H2pΩεqq X L2p0, T ε;H3pΩεqq ,

vt P L
8p0, T ε;L2pΩεqq X L2p0, T ε;H1pΩεqq ,

q P L2p0, T ε;H2pΩεqq .

Our energy function Eε contains all of these terms, and additionally, the term 1 to ensure that Eε is
smaller than its square; the term }ηp¨, tq}3,Ωε is well-defined whenever v P L2p0, T ε;H3pΩεqq.

So long as the solution has this regularity and the moving free surface does not self-intersect, the
Eulerian formulation (1) and the Lagrangian formulation (written in each chart) (41) are equivalent,
and we will work with the latter one.

We will first prove that the solution is defined over a time interval which is independent of ε ą 0.

Theorem 6. Assuming that Γptq does not self-intersect, independent of ε ą 0, there exists a time
T ą 0 and a constant C ą 0 such that the solution

v P Cpr0, T s, H2pΩεqq X L2p0, T ;H3pΩεqq , q P L2p0, T ;H2pΩεqq

to (23) satisfies the a priori estimate:

max
tPr0,T s

Eεptq ď CM0 . (43)

Proof. The proof will proceed in five steps.

Step 1. Estimates for ∇η and A. Using (41a), we see that

}∇ηp¨, tq ´ Id }2,Ωε ď

›

›

›

›

ż t

0

∇vp¨, sqds
›

›

›

›

2,Ωε
ď
?
t sup
sPr0,ts

a

Eεptq . (44)

Thanks to Lemma 3, there exists a constant C ą 0, independent of ε, such that

}∇ηp¨, tq ´ Id }L8pΩεq ď C
?
t sup
sPr0,ts

a

Eεptq . (45)

Since det∇η “ 1, the matrix A is simply the cofactor matrix of ∇η:

A “

„

´η,K2
η,K1



for d “ 2, and A “

»

–

η,2ˆη,3
η,3ˆη,1
η,1ˆη,2

fi

fl for d “ 3 , (46)

where each row is a vector, and for a 2-vector x “ px1, x2q, x
K “ p´x2, x1q.

We make the following basic assumption, that we shall verify below in Step 5: for a constant
0 ă ϑ ! 1, we suppose that t P r0, T s and that T is chosen sufficiently small so that

sup
tPr0,T s

}∇ηp¨, tq ´ Id }L8pΩεq ď ϑ10 . (47)

It follows from (46), that since }Ap¨, tq ´ Id }L8pΩεq ď
şt

0
}Atp¨, sq}L8pΩεqds,

sup
tPr0,T s

}Ap¨, tq ´ Id }L8pΩεq ` }AA
T p¨, tq ´ Id }L8pΩεq ď ϑ . (48)
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Step 2. Boundary regularity. We begin by considering a single boundary chart θl : B` Ñ Ωptq.
Let ζl denote the smooth cut-off function defined in Section 3.2.4. Using equation (41b), we compute
the following L2pB`q inner-product:

`

ζlB̄
2rBtvl ´∆ηv `A

T
l ∇qls , ζlB̄2vl

˘

L2pB`q
“ 0 . (49)

To simplify the notation, we fix l P t1, ...,Ku and drop the subscript. The chart θl was defined so
that det∇θl “ Cl for a constant Cl ą 0. Then (49) can be written as be written as

ż

B`
ζ2B̄2vit B̄

2vi dx´

ż

B`
ζ2B̄2rAksA

j
sv
i,j s,k B̄

2vi dx`

ż

B`

ζ2B̄2rAki qs,k B̄
2vi dx “ 0 . (50)

Integration-by-parts with respect to xk shows that

0 “
1

2

d

dt
}ζ B̄2vptq}20,B` `

ż

B`
B̄2rAksA

j
sv
i,j s B̄

2rζ2vis,k dx`

ż

B`
B̄2rAki qs B̄

2rζ2vis,k dx (51)

where we have used the boundary condition (41d) to show that the boundary integral vanishes. Using
δjk to denote the Kronecker delta function, we write (51) as

1

2

d

dt
}ζ B̄2vp¨, tq}20,B` ` }ζ B̄

2∇vptq}20,B` “ ´
ż

B`
B̄2rAki qs B̄

2rζ2vis,k dx

´

ż

B`
B̄2rpAksA

j
s ´ δ

kjqvi,j s B̄
2rζ2vis,k dx´

ż

B`

“

B̄2vi,k pB̄
2ζ2vi ` 2B̄ζ2B̄viq,k `ξ,k B̄

2vi
‰

dx .

