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Abstract. In fluid dynamics, an interface splash singularity occurs when a locally smooth interface self-
intersects in finite time. We prove that for d-dimensional flows, d = 2 or 3, the free-surface of a viscous water
wave, modeled by the incompressible Navier-Stokes equations with moving free-boundary, has a finite-time
splash singularity for a large class of specially prepared initial data. In particular, we prove that given a
sufficiently smooth initial boundary (which is close to self-intersection) and a divergence-free velocity field
designed to push the boundary towards self-intersection, the interface will indeed self-intersect in finite time.

Contents

1 Introduction|
[1.1 The interface splash singularity] . . . . . .. .. ... ... 0 0oL,
1.2  The Eulerian description of the Navier-Stokes free-boundary problem|. . . . . . . ..
[L3  Statement of the Main Theoreml . . . . . . . .. .. ... .. ...,

[1.4 Prior results for the incompressible Navier-Stokes equations with moving free-surface|
[[5 Outline of the paper] . . . . . . . o v v e

U = W NN

2 Notation, local coordinates, and some preliminary results

2.1 otation for the gradient vector|. . . . . . . . . . . . . ... ... ...
22" Notation for partial differentiation and the Linstein summation convention| . . . . .
2.3 Tangential (or horizontal) derivatives|. . . . . . . . . ... ... L L.
2.4 Sobolev spaces| . . . . . ... e e
[2.5 _Sobolev spaceson asurface 1] . . . . . ... ... o000
6 The unit normal and tangent vectors| . . . . . . . . . . i

S O O Ut Ut Ot Ot

|3 The sequence of initial domains ()|

B.1 _The “dinosaur wave” domainsl . . . . . . . v v v e

[0l =]

13.2.3  Cut-off functions on charts covering £ . . . . .. ... .. ... ..., 10
13.2.4  Cut-oft functions supported on the charts covering Q¢ . . . . ... ... ... 11



shkoller
Typewritten Text
ACCEPTED FOR PUBLICATION  ON 7 June 2018 
in Annales de l'Institut Henri Poincare / Analyse non lineaire


D. Coutand and S. Shkoller Splash singularity for the Navier-Stokes equations

[4 The Lagrangian description of the Navier-Stokes free-boundary problem| 14
[> The constants for elliptic estimates and Sobolev inequalities are independent of |
[ 15
[6 The sequence of initial velocity fields ug| 18

6.1 Constructing the sequence of initial velocity fields ug| . . . . . .. .. ... ... ... 18

6.2 The initial pressure function pg| . . . . . . . ... oL oL oL o 18
|7 A priori estimates| 19
8 Proof of the Main Theorem| 27
|9 The case of a general self-intersection splash geometry| 28

9.1 The definition of the splash domain|. . . . . . . . .. ... ... oL, 28

9.2 An approximating sequence of non self-intersecting domains converging to the splash |

[LO Existence of a splash in finite time in a domain arbitrarily close to a given splash |

[ domain] 31

1 Introduction

1.1 The interface splash singularity

The fluid interface splash singularity was introduced by Castro, Cérdoba, Fefferman, Gancedo, &
Goémez-Serrano in [8] in the context of the one-phase water waves problem. As shown in Figure a
splash singularity occurs when a fluid interface remains locally smooth but self-intersects in finite time.
Using methods from complex analysis together with a conformal transformation of the equations,
Castro, Cérdoba, Fefferman, Gancedo, & Gdémez-Serrano [8] showed that a splash singularity occurs
in finite time for the 2-d water waves equations. In Coutand & Shkoller [16], we showed the existence
of a finite-time splash singularity for the one-phase incompressible Euler equations with free-boundary
in 3-d, using a very different approach, founded upon an approximation of the self-intersecting fluid
domain by a sequence of smooth fluid domains, each with non self-intersecting boundary. For one-
phase flow, it is the vacuum state on one side of the interface which permits this finite-time interface
self-intersection, and neither surface tension nor magnetic fields nor other inviscid regularizations of
the interface change this fact [7, [16], and even stationary solutions, having a splash singularity, have
been shown to exist (see Cérdoba, Enciso, & Grubic [I0]).

Fluid Fluid

Xo
t<T =T

Figure 1: The splash singularity at a point xzg occurs when a locally smooth interface self-intersects
in finite time ¢t = T.
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On the other hand, for the two-phase incompressible Euler equations, wherein the moving interface
is a vortex shee[l] it was proven by Fefferman, Ionescu, & Lie [20] and Coutand & Shkoller [17]
that a splash singularity cannot occur in finite-time while the interface remains locally smooth. In
particular, there is a fundamental difference in the behavior of the fluid interface when vacuum is
replaced with fluid in the mathematical model.

Since these results have been established for inviscid flows, it is natural to ask if splash singularities
can occur for viscous flows modeled by the incompressible Navier-Stokes equations with a moving
free-surface. Specifically, given well-prepared initial data, in which the initial boundary is smooth
but close to self-intersection, and the initial velocityﬂ is chosen so as to move the boundary towards
self-intersection, does the boundary in fact self-intersect in a finite amount of time?

Because the methods of constructing splash singularities for inviscid flows have relied on the
ability to flow backward-in-time, a new strategy must be devised to study the parabolic Navier-Stokes
equations. By using the change-of-variables employed in [8] together with stability estimates, Castro,
Cérdoba, Fefferman, Gancedo, & Gdémez-Serrano in [9] have shown the existence of finite-time splash
singularities for the Navier-Stokes equations. Herein, we give a different proof which is amenable
to any dimension of space d > 2. Our idea is to prove that the time-of-existence as well as Sobolev
estimates for solutions to the free-surface Navier-Stokes equations can be made independent of the
distance € between two nearby portions of the free-surface. In particular, we prove that there exists
initial data, allowing us to obtain a smooth self-intersecting geometry which is arbitrarily close to
any given domain with a splash singularity.

Herein, we present a rather simple proof of finite-time self-intersection, based on the construction
of fluid domains whose boundary curvature does not change very much (or does not change at
all) during the deformation of the domain as it moves closer toward self-intersection. Our stability
estimates fundamentally rely upon Sobolev inequalities and elliptic estimates whose constants depend
crucially on the curvature of the domain boundary, and hence our constructed geometries provide a
simple strategy for keeping such constants uniform. Our method not only works for the Navier-Stokes
equations, but also provides a simpler proof of self-intersection for the Euler problems previously
considered in [8] [T6], whose methods relied upon rather technical constructions.

1.2 The Eulerian description of the Navier-Stokes free-boundary problem

For 0 < ¢ < T, the evolution of a d-dimensional (d = 2 or 3) one-phase, incompressible, viscous fluid
with a moving free boundary is modeled by the incompressible Navier-Stokes equations:

u +u-Vu+ Vp=vAu in Q(t), (1a)
divu =0 in Q(t), (1b)
vDefu-n—pn=20 on I'(t), (1c)
VI(t) =u-n (1d)

u = ug on Q(0), (le)

Q(0) =9Qp. (1f)

The open subset Q(t) « R?, d = 2 or 3, denotes the time-dependent volume occupied by the fluid,
I'(t) := 00Q(t) denotes the moving free-surface, V(I'(¢)) denotes normal velocity of I'(¢), and n(¢)
denotes the exterior unit normal vector to the free-surface I'(¢). The vector-field u = (uq, .., uq)

1For the vortex sheet problem, it is necessary to have surface tension in order to ensure well-posedness in Sobolev
spaces.

2For both the Navier-Stokes and Euler equations, an initial velocity field must be prescribed at time ¢ = 0; this
is in sharp contrast to Muskat-type problems, wherein the velocity field at time ¢ = 0 is determined by the initial
geometry of the domain.
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denotes the Eulerian velocity field, and p denotes the pressure function. We use the notation
V = (04, ...,0q) to denote the gradient operator, and set Def u = Vu + VuT, twice the symmetric
part of the gradient of velocity. We have normalized the equations to have all physical constants
equal to 1.

The pressure p is a solution to the following Dirichlet problem:

_Ap = uiaj ujvi in Q(t) ) (23')
p=n-[vDefu-n] on T'(t), (2b)

so that given an initial domain €2 and an initial velocity field ug, the initial pressure is obtained as
the solution of at t =0.

Definition 1. Given a locally smooth, time-dependent fluid interface or free-boundary, if there
exists a time T' < oo such that the interface I'(T) self-intersects at a point while remaining locally
smooth, we call this point of self-intersection at time 7" a “splash” singularity.

We prove that there exist smooth initial data for the Navier-Stokes equations for which such
a splash singularity occurs in finite time.

