
Control of Energy Storage with Market Impact:

Lagrangian Approach and Horizons

James Cruise∗, Lisa Flatley†, Richard Gibbens‡ and Stan Zachary∗

April 5, 2018

Abstract

We study the control of large scale energy storage operating in a market. Re-

optimization of deterministic models is a common pragmatic approach when prices

are stochastic. We apply Lagrangian theory to develop such a model and to establish

decision and forecast horizons when storage trading affects these prices, an important

aspect of some energy markets. The determination of these horizons also provides

a simple and efficient algorithm for the determination of the optimal control. The

forecast horizons vary between one and fifteen days in realistic electricity storage

examples. These examples suggest that modelling price impact is important.

1 Introduction

Electricity storage is likely to play a significant role in balancing future energy systems.

Often, much of the value of large-scale storage (e.g. pumped storage and hydro) may be

captured in price arbitrage. In the present paper we study the optimal control of storage

making its money by buying electricity when it is cheap, and selling it when it is expensive.

Our model includes both capacity and rate constraints, and the activities of the store are

of a sufficient magnitude as to have market impact, thereby leading to nonlinear convex

cost functions associated with buying and selling. (For example, in many European mar-

kets there are substantial differences between day and night electricity prices, while the

volume of available storage is sufficient to significantly reduce this differential—see [17].)

Market prices may be modelled as stochastic. In this case, for some applied storage control

problems, an exact stochastic dynamic programming approach may be possible—see, e.g.

[18, 3]. An explicitly stochastic approach to the control of storage with market impact

is given by [9]. In practice assumed probability distributions calibrated to data may be

incorrect—for a discussion of the potentially significant consequences of this in the context

of energy storage, see [20]. Thus a common pragmatic approach in a stochastic environ-

ment is the use of deterministic models with re-optimisation at successive time steps—see,

for example, [13, 18, 26] and, for more recent further analysis, [19]. However, the literature

appears to be missing a deterministic re-optimization method that incorporates market

impact. The present paper fills this gap.
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Thus we study a deterministic model, in which it is assumed that the above convex cost

functions are known in advance. We develop the strong Lagrangian theory associated

with the optimal control over some given time period, and use this theory to determine

a running forecast horizon beyond which it is not necessary to know future buying and

selling costs in order to determine the current action. We give a forward algorithm for

the determination of both the optimal control and the forecast and associated decision

horizons (see Section 4 for formal definitions). This algorithm reduces to the solution of a

finite number of instances of the problem in which the storage is not subject to capacity

constraints. We use this result to provide a bound on the computational effort involved.

In the realistic electricity storage examples we study, the forecast horizon varies between

one and fifteen days. These examples suggest that modelling price impact is important.

Our model may be viewed as an instance of the classical wheat trading, or warehouse,

model (see, for example, [11, 21] and the references therein). In the present model the

storage, or inventory, process is subject to capacity constraints (but not holding costs) and

we extend the classical model by allowing market impact. The existence of forecast and

decision horizons is here a natural consequence of the bounds on the storage process (as is

clear from the role played by the constraints in our algorithm), coupled with the assumed

convexity of the cost functions (see also [10]). Similar horizons exist for many models in

the existing literature in which the level of some stored quantity is controlled. In many

cases, e.g. the early production planning model of [15], and the wheat trading model of

[11], the storage bound is one-sided, corresponding only to the requirement that the stored

quantity should be nonnegative; however, in such models storage holding costs increase

with the quantity stored. As in the above papers, the forecast horizons obtained for such

models are typically weak, in the sense that some mild conditions are required on costs

beyond the forecast horizon. For the wheat trading model, an example where storage is

subject to a capacity constraint is given by [21] and a forecast horizon is obtained without

the need for such additional conditions. A paper [12] considers the more general wheat

trading model of [11] with the addition of a capacity constraint, but does not give a general

algorithm. A comprehensive review on the identification and use of such forecast horizons

is given by [5].