(52)

We integrate (52) over the time interval r0, T s:

1

2
}ζ B̄2vp¨, tq}20,B` `

ż T

0

}ζ B̄2vptq}21,B` ďM0 ` I1 ` I2 ` I3 (53)

where

I1 “

ż T

0

ż

B`

ˇ

ˇB̄2rAki qs B̄
2rζ2vis,k

ˇ

ˇ dxdt ,

I2 “

ż T

0

ż

B`

ˇ

ˇB̄2rpAksA
j
s ´ δ

kjqvi,j s B̄
2rζ2vis,k

ˇ

ˇ dxdt ,

I3 “

ż T

0

ż

B`

ˇ

ˇB̄2vi,k rB̄
2ζ2vi ` 2B̄ζ2B̄vis,k `ξ,k B̄

2vi
ˇ

ˇ dxdt .

Using the Sobolev embedding theorem and Lemma 3 We estimate I1

I1 ď

ż T

0

ż

B`
|B̄2q| |Aki B̄

2vi,k | dxdt
loooooooooooooooooomoooooooooooooooooon

Ia1

`

ż T

0

}q}2,ε}A}2,Ωε}v}2,Ωεdt
looooooooooooooomooooooooooooooon

Ib1

`

ż T

0

}q}1.5,ε}A}2,Ωε}v}3,Ωεdt
loooooooooooooooomoooooooooooooooon

Ic1

.

To estimate the integral Ia1 , we use (41c) to write

vi,kαβ A
k
i “ ´A

k
i ,αβ v

i,k ´A
k
i ,β v

i,kα´A
k
i ,α v

i,kβ ,
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so that the term with three derivatives on v is converted to a term with three derivatives on η plus
lower-order terms. It follows that for δ ą 0, and a constant Cδ (which blows-up as δ Ñ 0),

Ia1 ď δ

ż T

0

}q}22,Ωεdt` CδTP p sup
tPr0,T s

Eεptqq .

The integral Ib1 is estimated in the same way. For the integral Ic1 we use linear interpolation to

estimate the norm
şT

0
}q}1.5,ε:

Ic1 ď δ

ż T

0

}v}23,Ωεdt` δ

ż T

0

}q}22,Ωεdt` CδTP p sup
tPr0,T s

Eεptqq .

It follows that
I1 ďM0 ` CδTP p sup

tPr0,T s

Eεptqq ` δ sup
tPr0,T s

Eεptq . (54)

Next, for the integral I2,

I2 ď

ż T

0

ż

B`

ˇ

ˇpAksA
j
s ´ δ

kjqB̄2vi,j B̄
2rζ2vis,k

ˇ

ˇ dxdt
looooooooooooooooooooooooooooomooooooooooooooooooooooooooooon

Ia2

` 2

ż T

0

ż

B`

ˇ

ˇB̄pAksA
j
s ´ δ

kjqB̄vi,j B̄
2rζ2vis,k

ˇ

ˇ dxdt
loooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooon

Ib2

`

ż T

0

ż

B`

ˇ

ˇB̄2pAksA
j
s ´ δ

kjqvi,j B̄
2rζ2vis,k

ˇ

ˇ dxdt
looooooooooooooooooooooooooooomooooooooooooooooooooooooooooon

Ic2

.

Using (48) and choosing ϑ ă δ,

Ia2 ď CδTP p sup
tPr0,T s

Eεptqq ` δ sup
tPr0,T s

Eεptq .

In the same way as above, we again use Lemma 3, together with linear interpolation for term Ib2, to
see that

I2 ďM0 ` CδTP p sup
tPr0,T s

Eεptqq ` δ sup
tPr0,T s

Eεptq . (55)

The integral I3 is straightforward and also satisfies

I3 ďM0 ` CδTP p sup
tPr0,T s

Eεptqq ` Cδ sup
tPr0,T s

Eεptq . (56)

Summing over all of the boundary charts l “ 1, ...,K in (53), the inequalities (54)–(56) together
with the trace theorem, Lemma 5, show that

ż T

0

}vp¨, tq}22.5,Γε ďM0 ` CδTP p sup
tPr0,T s

Eεptqq ` δ sup
tPr0,T s

Eεptq (57)

Step 3. Estimates for the time-differentiated problem. We consider the time-differentiated
version of (23) which we write as the following system:

ηt “ v in Ωε ˆ r0, T s , (58a)

vtt ´∆ηvt `A
T∇qt “ ´ATt ∇q ` rBtpAjsAksqv,k s,j in Ωε ˆ p0, T s , (58b)

divη vt “ ´v
i,j BtA

j
i in Ωε ˆ r0, T s , (58c)

Bt rDefη v ¨ n´ qns “ 0 on Γε ˆ r0, T s , (58d)

pη, v, vtq “ pe, u
ε
0, u

ε
1q in Ωε ˆ tt “ 0u , (58e)
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where uε1 “ ∆uε0 ´∇pε0, with uε0 defined in (36) and pε0 defined in (38); therefore, independently of
ε ą 0,

}uε1}0,Ωε ď Ppm0q . (59)

We define the space of divη-free vectors fields on Ωε as

Vptq “ tφ P H1pΩε;Rdq : divηp¨,tq φ “ 0u .

Taking the L2pΩεq inner-product of equation (58b) with a test function φ P Vptq, we have that

ż

Ωε
vtt ¨ φdx`

ż

Ωε
BtrA

k
sA

j
sv
i,j sφ

i,k dx “

ż

Ω

q BtA
k
i φ

i,k dx @φ P Vptq . (60)

Next, we define a vector field w satisfying

divη w “ ´v
i,j BtA

j
i in Ωε , (61a)

w “ φptqn on Γε , (61b)

where φptq “ ´
ş

Ωε
vi,j BtA

j
idx{|Γ

ε|. A solution w can be found by solving a Stokes-type problem,
and according to the proof of Lemma 3.2 in [11], for integers k ě 1,

}wp¨, tq}k,Ωε ď C
´

}vi,j p¨, tq BtA
j
i p¨, tq}k´1,Ωε ` }φptqn}k´1{2,Γε

¯

, (62)

where the constant C is independent of ε by Lemma 2. From (46), we see that BtA scales like ∇v in
2-D and like ∇v ∇η in 3-D. Thus, the estimate (62) shows that

sup
tPr0,T s

}wp¨, tq}20,Ωε `

ż T

0

}wp¨, tq}21,Ωε ďM0 ` TP p sup
tPr0,T s

Eεptqq . (63)

Similarly,

divη wt “ ´
´

wi,j BtA
j
i ` Btpv

i,j BtA
j
i q

¯

in Ωε , (64a)

wt “ pφnqt on Γε . (64b)

and
}wt}1,Ωε ď C

´

}wi,j BtA
j
i ` Btpv

i,j BtA
j
i q}0,Ωε ` }pφtnqt}1{2,Γε

¯

,

so that
ż T

0

}wt}
2
1,Ωε ď P p sup

tPr0,T s

Eεptqq . (65)

Now, because of (61a), vt ´ w P Vptq, and we are allowed to set φ “ vt ´ w in (60). We find that

1

2

d

dt
}vtp¨, tq}

2
0,Ωε `

ż

Ωε
BtrA

k
sA

j
sv
i,j s v

i
t,k dx “

ż

Ωε
vtt ¨ wdx`

ż

Ωε
BtpA

k
sA

j
sv
i,j qw

i,k dx

`

ż

Ω

q BtA
k
i

“

vit,k `w
i,k

‰

dx .

23



D. Coutand and S. Shkoller Splash singularity for the Navier-Stokes equations

and hence for t P p0, T q,

1

2
}vtp¨, tq}

2
0,Ωε `

ż t

0

}∇vt}20,Ωεds “
1

2
}u1}

2
0,Ωε

J1
hkkkkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkkkkj

´

ż t

0

ż

Ωε
rAksA

j
s ´ δ

kjsvit,j v
i
t,k dxds

´

ż t

0

ż

Ωε
BtrA

k
sA

j
ssv

i,j v
i
t,k dxds

looooooooooooooooooomooooooooooooooooooon

J2

`

ż t

0

ż

Ωε
vtt ¨ wdxds

loooooooooomoooooooooon

J3

`

ż t

0

ż

Ωε
BtrA

k
sA

j
sv
i,j sw

i,k dxds
loooooooooooooooooomoooooooooooooooooon

J4

`

ż t

0

ż

Ω

q BtA
k
i

“

vit,k `w
i,k

‰

dxds
looooooooooooooooooomooooooooooooooooooon

J5

.