1.3 Statement of the Main Theorem

Theorem 1 (Finite-time splash singularity). There exist

1. open bounded C*-class initial domains Q  R?, d = 2 or 3, with N denoting the unit normal
vector field on 092, and

2. smooth divergence-free velocity fields ug satisfying the compatibility condition

[Defug - N| x N =0 on 09,

such that after a finite time T* > 0, the solution to the Navier-Stokes equations has a splash
singularity; that is, the interface T'(T*) self-intersects.

In Theorem [§] we show that the geometry of such a splash singularity can be prescribed arbitrarily
close (in the H3 norm) to any sufficiently smooth and prescribed self-intersecting domain.

1.4 Prior results for the incompressible Navier-Stokes equations with
moving free-surface

Local-in-time well-posedness of solutions to have been known since the pioneering work of
Solonnikov [28, 291 B0]; his proof did not rely on energy estimates, but rather on Fourier-Laplace
transform techniques, which required the use of exponentially weighted anisotropic Sobolev-Slobodeskii
spaces with only fractional-order spatial derivatives for the analysis. Beale [5] proved local well-
posedness in a similar functional framework, and Abels [I] established the existence theory in the LP
Sobolev space framework. Well-posedness in energy spaces was established by Coutand & Shkoller
in [I2] for the case of surface tension on the free-boundary, and for Navier-Stokes fluid-structure
interaction problems wherein a viscous fluid is coupled to an elastic solid, in [I3] 14]. Guo & Tice
[24] also used energy spaces for local well-posed for the case of zero surface tension.

Beale [6] established global existence of solutions to for small perturbations of equilibrium.
More recent small-data global existence and decay results (both with and without surface tension)
can be found in [32], [27], [26], [21], [4], and [22] 23]. Recent results on the limit of zero viscosity and
the limit of zero surface tension can be found in [25], [19], and [33].

For the history of the well-posedness and singularity theory for the inviscid problem, we refer the
reader to the introduction in [I5] and [17].
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1.5 Outline of the paper

In Section [2, we define our notation. In Section [3] we define a sequence of domains 2¢ that we
use as the initial data for the splash singularity, wherein the boundary I'“ of these domains is close
to self-intersection with a distance e between two approaching portions of I'“. We convert the
Navier-Stokes equations to Lagrangian coordinates in Section |4} thus fixing the domain. In Section
we present some preliminary lemmas which show that the constant appearing in elliptic estimates
and the Sobolev embedding theorem is independent of €. In Section [6] we define the sequence of
initial divergence-free velocity fields that are guaranteed to satisfy the single compatibility condition
that we require, and whose norm is independent of e. Section [7] is devoted to the basic a priori
estimates for the Navier-Stokes equations in Lagrangian coordinates; following our approach in [12],
we establish estimates for velocity v € L2(0,T; H3(Q°)) n C°([0,T]; H?(Q€)) which are independent
of e. We then prove that the vertical component of velocity v(-,t) at time ¢ remains in an O(t%)
neighborhood of the vertical component of the initial velocity field. Using this fact, we prove the
main theorem in Section [8} we show that by choosing € appropriately, a finite-time splash singularity
must occur at some time T* € (0, 10¢). We consider a completely arbitrary geometry for a splash
singularity in Section [9] by following our definition of a generalized splash domain from our previous
work in [16]. This, then, allows us to show in Section that we can construct a splash singularity
for a geometry which is arbitrarily close in H> to any prescribed H?> splash domain.

2 Notation, local coordinates, and some preliminary results

2.1 Notation for the gradient vector

Throughout the paper the symbol V will be used to denote the d-dimensional gradient vector
_ 0 0 0
V= (&%)

2.2 Notation for partial differentiation and the Einstein summation con-
vention

The kth partial derivative of F will be denoted by F,, = 2£. Repeated Latin indices 1, j, k, etc.,

(731,‘)c
are summed from 1 to d, and repeated Greek indices «, 3,7, etc., are summed from 1 to d—1. For
d 2 ; ; d d—1 2 i i
example, F,; = >’ TE_and F',, IG5 = Dic1 Dot 25:1 OF” Jap oG

1=1 Ox;0x;’ 0T o azg :

2.3 Tangential (or horizontal) derivatives

On each boundary chart U; n Q, for 1 <[ < K, we let ¢ denote the tangential derivative whose
ath-component given by

Oaf = (8:(2 [fo@l]) 0! = ((Vfo@l)jjl>09ll.

For functions defined directly on B* = B(0,1) n {x4 > 0}, ¢ is simply the horizontal derivative

0= (Opyy ey Ony_y)-
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2.4 Sobolev spaces

For integers k > 0 and a bounded domain U of R?, we define the Sobolev space H*(U) (H*(U;R?))
to be the completion of C*(U) (C*(U;R?)) in the norm

lu

for a multi-index a € Z3 , with the convention that |a| = a1 + as + a3. When there is no possibility for
confusion, we write |- || for |- |5 . For real numbers s > 0, the Sobolev spaces H*(U) and the norms
| - |ls. are defined by interpolation. We will write H*(U) instead of H*(U;R?) for vector-valued
functions.

2.5 Sobolev spaces on a surface I

For functions u € H*(T'), k > 0, we set

[uf2p = 3 J u(a),

la|<k ¥T

for a multi-index a € Z2. For real s > 0, the Hilbert space H*(T') and the boundary norm | - |, is
defined by interpolation. The negative-order Sobolev spaces H*(T") are defined via duality. That is,
for real s = 0, H5(I') = H5(T")".

2.6 The unit normal and tangent vectors

We let n(-,t) denote the outward unit normal vector to the moving boundary I'(t). When ¢ = 0, we
let N, denote the outward unit normal to I'. For each a = 1,...,d — 1 and = € I'* | 7,(x) denotes an
orthonormal basis of the (d—1)-dimensional tangent space to I'® at the point .

3 The sequence of initial domains ()¢

We shall use, as initial data, a sequence of domains, whose two-dimensional cross-section resembles a
dinosaur neck arching over its body.

3.1 The “dinosaur wave” domains

Definition 2 (The domain Q). Let 2 < R?, d = 2,3, be a smooth bounded domain (as shown on
the left of Figure [2) with boundary I'. We assume that there are three particular open subsets of €2
as follows:

1. There exists an open subset w <  such that its boundary dw is a vertical circular cylinder of
radius 1 and of length h.

2. There exists an open subset w; < € which is the lower-half of an open ball of radius 1, located
directly below the cylindrical region w, and in contact with the cylindrical region w. The “south
pole” of w, is the point X, (see Figure [3).

3. There exists an open subset w_ <  directly below, at a distance 1, from the “south pole” X
of w,, such that the points with maximal vertical coordinate in dw_ N I" form a subset of the
horizontal plane x4 = 0.
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4. Coordinates are assigned to subsets of €2 as follows:

(a) The origin of R? is contained in dw_ N T < {z4 = 0}.

(b) The point X, the “south pole” of w,, has the coordinates X¢ =0 for a = 1,...,d — 1
and X¢ = 1.

(c) The top boundary of the hemisphere wy is the set {(xp,zq) € R? : 24 =2, |z] < 1}.

(d) The cylindrical region w is given by {(xp,zq4) € R? : 2 <xq <2+ h, |zn] < 1}.

\_

Figure 2: Left. The “dinosaur wave” domain Q with boundary T'. Right. The sequence of “dinosaur waves” Q¢

with boundary I', € > 0, used as initial data for the Navier-Stokes splash singularity. In order to ensure that a splash
occurs, the “dinosaur neck” w€ stretches downward so that there is a distance € between the two portions. The domains

Q€ simply stretch the neck of the dinosaur, and are identical to 2 away from the neck.

Definition 3 (The initial domains Q¢). For 0 < e « 1, let Q = R%, d = 2,3, be a smooth bounded
domain (as shown on the right of Figure [2)) with boundary T'¢. We define the domain Q€ to be the
following modification of the domain §2:

1. There exists an open subset w® < ¢, which is a vertical dilation of the domain w, such that its
boundary dw® n I'¢ is a vertical circular cylinder of radius r and of length h + 1 — €.

2. There exists an open subset wi < Q¢ which is the set w, translated vertically downward a
distance 1 — ¢; hence, w is the lower-half of an open ball of radius 1, located directly below
the cylindrical region w€, and in contact with the cylindrical region w¢. The “south pole” of
w§ is the point X .

3. There exists an open subset w_ < Q€ directly below, and a distance €, from the “south pole”
X¢ of wq, such that the points with maximal vertical coordinate in dw_ N IT" form a subset
of the horizontal plane x4 = 0. We assume that dw_ n I' contains a d—1-dimensional ball of
radius 4/e.

4. Coordinates are assigned to subsets of ¢ as follows:

(a) The origin of R? is contained in dw_ N T < {z4 = 0}.