Similar storage control problems to those of the present paper are studied by [2], who

consider only piecewise linear cost functions, and by [24] who consider the price-taker case

of linear cost functions (see also the references in the latter paper). The approaches of these

papers also rely on the identification of strong Lagrangian, or Kuhn-Tucker, parameters

analogous to those identified in this paper; however, these approaches are otherwise quite

different and do not explicitly identify the forecast horizon of the present approach.

Aside from the control problem studied here, there is a considerable literature on the

market impact of storage—notably in the context of energy storage (see [17] and the

references therein)—and on its wider economic consequences, e.g. through price smoothing,

within a competitive environment (see in particular [22, 9, 6]).

An earlier paper [8] considered the application of strong Lagrangian theory to the present

problem, gave sufficient conditions for a control strategy and associated Lagrange multipli-

ers to solve it, and outlined how these might be identified. Here we give a more extensive

Lagrangian treatment, enhancing also the model to allow for more general convex cost

functions and for time-dependent leakage.

The organisation of the present paper is as follows. Sections 2 and 3 respectively formulate

the mathematical problem for analysis and develop the relevant strong Lagrangian theory.
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Section 4 proves the existence of running forecast and decision horizons, develops an

algorithm for the determination of both horizons and optimal control, and provides a

bound on the associated computational effort. Section 5 includes realistic examples, based

on real data for UK electricity prices. The Appendix gives the proofs of Theorems 1 and 2

and other results.

2 Problem formulation

Our model is a modest generalisation of that of [8], in that we here construct arguments

more carefully to allow for quite general convex cost functions, and we further model

leakage over time. It is convenient to think of the available storage as a single store,

seeking to maximise the profit which can be made by buying and selling. We assume that

the activities of the store are sufficiently significant as to have market impact, so that the

store sees nonlinear cost functions.

We work in discrete time t = 0, 1, . . . , T where T ≥ 2 denotes the final time horizon. We

assume that the store has a total capacity of E (which, in the context of an energy system,

would be total energy which could be stored) and input and output rate constraints of

Pi and Po respectively. We consider two types of (in)efficiency associated with the store.

The first of these (and usually much the more significant in practice) is a time-independent

round-trip efficiency η ∈ (0, 1] which may be defined as the fraction of energy bought

which is available to sell. This may be incorporated directly into the cost functions Ct
introduced below by suitably rescaling selling prices relative to buying prices. The second

type of (in)efficiency may be regarded as leakage over time, and is modelled by assuming

that at each successive time instant there is lost a fraction 1 − ρ, where ρ ∈ (0, 1], of

whatever is in the store at that time.

Let X = {x : −Po ≤ x ≤ Pi}. Both buying and selling prices at time t may be represented

by a single cost function Ct, which we assume to be convex, and is such that Ct(x) is

the cost at time t of increasing the level of the store contents (after any leakage—see

below) by x, positive or negative. Typically—in a conventional store and with positive

prices—we have that each function Ct is increasing and that Ct(0) = 0; then, for positive

x, Ct(x) is the cost of buying x units (for example of energy) and, for negative x, Ct(x)

is the negative of the reward for selling −x units; however, for some applications, the

interpretation of the functions Ct may vary slightly from this, and only the convexity

condition is required. This convexity assumption corresponds, for each time t, to an

increasing cost to the store of buying each additional unit, a decreasing revenue obtained

for selling each additional unit, and every unit buying price being at least as great as every

unit selling price. Incorporating the time-independent (or “round-trip”) efficiency η into

the cost functions Ct, as discussed above, automatically preserves convexity whenever these

cost functions are increasing. (While the model formally allows the possibility that some

of the functions Ct might be decreasing—corresponding to negative prices—the inclusion

of round-trip efficiency η < 1 as above would typically modify such functions so as to

violate the convexity assumption. For a discussion of the effect of negative prices on the

nature of optimal policies, see [27].)