For δ ą 0 and using (48) with ϑ ă δ, it follows from an L8-L2-L2 Hölder’s inequality that

|J1| ď δ sup
tPr0,T s

Eεptq . (66)

We next estimate J2. According to (46) the components of A are either linear (d “ 2) or quadratic
(d “ 3) with respect to the components of ∇η; hence, BtA behaves like ∇v for d “ 2 and like ∇η∇v
for d “ 3. We consider the more difficult case that d “ 3 in which case BtpAA

T q behaves like
∇η∇η∇η∇v, and

ż

Ωε
|∇η|3|∇v|2∇vt dxds ď }∇η}3L8pΩεq}∇v}

2
L4pΩεq}∇vt}L2pΩεq

ď }η}3H3pΩεq}v}
2
H2pΩεq}vt}H1pΩεq

ď Cδ}η}
6
H3pΩεq}v}

4
H2pΩεq| ` δ}vt}

2
H1pΩεq ,

where we have used Hölder’s inequality for the first inequality, the Sobolev embedding theorem for
the second inequality, and the Cauchy-Young inequality with δ ą 0 for the third inequality; the
constant Cδ scales like 1{δ. It follows that

|J2| ďM0 ` TPp sup
tPr0,T s

Eεptqq ` δ sup
tPr0,T s

Eεptq . (67)

To estimate J3, we integrate-by-parts in time:

|J3| ď

ż t

0

ż

Ωε
|vt ¨ wt|dxds`

ˇ

ˇ

ˇ

ˇ

ˇ

ż

Ωε
vt ¨ wdx

ˇ

ˇ

ˇ

ˇ

t

0

ˇ

ˇ

ˇ

ˇ

ˇ

ďM0 `

ż t

0

ż

Ωε
|vt ¨ wt|dxds`

ż

Ωε
|vtp¨, tqwp¨, 0q|dx`

ż

Ωε

ˇ

ˇ

ˇ

ˇ

vtp¨, tq

ż t

0

wtp¨, sqds

ˇ

ˇ

ˇ

ˇ

dx

ďM0 ` T
1
2Pp sup

tPr0,T s

Eεptqq ` δ}vtp¨, tq}
2
0,Ωε ` Cδ

›

›

›

›

ż t

0

wtp¨, sqds

›

›

›

›

2

0,Ωε
,

the last inequality following the estimates (62) and (65) and the Cauchy-Young inequality. Since

›

›

›

›

ż t

0

wtp¨, sqds

›

›

›

›

2

0,Ωε
“

ż

Ωε

ˆ
ż t

0

wtpx, sqds

˙2

dx ď t

ż t

0

ż

Ωε
|wtpx, sq|

2dxdt ,
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and

ż t

0

ż

Ωε
|vt ¨ wt|dxds ď

ˆ
ż t

0

}vtp¨, sq}
2
0,Ωεds

˙

1
2
ˆ
ż t

0

}wtp¨, sq}
2
0,Ωεds

˙

1
2

ď t
1
2 sup
sPr0,ts

}vtp¨, sq}0,ΩεP p sup
sPr0,ts

Eεpsqq ď t
1
2P p sup

sPr0,ts

Eεpsqq ,

we see that
|J3| ďM0 ` T

1
2Pp sup

tPr0,T s

Eεptqq ` δ sup
tPr0,T s

Eεptq . (68)

The integrals J4 and J5 (using (63) and (65)) are estimated in the same way as J2 so that

|J4| ` |J5| ďM0 ` T
1
2Pp sup

tPr0,T s

Eεptqq ` δ sup
tPr0,T s

Eεptq . (69)

Combining the estimates (66)–(69), we find that

sup
tPr0,T s

}vtp¨, tq}
2
0,Ωε `

ż T

0

}vt}
2
1,Ωεdt ďM0 ` T

1
2Pp sup

tPr0,T s

Eεptqq ` Cδ sup
tPr0,T s

Eεptq . (70)

Step 4. Regularity for the velocity and pressure. Next, we write equation (23b) as

´∆v `∇q “ divrpAAT ´ Idq∇vs ´ pAT ´ Idq∇q ´ vt in Ωε ˆ p0, T s , (71a)

div v “ ´pAji ´ δ
j
i qv

i,j in Ωε ˆ r0, T s , (71b)

v P L2p0, T ;H2.5pΓεq (71c)