(b) The point X¢, the “south pole” of w¢, has the coordinates X¢ =0 for a = 1,...,d — 1
and X¢ =e.

(¢) The top boundary of the hemisphere w¢ is the set {(zp,2q) € R? @ 24 =€+ 1, |25 < 1}.

(d) The cylindrical region w€ is given by {(zn,74) € R? : e+ 1 <zg<e+1+h, |zn] <1}
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3.2 Local coordinate charts for () and ¢
3.2.1 Local charts for

We let s > 3 and 0 < € « 1. Let Q < R? denote a smooth open set, and let {Ul}{il denote an open
covering of T' = 0, such that for each I € {1,2,..., K}, with
B = B(0,1), denoting the open ball of radius 1 centered at the origin and,
Bt = Bn{zq >0},
B =B n{zq =0},

there exist C® charts 0; which satisfy
6;: B— U; is an C® diffeomorphism, (3a)
(BN =U;nQ, 6,(B°)=UnT, (3b)

and det V0, = C; for a constant C; > 0. We assume these boundary charts can be split into three
non empty categories; to do so, we introduce two additional length scales for the dinosaur neck. We

et h h 15+4h\ h  5h
+
0p=———and o= ——F+ | — < —
YT Rt MO <h+3)15<15
these number being chosen so that,
h
O<51<62<§.

The set w = {(zp,zq) €R? : 2 <24 <2+ h, |z1] < 1} of the dinosaur neck with be split into three

sets:

h h 2h 2h
— 24— <ay<2+—, 24 —=—<x4<2+h 4
3 +3 Tq +3, +3 Tq + (4)

and the “middle” cylinder 2 + % <zg <2+ % will be further refined using the smaller cylinder

2<zg<2+

{2+§+61<Id<2+§+52}c{2+§<l‘d<2+?} (5)

We define three distinct sets of indices [ for our boundary charts 6;, which depend on the location of
0,(B™) with respect to the vertical interval as follows:

e We choose the first K7 charts such that

h h i h 2h
wm{2+7+51<xd<2+7+52}cUH;(B*)Cwm{2+f<xd<2+—}. (6)
3 3 ~ 3 3

e For K1 +1 <1< Ks, 0,(B") ¢t wand §(BT) nw; = & and
4 h h
QZ(B)mwm{2+§+51<xd<2+§+52}=@. (7)

e For Ko + 1 <I< K, 6(B") ¢ wand 6(B") nw; # & and

h h
Hl(B+)mwm{2+§+51<xd<2+§+52}=®. (8)
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We also have that the images of any charts 6; for K7 + 1 <1 < K> does not intersect any of the
images of the charts 0; for Ko + 1 <[ < K.

We now repeat this indexing construction for the interior charts. For L > K, we let {Uj}} .,
denote a family of open sets contained in  such that {U;}£ , is an open cover of 2 and there exist
smooth diffeomorphisms 6, : B — U; with det V8, equal to a constant C; > 0 (which is always
possible by the construction of [I8]).

Just as for the case of the boundary charts and repeating our construction in @7, we split
the index [ on the interior charts into three non empty categories:

e We choose our charts 0; for K + 1 <[ < Ly such that
2h

wm{2+g+51<xd<2+g+52}culelK+19l(B)cwm{2+§<xd<2+§}. (9)
e For L1 +1 <1< Ly, 6(B) ¢ wand 6;(B) nwy = and
h h
91(3)ﬁ&)ﬁ{2+§+51<xd<2+§+52}=®. (10)
o For Ly +1 <1< L, §;(B) ¢ wand §;(B) nwy # & and

h h
9[(3)0w0{2+g+51<l‘d<2+g+(52}=®. (11)

Furthermore, we have that the images of any of the charts 6; for L1 + 1 <[ < Ly does not intersect
any of the images of the charts 6; for Lo + 1 <[ < L.
Definition 4. We set

B, = BT (upper half-ball) for [ =1,..,K and, B;= B (ball) for | = K +1,...,L. (12)

We introduce the sets of indices I, I5, and I3 as follows:

L={1<I<K}Uu{K+1<I<L},
L={Ki+1<I<Ky}u{Li+1<1< Ly}, (13)
Is={Koy+1<I<K}u{Ly+1<I<L}.

These indices correspond to the following regions in €2:

I,: Middle region of the “dinosaur neck” w.

h h h 2h
wnN{2+ - +d <xg<2+ - +0}cC UQZ(BI)Cwm{2+7<xd<2+—}.
3 3 157, 3 3

I5: Above the middle region.
h
01(Bl)cwm{xd>2+§+52}.

I3: Below the middle region.
h
Gl(Bl)Cwﬁ{l‘d<2+§+(51}.
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We also assume that

wN® U 01(By)

lEIQ

where @ denotes the (bottom third) shortened cylindrical region

2h
d;:{(xh,xd)eRd : 2<$d<2+?7 |5L‘h|<1}

h

of length %, so that the vertical length of wNw® is 3.

We finally assume that
wN@® < U 0,(B;)

l€13

where @ denotes the (top third) shortened cylindrical region

h
@ = {(zn,zq) eR? : 2+§<md<2+h, |xp| < 1}

of length %, so that the vertical length of wnw® is %

3.2.2 Local charts for Q€

We next explain how the system of coordinate charts {#;}%, can be modified to be a system of
coordinate charts on the domains €¢; for € > 0 sufficiently small, we use the following three steps to
define the new charts 0;:

1. For [ € I, we define the vertically dilated charts (which cover a middle cylinder @ with length

dilated from % to % +1—¢)

0 = F(61),
with

(g —2—5)+ 5 +1—¢

h 3 3 (14)

Fe(x1,...ymq) = (xl,..., ht3+ 3 f h ) )

Note that F'® sends any point with x4 = 2 + % in @ (respectively x4 = 2 + %) to a point with
zg=1—€c+ % (respectively 24 = 2 + 2) in Q°.

2. For l € Iy, we set 0] = 0;.

3. For [ € I3, we define the vertically-translated charts 8; = 6; — (1 — €)eq.

Note that h3es
%C{ s le I1

detwl‘_{ G, leluls

where we recall that the charts 8; were chosen such that det VO, = C; for a constant C; > 0. In
summary, for [ € I, the charts §; are dilated using , for [ € Iy the charts 6 = 6, and are not
changed, while for [ € I the charts 6§ = §; — (1 — €)eq are merely translated in the vertical direction.

3.2.3 Cut-off functions on charts covering )

Let {¢}/, denote a smooth partition of unity, subordinate to the covering {U;}},; i.e., & € CZ(U}),
0<¢ <1, and ZlL=1 & = 1. With B; defined in , for each | = 1,..., L, we set (; = & o 6, so that
¢ € CX(B;) whenever the charts 6; are smooth.

10
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3.2.4 Cut-off functions supported on the charts covering Q¢
We next define cut-off functions £ which are supported on the image of the charts 6} as follows:
ot =&o0.

With the set 5 defined in (I2), and setting ¢; = & 06§, we see that (by definition) |(]x,s, is bounded
by a constant which is independent of e.

With the set of indices I1, I, and I3 defined in , given our expressions for 6, we have that
for any x € QF,

L
V@) = Ya@) + Y ala+ (1 ea) + 3 &lar,aa,9°(2a)) (15)
=1

lels lels lely
where ¢¢ is the inverse of F§ (defined in (14))) with

h h h
(og) = — 2 (pg—1-—2 o4 16
9'(wa) = g5 5 (wa gtOt2+g (16)

The following three possibilities exist for a lower-bound of the sum Y/ | & (x):

i) Ifze (W uwi) nQorzew n{zg =2+ 2}, then,

D) =) Glz) =1. (17)
=1

lely

ii) fzews orzew n{wg<1—e+ 2}, then,

D& =D br + (1 —ea) = 1. (18)

lels

i) f o ewn{l—e+ % <wqg <2+ 2}, then z is in the middle cylindrical region of the dinosaur
neck w whose length is stretched from % to % + 1 — €, which means that the vertical derivative

0z,&5 (x) can change with €, and in turn, the sum Zle & (z) may drop below the value of
1. As we do not a priori know what this lower-bound will be, we add more charts into this
region (with corresponding cut-off functions) in such a way as to ensure that we indeed have a
lower-bound of 1 on the sum of the & (x) for each z in this region.

Specifically, we add an additional L local charts 6; to our domain €2; of these additional L
charts, we add K additional boundary charts and £ additional interior charts so that L = K + L.
We then choose the positive integers Ky, Ko, £1 and Lo, such that the indices L + 1 <[ < L
are split into

L+1<I<L+Ki, L+Ki1+1<I<L+Ko, L+K2+1<I<L+K,
L+K+1<I<SL+K+L1, L+K+L14+1<I<SL+K+Lo, L+K+Lo+1<I<L+L.