Denote the successive levels of the store by a vector S = (S0, . . . , ST ) where St is the level

of the store at each time t. For each t ≥ 1, define also

xt(S) = St − ρSt−1. (1)
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Here ρ is the time-dependent leakage measure defined above, so that xt(S) represents the

addition to the store at time t. It is convenient to assume that both the initial level S0

and the final level ST of the store are fixed in advance at S0 = S∗0 and ST = S∗T . The

optimisation problem of interest may then be expressed as:

P: (given the convex functions Ct) choose S so as to minimise

T∑
t=1

Ct(xt(S)) (2)

subject to the capacity constraints

S0 = S∗0 , ST = S∗T , 0 ≤ St ≤ E, 1 ≤ t ≤ T − 1, (3)

and the rate constraints

xt(S) ∈ X, 1 ≤ t ≤ T. (4)

We shall say that a vector S is feasible for the problem P if it satisfies both sets of

constraints (3) and (4). We assume that the set of feasible vectors S is nonempty. This

set is then closed and convex and the function defined by (2) is convex, and strictly so

when the functions Ct are strictly convex. Hence a solution to the problem P always

exists, and is unique when the functions Ct are strictly convex.

In the case where the cost functions Ct are linear, or piecewise linear, the problem P may

be reformulated as a linear programming problem, and solved by, for example, the use of

the minimum cost circulation algorithm (see, e.g., [4, 1]).

3 Lagrangian formulation and characterisation of solution

We apply strong Lagrangian theory (see [4, 25]) to the problem P defined above. Theo-

rem 1, which is a generalisation of a result given by [8] and which is required in the present

paper, gives sufficient conditions for a value S∗ of S to solve the problem. However, we

give in the Appendix a proof which illustrates the result as essentially an application of

the Lagrangian sufficiency theorem (see [25] or [7]). The Lagrangian theory is here used to

manage the capacity constraints only (dealing with the rate constraints in this way does

not result in a simpler theory).

Theorem 1. Suppose that there exists a vector µ∗ = (µ∗1, . . . , µ
∗
T ) and a value S∗ =

(S∗0 , . . . , S
∗
T ) of S such that

(i) S∗ is feasible for the stated problem P,

(ii) for each t with 1 ≤ t ≤ T , xt(S
∗) minimises Ct(x)− µ∗tx in x ∈ X,

(iii) the pair (S∗, µ∗) satisfies the complementary slackness conditions, for 1 ≤ t ≤ T −1,
ρµ∗t+1 = µ∗t if 0 < S∗t < E,

ρµ∗t+1 ≤ µ∗t if S∗t = 0,

ρµ∗t+1 ≥ µ∗t if S∗t = E.

(5)

Then S∗ solves the stated problem P.

The vector µ∗ has the interpretation that, for each time t, the quantity µ∗t may be regarded

as a notional reference value per unit volume in storage at that time, i.e. the rate at which
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the residual value of the store, optimally operated to time T , increases with respect to

increasing the level of the store at time t. A similar parameter is identified elsewhere in the

storage literature—see, for example, [2]. Thus, in the condition (ii) of the theorem, Ct(x)

is the cost at time t of increasing the level of the store by x (again positive or negative)

and µ∗tx may be regarded as a current offsetting measure of value added to the store; the

quantity Ct(x)− µ∗tx is then to be minimised in x ∈ X.

Theorem 1 does not require the assumed convexity of the cost functions Ct. This convexity

is, however, sufficient to ensure the existence of the vector µ∗ of that theorem. This follows

directly from Theorem 2 in Section 4. It may also be deduced from strong Lagrangian

convexity arguments (see [4] or [25]).