The two inequalities (57) and (70), together with the Stokes regularity given in Lemma 2, show
that v P L8pr0, T s;H2pΩεqq X L2p0, T ;H3pΩεqq and satisfies

sup
tPr0,T s

}vp¨, tq}22,Ωε `

ż T

0

}v}23,Ωεdt`

ż T

0

}q}22,Ωεdt ďM0 ` T
1
2Pp sup

tPr0,T s

Eεptqq ` Cδ sup
tPr0,T s

Eεptq . (72)

By choosing δ ą 0 sufficiently small, we obtain that

sup
tPr0,T s

Eεptq ďM0 ` T
1
2Pp sup

tPr0,T s

Eεptqq , (73)

for a constant M0 and a polynomial function P which are both independent of ε.
From the estimate (72), v P L2p0, T ;H3pΩεqq, and the estimate (70), vt P L

2p0, T ;H1pΩεqq.
Using the partition of unity functions ζl defined in Step 2 above, we then see that for each chart
ζlv P L

2p0, T ;H3pBlqq where Bl “ B` for l “ 1, ...,K, and Bl “ B for l “ K ` 1, ..., L. Similarly,
ζlvt P L

2p0, T ;H1pBlqq. It is then standard that ζlv P C
0pr0, T s;H2pBlqq, and hence by summing

over l “ 1, ..., L, v P C0pr0, T s;H2pΩεqq.
Since the pressure satisfies the elliptic system:

´∆ηq “ vi,r A
r
jv
j ,sA

s
i in Ωε ˆ p0, T s ,

q “ n ¨ rDefηv ¨ ns on Γε ˆ r0, T s ,

we then infer that q P C0pr0, T s;H1pΩεqq. Then, using the momentum equation (71a), it follows that
vt P C

0pr0, T s;L2pΩεqq.
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This then shows that Eεptq is a continuous function of time. Following Section 9 in [14], from
(73), we now may choose T ą 0 sufficiently small and independent of ε, such that

sup
tPr0,T s

Eεptq ď 2M0 . (74)

Step 5. Verifying the basic assumption (47). Having established (74) on r0, T s with T
independent of ε, for any ε ą 0, we may now use the formula (44) to choose T even smaller if
necessary to ensure that (47) holds. This concludes the proof.

We now establish a more quantitative estimate in order to assess the continuity of B̄2vpt, ¨q in
L2pΩεq.

Proposition 7. For all t P r0, T s,

max
sPr0,ts

}B̄2pvεp¨, sq ´ uε0q}
2
0,Ωε `

ż t

0

}B̄2pvεp¨, sq ´ uε0q}
2
1,Ωεds À t1{2PpM0q . (75)

Proof. We write vptq “ vp¨, tq and again set viscosity ν “ 1. The difference vptq ´ uε0 satisfies the
equation

pv ´ uε0qt ´∆ηpv ´ u
ε
0q `A

T∇q “ ∆ηu
ε
0 .

Following Step 2 in the proof of Theorem 6, and once again localize to a boundary chart θl, l “ 1, ...,K,
with det∇θl “ Cl and with cut-off functions ζl, we obtain that

0 “
1

2

d

dt
}ζ B̄2rvptq ´ uε0s}

2
0,B` `

ż

B`
B̄2rAksA

j
spv ´ u

ε
0q,j s ¨ B̄

2rζ2pv ´ uε0qs,k dx

`

ż

B`
B̄2rAki qs B̄

2rζ2vis,k dx`

ż

B`
B̄2rAksA

j
su
ε
0,j s ¨ B̄

2rζ2pv ´ uε0qs,k dx , (76)

where we have dropped the explicit chart dependence on l and where again, the boundary integral
terms have vanished due to (23d). We integrate (76) over the time interval r0, T s:

}ζ B̄2rvptq ´ uε0s}
2
0,B` `

ż T

0

}ζ B̄2rvptq ´ uε0s}
2
1,B` ď |K1| ` |K2| ` |K3| ` |K4| ,

where we are writing uε0 for uε0 ˝ θl, and where

K1 “

ż T

0

ż

B`
B̄2rAki qs B̄

2rζ2pv ´ uε0q
is,k dxdt ,

K2 “

ż T

0

ż

B`
B̄2rpAksA

j
s ´ δ

kjqpv ´ uε0q,j s ¨ B̄
2rζ2pv ´ uε0qs,k dxdt ,

K3 “

ż T

0

ż

B`
B̄2pv ´ uε0q

i,k r rB̄
2ζ2pv ´ uε0q

i ` 2B̄ζ2B̄pv ´ uε0q
is,k `ζ

2,k B̄
2visdxdt ,

K4 “

ż T

0

ż

B`
B̄2rpAksA

j
su
ε
0,j s ¨ B̄

2rζ2pv ´ uε0qs,k dxdt .