The integers K1, Ko, £1, and Lo are chosen by repeating the index construction for the integers
K, Ko, Ly, and Ly in @77 but with a modification in the vertical splitting of the dinosaur
neck w in , in which

h 2h

— is replaced by —

g oI Y5

2h 3h
3 is replaced by - -

11
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Following Definition [4} we introduce the sets of indices 7, Z», and Z3 as follows:
I ={L+1<I<SL+K}uv{L+K+1<I<L+K+ L},
To={L+K1+1<I<SL+K}u{L+K+L1+1<I<L+K+ Lo},
T3 ={L+Ko+1<I<L+K}U{L+K+Lo+1<I<L+L}.

We define

01 0o

5125 and 52=E

these number being chosen so that,
~ ~ h
0<d <dg<—.
1 2 <35
The indices Z;, Z5, and Z3 correspond to the following regions in €:

Ii: Middle region of the “dinosaur neck.”

3h

2h = 2h - 2h
wm{2+€+61 <.’L‘d<2+€+52}c Uel(Bl)cwm{2+€<xd<2+€}.

leZy

Is: Above the middle region.

9 ~
Each chart 6;(B;) cwn{xqg>2+ gh + 82} .

I3: Below the middle region.
2h <
Each chart 6;(B)) c wn{zg <2+ 3 + 01} .

We define the additional charts for the dilated region Q€ as follows:
1. For [ € Z;, we define the vertically dilated charts
0; = F<(0)
with

{)Sd—2—f +

h+ 5+ 5e 2h 2h
]:6(1'17...71‘d)= (th’h( 5 ) 5+1—6>

Note that F€ sends any point with x4 = 2 + 2—; in @ (respectively zq = 2 + %) to a point
with zg =1—€+ % (respectively x4 = 2 + %h) in Q¢, and the inverse function G¢ is given

by
2h 2h
(rg) = ———(xq—1— = 24,
G*(za) = o5 15 (@ 5O+
The set w = {(xp,7q) ER? : 2 <3y <2+ h, |73 < 1} of the dinosaur neck is split into
three sets:
2h 2h 3h 3h
2<2g <2+ —, 24+ —<24<2+—, 24+ —<z4<2+h
5 5 5 5
and the “middle” cylinder 2 + % <axg <2+ % will be further refined using the smaller
cylinder

2h < 2h < 2h 3h
{2+?+61gxd<2+€+52}c{2+?<xd<2+€}.

12
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2. For l € I, we set 8] = 0.
3. For | € Z3, we define the vertically-translated charts 65 = 0, — (1 — ¢€)eq

Note that hasis
%Cl y le Il

Cl, leZy uls

where we recall that the charts #; were chosen such that det V8; = C; for a constant C; > 0.

We denote by {& - 41 @ smooth partition of unity associated to the covering {6;(5;) leLiH.

We then repeat our previous construction of the functions & and just as in 7, we have
the following two analogous cases:

det VO; = {

a. Ifre(wowl)nQorzew nizg>2+ 3h}, and therefore if

3h
xewsm{2+€<$d<2+?},

then
L+L

D) @) =) &) =1. (19)

I=L+1 leT,
b. f zewf or z€w’ N {wqg <1—e+ 2} and therefore if

h 2h
x € w m{lfe+3 <zg<l—€e+ 5}

then
L+L

Y, &) =) &) =1. (20)

I=L+1 leZs

In equations and , we have shown that the additional [ = L + 1, ..., L + L partition
functions sum to 1, while the original [ = 1, ..., L partition functions sum to a number greater
than zero.

The remaining possibility is that
3h

2
zew' n{l—e+ —<zg<2+ —},
5 5
in which case,
h h h h 1+% 4
It - ———— < g(x) <2+ = + h—A>—
PR A 3" "3 4 hot3e
and thus since
hoh h h B 1+4 4 h
lim 2 - =2 5 d lim 2 h—15 ~ —9 5
et S T s s -3 o and et gt e e T et g o,

we have from the assumptions , , and that (for e > 0 small enough)

Zfl T1y--y g l‘d —0— Zfl T1y-y g (Id)),

lEIQ lEI3

and so

zfl 1‘1,..., LL‘d)) 1.

lely

13
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Together with , we have established that

L
M) = 1. (21)
=1

In this remaining case, we have shOWI} that the original [ = 1, ..., L partition functions sum to 1,
while the additional [ = L + 1,..., L + L partition functions some to a number greater than zero.

We then use the open covering {05(B LfL of Q€. with the associated compactly supported
‘, and 1 , it follows that the functions {&f}, L+L satisfy

functions {¢f }lel . Usmg 7 .

Zgl()/1 Vo e Q°, (22)
=1

and we have therefore established the strictly positive uniform-in-e lower-bound for the functions

{fl L+L.

4 The Lagrangian description of the Navier-Stokes free-boundary
problem

For € > 0, we let Q¢ with boundary I'* be given by Definition |3 and we transform the system
into a system of equations set on this reference domain. To do so, we shall employ the Lagrangian
coordinates.

The Lagrangian flow map n(-, t) is the solution of the n:(x,t) = u(n(z,t),t) for t > 0 with initial
condition n(x,0) = 0. Since divu = 0, it follows that det Vi = 1. For each instant of time ¢ for
which the flow is well-defined, we have

n(-,t) : QF — Q(¢t) is a diffeomorphism;
furthermore, thanks to )7
I(t) =n(T1).
Notationally, we keep the dependence on € > 0 implicit, except for the initial domain and boundary.
Next, we define
v = uon (Lagrangian velocity),
g = pon (Lagrangian pressure),
A =[Vn]~* (inverse of the deformation tensor),
9o = Mo N3 &, 0 =1,..,d—1 (induced metric on I'),
g= dEt(gaﬂ) .
We also define the Lagrangian analogue of some of the fundamental differential operators present in
this equation:
div, v = (divu) on = v',; Aj
curl, v = (curlu) on or [curl, v]; = Eijkvk,T A%,
Def,, v = (Def u) o or [Def, 11] =, AL+ v, AT
A’?’U - (A )On = (A]AT 7]<‘)

14
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The Lagrangian version of equations is given on the fixed reference domain Q¢ by

t

n(-,t)=e +f v(+, 8)ds in Q° x [0,T7], (23a)

0
v + ATVq = vAw in Q° x (0,77], (23b)
divyv =0 in Q° x [0,T7, (23¢)
vDef,v-n—gn=20 on ' x [0,T], (23d)
(n,v) = (e, up) in Q° x {t =0}, (23e)

where e(x) = x denotes the identity map on 2, and where we write n for n(n) in the Lagrangian
description; in particular, the unit normal vector n at the point n(x,t) can be expressed in terms of
the cofactor matrix A and the time ¢ = 0 normal vector N, as

n=ATN./|ATN,|.

Due to (23k),
Ay = divy, Defy v,

so that ) can be viewed as the natural boundary condition. The variables n, v, and ¢ have an a
priori dependence on € > 0, but we do not explicitly write this.

Local-in-time existence and uniqueness of solutions to have been known since the pioneering
work of Solonnikov [28]. We shall establish a priori estimates for with the initial domain Q¢ and
with divergence-free initial velocity fields satisfying the single compatibility condition

[Def uf - N°]-75 =0 on I'¢, (24)

where N¢ denotes the outward unit normal to I' and 75, a = 1,..,d — 1, denotes the d—1 tangent
vectors to I'C.

We will show that both the a priori estimates and the time of existence for solutions are independent
of the distance € > 0 between the falling dinosaur head X¢ and the flat trough dw_ n {zq = 0}
(see Figure|2)). To do so, we shall rely on some basic lemmas that provide us constants which are
independent of e.

5 The constants for elliptic estimates and Sobolev inequali-
ties are independent of ¢

We consider the following linear Stokes problem

—Au+Vp=f inQ°, (25a)
divu =¢ in Q°, (25b)
u=g onl*°, (25¢)

Lemma 2 (Estimates for the Stokes problem on Q). Suppose that for integers k = 3, f € H*=2(Q°),
¢ € H*=1(Q°), and g € H*V2(I°), and §,. ¢(x)dx = §..g- NdS. Then, there exists a unique
solution u e H*(Q°) and p e H*1(Q°)/R to the Stokes problem . Moreover, there is a constant
C depending only on 2, but independent of € > 0, such that

luleoe + Iple-1.00 < C (|flk-2.0c + [@le-1.00 + [gli-1/2,0c) - (26)

15
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Proof. The estimate is well-known on the domain ; see, for example, [2]. The corresponding
elliptic estimate on the sequence of domains Q¢ follows by localization using the charts 67, defined in
Section With the domains B; defined by (12)), following the elliptic estimates of [2] and using
the Sobolev embedding theorem to bound the H*~!(B;)-class coefficients arising from polynomial
combinations of components of V6, we have that

IGu o 67

ks + 1Gp 0 O k-8, < D1(|VO;[k—18,) (Iflk-2.0c + [Slr-1,0c + lglk-1/20¢) ,  (27)

where D; is a polynomial function that does not depend on e.