We write

K1 ď

ż T

0

ż

B`
B̄2rAki qs B̄

2rζ2vis,k dxdt
looooooooooooooooooomooooooooooooooooooon

Ka1

`

ż T

0

ż

B`

ˇ

ˇ

ˇ
B̄2rAki qs B̄

2rζ2uε0
i
s,k

ˇ

ˇ

ˇ
dxdt

looooooooooooooooooooomooooooooooooooooooooon

Kb1

.
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By (37) and (43), we see that

|Kb1| ď
?
TPpM0q .

For the integral Ka1 , we focus on the integrand that arises when B̄2 acts on both q and vi,k, for all other
derivative combinations immediately give an integral bound of

?
TPpM0q. Using the Lagrangian

divergence-free condition (23c),
ˇ

ˇ

ˇ

ˇ

ˇ

ż T

0

ż

B`
ζ2B̄2q Aki B̄

2vi,k dxdt

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

ˇ

ż T

0

ż

B`
ζ2B̄2q B̄2Aki v

i,k dxdt

ˇ

ˇ

ˇ

ˇ

ˇ

` 2

ˇ

ˇ

ˇ

ˇ

ˇ

ż T

0

ż

B`
ζ2B̄2q B̄Aki B̄v

i,k dxdt

ˇ

ˇ

ˇ

ˇ

ˇ

.

An application of the Cauchy-Young inequality together with the Sobolev embedding theorem, shows
that

|Ka1 | ď
?
TPpM0q .

For the integral K2, we consider the case that B̄2 acts on pAksA
j
s ´ δ

kjq, all other terms immediately
giving the desired bound. Using (44) and (46), }AAT ´ Id }L8pB`q ď

?
TPpMq, so that with (43),

|K2| ď
?
TPpM0q .

The integral K3 and K4 are easily estimated using the Cauchy-Young inequality, the Sobolev
embedding theorem, and (43). We have thus established that

}ζ B̄2rvlptq ´ u
ε
0s}

2
0,B` `

ż T

0

}ζ B̄2rvlptq ´ u
ε
0 ˝ θls}

2
1,B` ď

?
TPpM0q .

Summing over l “ 1, ...,K then concludes the proof.

8 Proof of the Main Theorem

Using the Lagrangian divergence condition (23c), we have that div v “ ´pAji´δ
j
i qv

i,j , which we write
as div v “ ´pA´ Idq : ∇v. Then, since div uε0 “ 0, for all t P r0, T s,

}B̄ divpv ´ uε0q}
2
0,Ωε ď }B̄pA´ Idq∇v}20,Ωε ` }pA´ Idq B̄∇v}20,Ωε ď

?
TPpM0q . (77)

Using (77) together with (75), the normal trace theorem (see, for example, (A.6) in [16]) shows that

B̄2pv ´ uε0q ¨Nε P Cpr0, T ;H´
1
2 pΓεqq and

}B̄2pv ´ uε0q ¨Nε}
2
´1{2,Γε ď

?
TPpM0q ,

so that
}pv ´ uε0q ¨Nε}

2
1.5,Γε ď

?
TPpM0q ,

and hence by Lemma 4,

max
xPΓε

|pvpx, tq ´ uε0q ¨Nε| ď T
1
4PpM0q @t P r0, T s . (78)

Next, we consider the motion of the points Xε
` and X´ given in Section 6.1 (see Figure 3).

Recall that the unit normal Nε at both the points Xε
` “ p0, 0, εq and X´ “ p0, 0, 0q is vertical, so by

definition of uε0, we have that

uε0pX
ε
`q ¨Nε “ ´1 uε0pX´q ¨Nε “ 0 , and |Xε

` ´X´| “ ε .

27



D. Coutand and S. Shkoller Splash singularity for the Navier-Stokes equations

Using Theorem 6, we choose ε so small that 10ε ă T , where r0, T s is the time interval of existence
which is independent of ε, and we consider the vertical displacement of the falling particle Xε

`. Since
Xε
` ¨ ed “ ε, and

ηpXε
`, tq ¨ ed “ ε`

ż t

0

vdpXε
`, sqds ,

for t “ 10ε, we have from (78) that
ηdpXε

`, 10εq ă ´8ε .