As we shall explain, since the charts f are modifications of the charts 6; by vertical dilation with
lower and upper bound that is uniform in e, the constant for the elliptic estimate in each chart is
independent of € > 0. This follows from our explicit formulas for §; in Section for each € and
each 0, using the definition of the dilation F* given by , we have that

h+ 3+ 3¢

IVO;|k-1.8 W

N

4
IVOk—18 < (1+ B)”Val”k—l,liza (28)

for € > 0 small enough. Using the bound in the elliptic estimate , there exists a constant
Dy > 0 independent of €, such that

IGiu o 67

ks + [Gp 0 O lk—1,8, < D2 (| flk-2,0¢ + [dlr—1,0¢ + 9ls—1/2,0¢) - (29)
Moreover, for a polynomial function D3 > 0 which is independent of e,
V) " 1,08 < D3IVl k-1,5) - (30)
To prove , we begin with the L? estimate. We define
Af(z) = [VO; ()71, T = det[VOi(2)], and o] = Aj/Tf,

with & denoting the cofactor matrix. Recall that J is equal to a constant given by either Cj or
ht3+3e ) so that 1/JF < 1/C;. By the inverse function theorem, V,(05) 1 (y) = Af(z) so that

v

%mm—Lw)WWVWW@
1 1

- [ Wi Pgrar = [ i@ Plar e < ot [ vee s
By

B[ Bl

and hence, using , we see that
IVO5) 15 6,8 < Ps(IVOilk-1.5,) -
Next, for the H! estimate, we use the chain-rule identity that % = [Af]f% and write

wwrmm%wwrwwy
0

- | wt ) i

0
vV =f <
l 0,0:(B1) 0.(8) ayi

([ATT5) Tifde .

J

Using the identity
J €1y er 82[9;]”I €17
([Al]s) - _[Al]m afﬂ]axk ['Al]s’

6xk
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we have that

VYOG 6,08 < C° L Vo551 V205 |*dw < D3 (| VO, |k-1.8,) ,

1

the last inequality coming from the Sobolev embedding theorem and the fact that & > 3. The
estimate for V¥~'V(6f)~" follows in the same manner, and we obtain (30).

Since ZlelL & =1 from in Q€ this proves the lemma. O

Lemma 3 (Sobolev constant on Q€). Independent of €, there exists a constant C' > 0 which depends
only on the domain ), such that

Yue H?(QF), s>d/2, m%x\u(x)|<0\|u
x€elde

|s,0c -
Proof. By Morrey’s inequality, for 1 <1 < L,
Yue H°(QF), s>d/2, mBaX|u 00| < Cil|uobf|ss . (31)
l
for some C; > 0 independent of . Now, depending on the index [, 6} is either equal to 6; , a vertical

translation of 6;, or a vertical dilation of §; given by the map F€ in (see Section . Thus, as
we proved in , for € > 0 small enough,

. 4
IVO 518 < (L + ) VOl s-1.5 - (32)

By the chain rule, using in shows that we have the existence of a constant Cy > 0
(independent of € > 0 small enough) such that

Vue H(QF), s>d/2, H}gax|uo 071 < Calluls6:(5) - (33)
1

Given that the 6 (B;) provide a cover of Q¢, we indeed have proved the lemma. O

The same argument also proves the following

Lemma 4 (Sobolev constant on I'¢). Independent of €, there exists a constant C' > 0 which depends
only on T', such that

d 1
Vue H*(T), s> - — =, max|u(z)| < C|u
2 2 zel'e

Lemma 5 (Trace theorem on Q¢). Independent of €, there exists a constant C' > 0 which depends
only on the domain Q, such that for s € (%, 3]

luls—1re < Cluls 0 Yue H ().

|S,F€ .

Proof. From the standard trace theorem in B*, we have the existence of a constant C; > 0
(independent of € > 0 small enough) such that for any boundary chart,

06|,y gy < Cluobflope Vue HI(S).
by differentiating the (inverse) dilation map g€ in , we see that for € > 0 small enough,
. 4
IVOls1,8+ < IVO s+ < (L4 2)[VOilsor,p+ - (34)

This implies that by the chain rule, we have the existence of a constant Cy > 0 (independent of € > 0
small enough) such that

s—5, 0 u 5,0; s € .
lulls—1 6: (Bo) < C2lullso55+) Yue H* ()

Since I'® is the union of all 65 (By), 1 <! < K, the above inequality implies the result. O
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6 The sequence of initial velocity fields uj

6.1 Constructing the sequence of initial velocity fields u

As described in Definition [3) near the intended splash (or self-intersection) point, the open set
Q€ consists of two sets: the upper set w¢ and the lower set w_ whose boundary contains the flat
“dinosaur belly” at x4 = 0, as shown in Figure @ We We let X< denote the point which has the
smallest vertical coordinate in dwS . Directly below, we let X_ be the point in dw_ n {zq = 0} with
the same horizontal coordinate as X¢. Without loss of generality, we set X_ to be the origin of R,

)
oS
\ o

X_

w_

(&

Figure 3: In a neighborhood of the intended splash point, we suppose that Q¢ consists of two sets: the upper set w§

and the lower set w_ containing the horizontally flat “dinosaur belly.” The point X¢ is at a distance € from the set

w_ and the point X_ is assumed to be the origin in R<.

We choose a smooth function b € C*(I'*) such that b§ = —1 in a small neighborhood of X on
ows, by =0 on dw_, b§ = 0 on dw® NI, Sre by dS = 0, and satisfying the estimate

166l2.5,0e < mo < 0, (35)

where mg does not depend on e.
We define the initial velocity field u§ at ¢ = 0 as the solution to the following Stokes problem:

—Aui+Vrg=0 in Q°, (36a
divug =0 in Q°, (36b
[Defug - N|]-75=0 onI€, (36¢

u§ - N°=b5 onT*, (36d

NN NN

with N¢ denoting the outward unit normal to I'“ and 75, o = 1,2 denoting an orthonormal basis of
the tangent space to I'“ (if the dimension d = 2, then there is only one tangent vector). Using the
regularity theory of this elliptic system (see, for example, [31] or [3] and references therein), together
with the proof of Lemma |2 for a constant independent of € > 0,

|uglls,0f < Cllbg]2.5r« < Cmg. (37)

The boundary condition (36f) ensures that u§ satisfies (24).

6.2 The initial pressure function pj

The initial pressure function pf at ¢ = 0 then satisfies

_Apg = (ug)iaj (u(G))]n in Q°, (38&)
p§ = N§ - [vDefuf - N§] on I'¢, (38Db)
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so that using the same proof as that of Lemma [2| we have the following e-independent elliptic
estimate:

Ip6ll2.00 < C[lul3 o + [ublsae] | (39)

where C' > 0 does not depend on € > 0 small enough. Using in shows that

P52, < C [C’mo + Cmg] = P(myg), (40)

where we use P to denote a generic polynomial function that depends only on €2 (since the elliptic
constant C' depends on 2).

7 A priori estimates

Let Q€ denote the dinosaur domain shown in Figure [2] and let 6; denote the system of local charts
for ¢ as defined in . By denoting 7n; = 1 o 0; we see that

m(t): Bt - Q(t) for 1=1,...K.

We set vy =uomn, ¢ =pomn and 4, = [Dn] ™1, J; = C; (where C; > 0 is a constant, and a; = J; A;.

il
The unit normal n; is defined as g*%g—;’i x 2 if d = 3 and by g~z g%’l ifd=2.

oxro
It follows that for I =1, ..., K,

t

m(t) =0, + J o in Bt x [0,T], (41a)
0
o + AV = Ay in B* x (0,7], (41b)
div,, v, =0 in Bt x [0,T], (41c)
vDef,, vy -ny—qmn =0 on B® x [0,T], (41d)
)

(m,v) = (Br,up06;) in BY x {t =0}, (41e
where we have set v = 1.

Definition 5 (Higher-order energy function). For each ¢ € [0, T], we define the higher-order energy
function

EX(t) = 1+|n(,1)

t t
2 0o+ 02 0) B e +f [0, 8)|2.0eds + j l4(, ) 3 eds
0 0

t
o) + j or (-, )2 gds

We then set My = P(E(0)) where P denotes a generic polynomial whose coefficients depend only on
Q. The constant My is then equal to P(myg), a polynomial function of the constant mg introduced in

(B37)-
Remark 1. Given that ug € H%(2¢) satisfies the compatibility conditions:
divug =0 in Q°, (42a)
[Defu§ - N]-75 =0 onI*, (42b)

(o3

it follows from the energy estimates (that we next obtain) together classical existence theorems for
the free-boundary Navier-Stokes problem, that admits a unique solution for some time 7°¢ > 0,
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which has the regularity:
ve L2(0,7% H2 (%)) n L(0, 1% H¥(Q)),
v € L0, T LA()) ~ L2(0,T B (),
qe L*(0,T¢ H*(Q°)) .

Our energy function E€ contains all of these terms, and additionally, the term 1 to ensure that E° is
smaller than its square; the term |n(-,)|s o< is well-defined whenever v € L%(0,T¢; H3(Q°)).

So long as the solution has this regularity and the moving free surface does not self-intersect, the
Eulerian formulation and the Lagrangian formulation (written in each chart) are equivalent,
and we will work with the latter one.

We will first prove that the solution is defined over a time interval which is independent of € > 0.

Theorem 6. Assuming that T'(t) does not self-intersect, independent of € > 0, there exists a time
T > 0 and a constant C' > 0 such that the solution

ve C([0,T], H*(Q°) n L*(0,T; H3(QF)), qe L*(0,T; H*(QF))
to satisfies the a priori estimate:

E(t) < C M. 43
e (t) 0 (43)

Proof. The proof will proceed in five steps.
Step 1. Estimates for Vn and A. Using (41R), we see that

<AVt sup] VE(t). (44)

2.Qe¢ sel0,t

)

¢
[Vn(-,t) —1d 2,0 < J Vo(-,s)ds
0

Thanks to Lemma |3] there exists a constant C' > 0, independent of €, such that

V(- t) = 1d || oo ey < CVE st] Ee(t). (45)
se[0,t

Since det Vi = 1, the matrix A is simply the cofactor matrix of Vn:

ol 1,2 Xn73
A= [ nf] for d =2, and A = | 7,3 x7,1 | ford =3, (46)
1 X
7,1 X1,2

where each row is a vector, and for a 2-vector x = (x1,z2), 2+ = (—22,21).
We make the following basic assumption, that we shall verify below in Step 5: for a constant
0 < ¥ « 1, we suppose that ¢ € [0,7] and that T is chosen sufficiently small so that

sup [ Vn(-,t) = 1d | o ey < 9. (47)
te[0,T7]

It follows from , that since |A(, 1) —Id |1 (qe) < Sf) [ At (-, 8)| Lo (2eyds,

sup [|A(,t) = Id | Lo (e + |AAT (-, t) —1d ooy <. (48)
te[0,T]
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Step 2. Boundary regularity. We begin by considering a single boundary chart 6, : Bt — Q(t).
Let (; denote the smooth cut-off function defined in Section Using equation (41p), we compute
the following L?(B™) inner-product:

(4192[8501 — Anv + AlT Vql] s <1821}l) 0. (49)

L2(B+)
To simplify the notation, we fix [ € {1,..., K} and drop the subscript. The chart 6; was defined so
that det V6, = C; for a constant C; > 0. Then can be written as be written as
C?0%! 0*v' da — C20*[AR AT ]k 0% da + C20%[AFq)p 0*vidz = 0. (50)
B+ B+ By

Integration-by-parts with respect to xj shows that

1d, = = S 1= ; = = ;

0=5—[CP®v(®)]5 5+ + f LA AL ;] 0% [P da + J P*[AFq) P*[C*0']p d (51)
2dt ’ B+ B+

where we have used the boundary condition (41[) to show that the boundary integral vanishes. Using

87% to denote the Kronecker delta function, we write as

3 1P O e + 1T e = = | LA P o
o T (R TN M I e S e PR P
B+ B+ (52)
We integrate over the time interval [0,T]:
L= 2 T 2
S 5+ | IO e < Mo+ T+ T+ T (5)

where

I

T

J f |02[A7q] %[ | dedt,

0 JB+
T A . . . _ .

Iy = J f ’52[(14514@ — 5yt ;1220 | dxdt,
0 B+
T

13 :J J |(§2m7k [32C20" + 20C200 ] +E . 32@i|dmdt.
0 JB+

Using the Sobolev embedding theorem and Lemma [3] We estimate Z;

T T
i< | |l deder | alad Aleo olaed:
0 JB+

0
~ -
Ie 7
T
# | Ml Atz ol
0
—
Iy
To estimate the integral Z¢, we use (41f) to write
; k k ; koo koo
Ulakaﬂ AZ = 7A1 saf3 U’Lyk, 7Az 3B Ulakoz 7A1 Yo’ vlak,@ ’
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so that the term with three derivatives on v is converted to a term with three derivatives on n plus
lower-order terms. It follows that for § > 0, and a constant Cs (which blows-up as § — 0),

T
< 5J lq|3.0-dt + CsTP( sup E(t)).
0 te[0,T7]

The integral IV is estimated in the same way. For the integral Z{ we use linear interpolation to
estimate the norm SOT lg]1.5,e:

T T
17 < 5J ||v||§th + (5f Hq||§th + CsTP( sup E“(t)).
0 0 t€[0,T]

It follows that
Ty < My + CsTP( sup E°(t)) +0 sup E°(t). (54)
te[0,T7] te[0,T7]

Next, for the integral Z,,

JJ [(AFAT — §%)0%0'; 2P0 ,k|da:dt+2ff O(AEAT — M) ou',; 2[¢P0], | dadt
B+ B

s I§

T
+ff 162(AR AT — §%9)ot 5 2220 | davdlt .
B+

I3
Using and choosing ¥ < 4,

I3 < CsTP( sup E°(t))+ 6 sup ES(t).
te[0,T7] te[0,T7]

In the same way as above, we again use Lemma [3] together with linear interpolation for term Z3§, to
see that
Ty < My + CsTP( sup E°(t))+6 sup E°(¢). (55)
te[0,T] te[0,T]
The integral Z3 is straightforward and also satisfies
I3 < My + CsTP( sup E°(t)) +Cd sup E(t). (56)
te[0,T7] te[0,T7]
Summing over all of the boundary charts [ = 1, ..., K in 7 the inequalities f together
with the trace theorem, Lemma [bl show that

T
j H/U(',t)ngr)’Fs < My + CsTP( sup E°(t)) +8 sup E°(t) (57)
0 te[0,T7] te[0,T7]

Step 3. Estimates for the time-differentiated problem. We consider the time-differentiated
version of which we write as the following system:

= in Q° x [0,T], (584a)

it — Agvg + ATV g = —ATVq + [0,(AZAF v,k ], in Q° x (0,77, (58b)
div, v, = —v',; 6, A in Q° x [0,77, (58¢)

O¢ [Def,,v-n—gn] =0 on I'* x [0,7T], (58d)
(m,v,v1) = (e, ug, uj) in Q° x {t =0}, (58e)

22



D. Coutand and S. Shkoller Splash singularity for the Navier-Stokes equations

where u{ = Au§ — Vp§, with uf defined in and p§ defined in (B8)); therefore, independently of
€ >0,
lutllo.oe < P(mo). (59)

We define the space of div,-free vectors fields on Q¢ as
V(t) ={pe H'(Q5R?Y) : div,. ¢ =0}.

Taking the L?(02¢€) inner-product of equation (58b) with a test function ¢ € V(t), we have that
J vy - dda + | O [AE ALY ;] ¢ da = J g0 AY ' i dx Vo eV(t). (60)
. Qe Q

Next, we define a vector field w satisfying

div, w = —v',; atAg' in Q°, (61a)
w = ¢(t)n on I'®, (61b)

where ¢(t) = — §. vl 0tAgdx/|1"E|. A solution w can be found by solving a Stokes-type problem,
and according to the proof of Lemma 3.2 in [I1], for integers k > 1,

[w(-, )]

where the constant C' is independent of € by Lemma [2} From (46]), we see that d; A scales like Vv in
2-D and like Vv V7 in 3-D. Thus, the estimate (62 shows that

cor < C (10 (0 A A Oliorar + [6Onl 1) | (62)

T
sup_[w(-, )3 o + f lw(-,8)2.0: < Mo+ TP( sup E*(t)). (63)
te[0,T] 0 te[0,T]
Similarly,
div, wy = — (wi,j O AT+ 0,(v' atAg')) in QF, (64a)
we = (pn), on I'°. (64b)
and _ _ ' _
[welvar < € (lw'y; 0] + 0w’y 24D o, + I(ém)iljzr )
so that
T
| e < PCsup B4 (65)
0 te[0,T7]

Now, because of (61h), v; — w € V(t), and we are allowed to set ¢ = v, — w in (60). We find that