Next, let Z denote any point on Bω´ X txd “ 0u. Since uε0pZq ¨Nε “ 0 and ηpZ, 10εq “
ş10ε

0
vpZ, sqds,

according to (78),

ηpZ, 10εq ¨ ed ě ´cε
5
4 , c “ 10

5
4PpM0q .

We then choose ε ą 0 sufficiently small so that cε
5
4 ă 8ε. It follows that

ηpXε
`, 10εq ¨ ed ă ηpZ, 10εq ¨ ed . (79)

We next consider the horizontal displacement of the particle Xε
` and any particle Z on Bω´Xtxd “

0u ˆ r0, 10εs. From the estimate (74), for all time t P r0, 10εs, }vp¨, tq}L8pΩq ď PpM0q.
Therefore, for any t P r0, 10εs and for α “ 1, ..., d´ 1,

|ηαpXε
`, tq| ď 10εPpM0q and |ηαpZ, tq ´ Zα| ď 10εPpM0q ,

showing that the distance between the projection of the surface ηpBω´ X txd “ 0u, tq onto the plane
xd “ 0 and the set Bω´ X txd “ 0u is Opεq. Since by Definition 3, the set Bω´ X txd “ 0u contains
a d´1-dimensional ball of radius

?
ε centered at the origin, we see that by choosing ε sufficiently

small the vertical line passing through ηpXε
`, tq must intersect the surface ηpBω´ X txd “ 0u, tq for

any t P r0, 10εs. Now, since at t “ 0, Xε
` is directly (vertically) above Bω´ X txd “ 0u, and at

t “ 10ε, from (79), ηpXε
`, 10εq is (vertically) below ηpBω´ X txd “ 0u, 10εq, then by continuity there

necessarily exists a time 0 ă T˚ ă 10ε at which ηpXε
`, T

˚q “ ηpZ, T˚q for some Z P Bω´ X txd “ 0u.
This concludes the proof of the main theorem.

9 The case of a general self-intersection splash geometry

We now show how the analysis presented in the previous sections for the case of the “dinosaur wave”
initial domain can be used to establish the existence of a splash singularity in a finite time T˚ for any
domain whose boundary is arbitrarily close (in the H3-norm) to any given self-intersecting surface of
class H3. This generalization requires the geometric constructions that we introduced in our previous
work [16], coupled with a very minor adaptation of the analysis of the previous sections.

We begin with the definition of the splash domain that we gave in [16].

9.1 The definition of the splash domain

1. We suppose that x0 P Γ :“ BΩs is the unique boundary self-intersection point, i.e., Ωs is locally
on each side of the tangent plane to BΩs “ Γs at x0. For all other boundary points, the domain
is locally on one side of its boundary. Without loss of generality, we suppose that the tangent
plane at x0 is the horizontal plane xd ´ px0qd “ 0.

2. We let U0 denote an open neighborhood of x0 in R3, and then choose an additional L open sets
tUlu

L
l“1 such that the collection tUlu

K
l“0 is an open cover of Γs, and tUlu

L
l“0 is an open cover of
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Ωs and such that there exists a sufficiently small open subset ω Ă U0 containing x0 with the
property that

ω X Ul “ H for all l “ 1, ..., L .

We set

U`0 “ U0 X Ωs X txd ą px0qdu and U´0 “ U0 X Ωs X txd ă px0qdu .

Additionally, we assume that U0 X Ωs X txd “ px0qdu “ tx0u, which implies in particular that
U`0 and U´0 are connected. See Figure 9.1.

u

x
o

o

ω 

u1

u2

u4 u3

Ω u6

u5

s

u

x
o
x

ouu

ω

Ωs

u4uu u3uu

u1

u2uu

u6uu

u5uu

Figure 4: Splash domain Ωs, and the collection of open set tU0, U1, U2, ..., UKu covering Γ.

3. For each l P t1, ...,Ku, there exists an H3-class diffeomorphism θl satisfying

θl : B :“ Bp0, 1q Ñ Ul

Ul X Ωs “ θlpB
`q and Ul X Γs “ θlpB

0q ,

where

B` “ tpx1, ..., xdq P B : xd ą 0u ,

B0 “ tpx1, ..., xdq P B : xd “ 0u .