1d o o
5£|\vt(-,t)||g,ge +L O [AR ATV vl dm:J Vg - wdx + . Oy (AF ATV Y w'y dae

+J q@tAf [vz,k —&-wi,k] dx .
Q
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and hence for ¢t € (0,7),

J1

N

1 t 1 ¢ . o
Sl Ol + | IVuilEds = Glulio = | [ (4541 = 890 o dods
t o ) t t
—j O [AR AT vl dxds—i—f J. Vgt -wdmds-i—f
0 JQe 0 € 0 JQe
T2 NE Ja

¢
+J J qOLAY [V}, +w' | dads .
0 Jo

NG

or[AR ATvt Y w'y, dads

For § > 0 and using with 9 < 6, it follows from an L*-L2-L? Hélder’s inequality that

|J1] <6 sup E(t). (66)
te[0,T]

We next estimate J>. According to the components of A are either linear (d = 2) or quadratic
(d = 3) with respect to the components of V7; hence, 0; A behaves like Vv for d = 2 and like V) Vo
for d = 3. We consider the more difficult case that d = 3 in which case 0;(AAT) behaves like
VnVnVn Vo, and

| 1va 9o P deds < VAl

VIUH%AL(Qe) V’Ut HLz (Q9)

< s ey 1072 ey 02 a1 2e)

< C5H77H?LI3(QE) UH‘Zz(Qe) + 5“th%11(95) )

where we have used Hoélder’s inequality for the first inequality, the Sobolev embedding theorem for
the second inequality, and the Cauchy-Young inequality with § > 0 for the third inequality; the
constant Cjy scales like 1/6. Tt follows that

|J2| < Mg +TP( sup E°(t))+6 sup E(t). (67)
te[0,T] te[0,T]

To estimate J3, we integrate-by-parts in time:

f v - wdx
Qe 0

t
< MO + f f |’Ut . u)t|d.’Ed8 + J |Ut('at)w(" 0)|d$ + f
o0 Jae Q< ‘

t

t
\J3|<JJ |vg - wy|dzds +
0 Jae

v (-, 1) ft wy (-, s)ds|dx

0

2

< Mo+ TEP( sup E(t)) + 6]ve(-, )2 e + Cs
te[0,T7]

)

Jt we(+, 8)ds

0

0,0¢

the last inequality following the estimates and and the Cauchy-Young inequality. Since

| i, s)ds

0

2

t 2 t
= j <f wt(x,s)ds) dr < tf J |wy (0, s)|*dxdt
0,0¢ o< \Jo 0 Joe
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and

¢ t 5 oot 3
[ ]t wrldsas < ([ fentosanas) ([ Bt o) eas)
0 € 0 0

<t? sup [vi(-, 8)]o,0e P( sup E(s)) < t%P( sup E¢(s)),
s€[0,t] s€[0,¢] s€[0,¢]

we see that

|Js| < Mo+ T3P( sup E°(t)) +6 sup E(t). (68)
te[0,T7] te[0,T]

The integrals Jy and J5 (using and ) are estimated in the same way as J> so that

\Ta| + |T5| < Mo + T>P( sup E(t))+6 sup E(t). (69)
te[0,T] te[0,T7]

Combining the estimates 7, we find that

T
sup \|vt(~7t)HaQe + f Hvtﬂiﬂgdt < Mo+ T=ZP( sup E°(t))+ C§ sup E(t). (70)
te[0,T7] 0 te[0,T7] te[0,T7]

Step 4. Regularity for the velocity and pressure. Next, we write equation (23p) as

—Av + Vq = div[(AAT —1d)Vv] — (AT —1d)Vq —v; in Q° x (0,77, (71a)
dive = —(A7 — §))v' in Q€ x [0,77, (71b)
ve L*(0,T; H*5(T°) (71c)

The two inequalities and , together with the Stokes regularity given in Lemma [2| show
that v e L*([0,T]; H?(Q°)) n L2(0,T; H3(2¢)) and satisfies

T T
sup |v(-,t)[3,0c +J Hvl\ﬁ,deJ lal3 qedt < Mo +T=P( sup E(t)) +CS sup E*(t). (72)
te[0,T7] 0 0 te[0,T7] te[0,T7]

By choosing § > 0 sufficiently small, we obtain that

sup E°(t) < My + T>P( sup E(t)), (73)
te[0,T] te[0,T]

for a constant My and a polynomial function P which are both independent of e.

From the estimate (72)), v € L2(0,T; H3(Q)), and the estimate (70), v; € L2(0,T; H*(Q°)).
Using the partition of unity functions (; defined in Step 2 above, we then see that for each chart
Gu e L?(0,T; H3(B;)) where B, = BT forl = 1,..,K, and B, = B for | = K + 1,..., L. Similarly,
Guy € L*(0,T; HY(By)). Tt is then standard that (v € C°([0,T]; H?(B;)), and hence by summing
over | =1,...,L, ve C°([0,T]; H*(Q)).

Since the pressure satisfies the elliptic system:

—A,q =", Agvj,s A in Q° x (0,77,
g=n-[Defyv-n] onI*x[0,T],

we then infer that ¢ € C°([0,T]; H*(Q€)). Then, using the momentum equation ((71al), it follows that
vy € CO([0, T]; L2(29)).
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This then shows that E€(t) is a continuous function of time. Following Section 9 in [14], from
, we now may choose T > 0 sufficiently small and independent of ¢, such that

sup E(t) < 2M,. (74)
te[0,T]

Step 5. Verifying the basic assumption (47)). Having established on [0,7] with T
independent of €, for any € > 0, we may now use the formula to choose T even smaller if
necessary to ensure that holds. This concludes the proof. O

We now establish a more quantitative estimate in order to assess the continuity of 0%v(t,-) in
L2(2°).

Proposition 7. For allt € [0,T],
t
max |10 10(ve (-, 8) — u§)[§.0c + L 16% (-, 5) = up)|F e ds < £/7P(Mo) . (75)

Proof. We write v(t) = v(-,t) and again set viscosity ¥ = 1. The difference v(t) — uf satisfies the

equation
(v—ug)e — Ap(v—ug) + ATV = Apug .

Following Step 2 in the proof of Theorem|[6] and once again localize to a boundary chart 6,1 = 1, ..., K,
with det VO; = C; and with cut-off functions (;, we obtain that

~ S IO il g+ [ PN = 0] P 0 ) do
—I—J ?[Akq] %[0 dx—i—f P[ARATuS, ;|- [P (v — uf)]k da, (76)
Bt B+

where we have dropped the explicit chart dependence on [ and where again, the boundary integral
terms have vanished due to (23(d). We integrate (76 over the time interval [0, T]:

T
160 [v(t) — ug]IF 5+ +L 160 [v(t) = ugll} p+ < ICal + 1Kol + [KCs| + Kl
where we are writing u§ for uf o 0;, and where

T
K — f [ AR B2[C2 (v — )], dudt

0 JB*

Ko = JT B2[(AFAT — §59) (0 — u§) ;|- O2[C2(v — ub)]. i, dwdt |

SRIN

:f f [(AFATug, 5]~ (¢ (v — ug)]op dadt

J J 4] 322 Z],kdzdtJrfOT JB+

K¢ Kt

Q)I

—ud) x [ [02CH (v — uf)® + 20¢20(v — uf) ], n +C2x 020 ddt

We write

O*[Akq] 0*[CPuf )k | dadt
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By and 7 we see that
K8 < VTP(Mo).

For the integral K¢, we focus on the integrand that arises when 02 acts on both q and v, for all other
derivative combinations immediately give an integral bound of vTP(M;). Using the Lagrangian
divergence-free condition (23k),

T T
J J- Cgéquﬁé%i,k dxdt| < f J C252q32A§vi7k dxdt
0o JB+ o JB+

+2 .

T
J 20%qg éAf vt dadt
0o Jp+

An application of the Cauchy-Young inequality together with the Sobolev embedding theorem, shows
that
K| < VTP(Mp).

For the integral Kz, we consider the case that 0% acts on (A¥AJ — 6%7), all other terms immediately
giving the desired bound. Using and , JAAT —1d | (p+) < VTP(M), so that with ,

|Ka| < VTP(My).

The integral K3 and K4 are easily estimated using the Cauchy-Young inequality, the Sobolev
embedding theorem, and . We have thus established that

T
62 un(t) — ugl3 o + f 1 un(t) — ug 0 012 50 < VTP(My).

Summing over [ = 1, ..., K then concludes the proof. O

8 Proof of the Main Theorem

Using the Lagrangian divergence condition ), we have that dive = —(Ag —(5{ Jvt,;, which we write
as divv = —(A —Id) : Vu. Then, since divu§ = 0, for all t € [0,T],

|0 div(v — uf)[§ o < [0(A—1d) Vo[§ ge + (A —1d) 0Vl o < VTP(M,). (77)

Using together with (75)), the normal trace theorem (see, for example, (A.6) in [16]) shows that
(v —ug) - N € C([0,T; H2(I')) and

[0*(v — ug) - Ne‘E1/2,Fe S \/TP(MO) )

so that
|(v = uf) - Ne[|F 5 e < VTP(Mo),

and hence by Lemma [4]
(v(z,t) —ug) - N.| < TTP(My) Ve [0,T]. (78)

max
zel'e

Next, we consider the motion of the points X¢ and X_ given in Section (see Figure (3).
Recall that the unit normal N, at both the points X{ = (0,0,¢€) and X_ = (0,0,0) is vertical, so by
definition of uf, we have that

ug(XE) Ne=—-1 uf(X_)-Ne=0, and |X{—-X_|=¢.
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Using Theorem |§|, we choose € so small that 10e < T, where [0,T] is the time interval of existence
which is independent of ¢, and we consider the vertical displacement of the falling particle X¢. Since

X§ -eq=¢, and
t

NS0 ea = e | I(XE s,
0
for t = 10e, we have from that
n(X<,10€) < —8e.

Next, let Z denote any point on dw_ N {z4 = 0}. Since u§(Z) - N. = 0 and n(Z, 10¢) = (1)06 v(Z,s)ds,

according to ,
N(Z,10¢) - eq = —cet, c=101P(My).

We then choose € > 0 sufficiently small so that cet < 8e. Tt follows that
(X<, 10¢) - eq < n(Z,10¢) - 4 . (79)

We next consider the horizontal displacement of the particle X§ and any particle Z on dw_ n{zq =
0} x [0,10¢]. From the estimate (74)), for all time ¢ € [0, 10¢], [v(:,t)| L= (q) < P(Mo).
Therefore, for any ¢ € [0,10¢] and for a = 1,...,d — 1,

[n® (X<, )] < 10eP(My) and |n®(Z,t) — Z%| < 10eP(My) ,

showing that the distance between the projection of the surface n(dw_ n {x4 = 0},t) onto the plane
zq = 0 and the set dw_ N {z4 = 0} is O(e). Since by Definition [3] the set dw_ N {z4 = 0} contains
a d—1-dimensional ball of radius 4/e centered at the origin, we see that by choosing e sufficiently
small the vertical line passing through n(X¢,t) must intersect the surface n(dw_ n {zq = 0},t) for
any t € [0,10¢]. Now, since at ¢t = 0, X{ is directly (vertically) above dw_ n {zg = 0}, and at
t = 10¢, from (79), n(X,10€) is (vertically) below n(dw—_ n {z4 = 0}, 10¢), then by continuity there
necessarily exists a time 0 < 7™ < 10e at which n(X$,T%*) = n(Z,T*) for some Z € dw_ N {xq = 0}.
This concludes the proof of the main theorem.

9 The case of a general self-intersection splash geometry

)

We now show how the analysis presented in the previous sections for the case of the “dinosaur wave’
initial domain can be used to establish the existence of a splash singularity in a finite time 7™ for any
domain whose boundary is arbitrarily close (in the H3-norm) to any given self-intersecting surface of
class H3. This generalization requires the geometric constructions that we introduced in our previous
work [I6], coupled with a very minor adaptation of the analysis of the previous sections.

We begin with the definition of the splash domain that we gave in [16].

9.1 The definition of the splash domain

1. We suppose that zg € I' := 0€), is the unique boundary self-intersection point, i.e., Q5 is locally
on each side of the tangent plane to 02; = I's at xg. For all other boundary points, the domain
is locally on one side of its boundary. Without loss of generality, we suppose that the tangent
plane at ¢ is the horizontal plane x4 — (x¢)q = 0.

2. We let Uy denote an open neighborhood of ¢ in R?, and then choose an additional L open sets
{U}E_, such that the collection {U;}£, is an open cover of I'y, and {U;}£ , is an open cover of
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Qs and such that there exists a sufficiently small open subset w < Uy containing xo with the
property that -
wnU =g forall I=1,....L.

We set
Ul =Uyn Qs n{xg > (20)a} and Uy = Uy n Qs 0 {za < (z0)a} -

Additionally, we assume that Uy n Q4 N {zqg = (z0)a} = {70}, which implies in particular that
Uy and U, are connected. See Figure 9.1.

Figure 4: Splash domain €2, and the collection of open set {Uy, Uy, Us, ..., Uk} covering T

3. For each [ € {1, ..., K}, there exists an H?>-class diffeomorphism ; satisfying
0,: B:=B(0,1) - U,
UnQ,=60(B") and U, nT, = 6,(B%),
where

Bt = {(x1,...,m4) € B: 14> 0},
B® = {(x1,...,xq) € B: x4 = 0}.
4. For L > K, let {UZ}ZL=K+1 denote a family of open sets contained in Qg such that {U;}~ , is an
open cover of ), and for [ € {K +1,..., L}, §; : B — U, is an H? diffeormorphism.

5. To the open set Uy we associate two H>-class diffeomorphisms 6, and §_ of B onto Uy with
the following properties:

9+(B+) = UJ?
9+(B0) = Ui(;rﬂ Ly,

-(BT) =1y ,

0
0_(B°) =U; nT,,

29



D. Coutand and S. Shkoller Splash singularity for the Navier-Stokes equations

such that
{20} = 0.(B%) n0_(B),

and
0.(0) =0_(0) = xg.

We further assume that

0+(B* nB(0,1/2)) n6)(B*) =g forl=1,...K,

and

0. (BT ~B(0,1/2)) n6,(B) = & for | = K +1,.... L.

Definition 6 (Splash domain €25). We say that €2 is a splash domain, if it is defined by a collection
of open covers {U;}, and associated maps {0+, 01,02, ...,0.} satisfying the properties (1)—(5) above.
Because each of the maps is an H? diffeomorphism, we say that the splash domain €, defines a
self-intersecting generalized H3-domain.

9.2 An approximating sequence of non self-intersecting domains converg-
ing to the splash domain
Following [I6], we can then define standard (non self-intersecting) domains Q¢ (for € > 0 small

enough) by just modifying 64, and leaving the other charts unchanged. As shown in Figure our
non self-intersecting domain Q¢ will be defined by associated maps {fe4, 61,02, ..., 61} such that

105 — 0+ mss+) < Ce, (80)
and such that
0 < (6 (B*),6(B")) <e. (81)
(A
0.
W
Bt \\/ S/ m .
0-
6-

Figure 5: The black dot denotes the point 29 where the boundary self-intersects (middle). For € > 0,
the approximate domain Q¢ does not intersect itself (right).

In summary, we have approximated the self-intersecting splash domain 25 with a sequence of
H3-class domains Q¢ converging toward €, such that for each € > 0, Q¢ does not self-intersect. As
such, each one of these domains ¢, ¢ > 0, will thus be amenable to our local-in-time well-posedness
theory for free-boundary incompressible Navier-Stokes equations.
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10 Existence of a splash in finite time in a domain arbitrarily
close to a given splash domain

We next define an initial velocity field of the same type as in Section Due to , the estimates
of Section [7] remain unchanged. Similarly, the main proof of Section [§] works in a similar manner
due to , leading to the necessity of self-intersection at a time T € (0, 10¢). Note that since the
tangent plane at the intended splash singularity zg is the horizontal plane {z4 = 0}, J[0_(B™)] is
very close to {xg = 0} in a small ball B(xg,+/€) for e taken sufficiently small; thus, we are using
the fact that the almost flat portion of §_(B%) is very close to {4 = 0} and contains a region of
diameter at least 4/e.
Furthermore,

(0%, T¢) — 0+ |3 < [n°(0%,T¢) — 053 + [0% — 0+]3
e
< ||f ve(05,t) dt|s + Ce, (82)
0

where we used the estimate in the above inequality ; hence, from our estimates in Section
(65, T°) — 0 |5 < CP(Mo)VT* + Ce < CP(Mo)v/e. (83)

This, therefore, shows that the splash-free surface (¢, 7€) is at a distance less than CP(My)+/€
from Qg in H3. We have then established the following:

Theorem 8. For any given splash domain Qg of class H?, there exists a splash domain Q. arbitrarily
close in H® to Q,, and smooth initial data consisting of a non self-intersecting domain Q¢ of class
H3 and a divergence-free velocity field ug € H(Q°) satisfying [Def u§ - Nc|] x N. = 0 on 0Q°, such
that the flow map n(x,t) solving the Navier-Stokes equations satisfies (0N, T*) = Q.. That is,
in finite time T* > 0, a splash singularity occurs which is very close to a prescribed self-intersecting
geometry.
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