4. For L ą K, let tUlu
L
l“K`1 denote a family of open sets contained in Ωs such that tUlu

L
l“0 is an

open cover of Ωs, and for l P tK ` 1, ..., Lu, θl : B Ñ Ul is an H3 diffeormorphism.

5. To the open set U0 we associate two H3-class diffeomorphisms θ` and θ´ of B onto U0 with
the following properties:

θ`pB
`q “ U`0 , θ´pB

`q “ U´0 ,

θ`pB
0q “ U`0 X Γs , θ´pB

0q “ U´0 X Γs ,
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such that
tx0u “ θ`pB

0q X θ´pB
0q ,

and
θ`p0q “ θ´p0q “ x0 .

We further assume that

θ˘pB` XBp0, 1{2qq X θlpB`q “ H for l “ 1, ...,K ,

and
θ˘pB` XBp0, 1{2qq X θlpBq “ H for l “ K ` 1, ..., L .

Definition 6 (Splash domain Ωs). We say that Ωs is a splash domain, if it is defined by a collection
of open covers tUlu

L
l“0 and associated maps tθ˘, θ1, θ2, ..., θLu satisfying the properties (1)–(5) above.

Because each of the maps is an H3 diffeomorphism, we say that the splash domain Ωs defines a
self-intersecting generalized H3-domain.

9.2 An approximating sequence of non self-intersecting domains converg-
ing to the splash domain

Following [16], we can then define standard (non self-intersecting) domains Ωε (for ε ą 0 small
enough) by just modifying θ˘, and leaving the other charts unchanged. As shown in Figure 9.2, our
non self-intersecting domain Ωε will be defined by associated maps tθε˘, θ1, θ2, ..., θLu such that

}θε˘ ´ θ˘}H3pB`q ď Cε , (80)

and such that
0 ă dpθε`pB

`q, θε´pB
`qq ď ε . (81)

θ
ε

+

θ+

θ-

θ
ε

-

B+

Figure 5: The black dot denotes the point x0 where the boundary self-intersects (middle). For ε ą 0,
the approximate domain Ωε does not intersect itself (right).

In summary, we have approximated the self-intersecting splash domain Ωs with a sequence of
H3-class domains Ωε converging toward Ω, such that for each ε ą 0, BΩε does not self-intersect. As
such, each one of these domains Ωε, ε ą 0, will thus be amenable to our local-in-time well-posedness
theory for free-boundary incompressible Navier-Stokes equations.
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10 Existence of a splash in finite time in a domain arbitrarily
close to a given splash domain

We next define an initial velocity field of the same type as in Section 6.1. Due to (80), the estimates
of Section 7 remain unchanged. Similarly, the main proof of Section 8 works in a similar manner
due to (81), leading to the necessity of self-intersection at a time T ε P p0, 10εq. Note that since the
tangent plane at the intended splash singularity x0 is the horizontal plane txd “ 0u, Brθ´pB

`qs is
very close to txd “ 0u in a small ball Bpx0,

?
εq for ε taken sufficiently small; thus, we are using

the fact that the almost flat portion of θ´pB
`q is very close to txd “ 0u and contains a region of

diameter at least
?
ε.

Furthermore,

}ηεpθε˘, T
εq ´ θ˘}3 ď }η

εpθε˘, T
εq ´ θε˘}3 ` }θ

ε
˘ ´ θ˘}3

ď }

ż T ε

0

vεpθε˘, tq dt}3 ` Cε , (82)

where we used the estimate (80) in the above inequality (82); hence, from our estimates in Section 7,

}ηεpθε˘, T
εq ´ θ˘}3 ď CPpM0q

?
T ε ` Cε ď CPpM0q

?
ε . (83)

This, therefore, shows that the splash-free surface ηεpΩε, T εq is at a distance less than CPpM0q
?
ε

from Ωs in H3. We have then established the following:

Theorem 8. For any given splash domain Ωs of class H3, there exists a splash domain Ω̃s arbitrarily
close in H3 to Ωs, and smooth initial data consisting of a non self-intersecting domain Ωε of class
H3 and a divergence-free velocity field uε0 P H

3pΩεq satisfying rDef uε0 ¨Nεs ˆNε “ 0 on BΩε, such
that the flow map ηpx, tq solving the Navier-Stokes equations (23) satisfies ηpBΩε, T˚q “ Ω̃s. That is,
in finite time T˚ ą 0, a splash singularity occurs which is very close to a prescribed self-intersecting
geometry.
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