4 Determination of forecast horizon and optimal control

We show how to determine the running forecast horizon and to use this to construct a

pair (S∗, µ∗) satisfying the conditions of Theorem 1, so that in particular S∗ is the optimal

solution to the problem P. Specifically we show how to identify a pair of times 1 ≤ τ ≤ τ̄ ≤
T such that, given the cost functions Ct, t ≤ τ̄ , the initial segment ((S∗1 , µ

∗
1), . . . , (S∗τ , µ

∗
τ ))

of the pair (S∗, µ∗) is independent of the cost functions Ct for times t > τ̄ ; the times τ̄ and

τ are then respectively initial forecast and decision horizons (see [5]). We also show how to

construct this initial segment, summarising the steps in Algorithm 1. This procedure may

then be restarted at the time τ to define the next segment of (S∗, µ∗), and so on, thereby

defining an algorithm for the determination of the entire solution ((S∗1 , µ
∗
1), . . . , (S∗T , µ

∗
T ))

of P.

We assume that the cost functions Ct are strictly convex; we show how to relax this

assumption in the Appendix. For any t such that 1 ≤ t ≤ T and any scalar µ, define x̂t(µ)

to be the unique value of x which minimises Ct(x)−µx in x ∈ X. Then the function x̂t(·)
is continuous and increasing (though not necessarily strictly so). Again for any scalar

µ, define a succession of levels S(µ) = (S0(µ), . . . , ST (µ)) of the store (not necessarily

satisfying the capacity constraints (3)) by

S0(µ) = S∗0 , St(µ) = ρSt−1(µ) + x̂t(ρ
1−tµ), t = 1, . . . , T. (6)

For each t, the function St(·) is similarly continuous and increasing and, by the definition

of the functions xt(·), the path (S0(µ), . . . , ST (µ)) automatically satisfies the rate con-

straints (4). Allow also µ = −∞ and µ =∞ and, for t = 1, . . . , T , define St(−∞) = −∞
and St(∞) =∞. From (6) and the monotonicity of the functions xt(·), for all t1 < t2,

µ1 < µ2, St1(µ1) < St1(µ2) ⇒ St2(µ1) < St2(µ2). (7)

It is convenient to define, for each time t = 1, . . . , T , the quantities at and bt to be

respectively the upper and lower bounds on the permissible values of St, i.e. at = 0 and

bt = E for t = 1, . . . , T − 1 and aT = bT = S∗T . For each time t = 1, . . . , T , let (the scalar

quantity) µl,t be such that St(µ
l,t) = at; in the event that µl,t fails to be thus uniquely

defined (as may happen when the functions Ct fail to be differentiable) take µl,t to be the

maximum value satisfying the above condition; if the rate constraints (defined by X) are

such that there is no such µl,t define instead µl,t = −∞. Similarly, for each t = 1, . . . , T ,

let µu,t be such that St(µ
u,t) = bt; in the event that µu,t fails to be uniquely defined take

µu,t to be the minimum value satisfying the above condition; if there is no such µu,t define
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µu,t = ∞. Since the functions St(·) are increasing, it follows from these definitions that,

for t = 1, . . . , T ,

µ > µl,t ⇔ St(µ) > at and µ < µu,t ⇔ St(µ) < bt. (8)

In particular

µl,t < µu,t, 1 ≤ t ≤ T − 1, µl,T ≥ µu,T , (9)

where, since the feasible region for the problem P is assumed to be nonempty and since

this would remain the case were the capacity constraints to be dropped, µl,T and µu,T are

necessarily finite.

For each t = 1, . . . , T define also

µ̄l,t = max
1≤t′≤t

µl,t
′
, µ̄u,t = min

1≤t′≤t
µu,t

′
; (10)

it is convenient to define also µ̄l,0 = −∞ and µ̄u,0 =∞. The sequence of partial maxima

{µ̄l,t} is increasing and the sequence {µ̄u,t} of partial minima is decreasing. We refer to

the times t ≥ 1 such that µl,t = µ̄l,t as lower record times and the times t ≥ 1 such that

µu,t = µ̄u,t as upper record times.

We now define τ̄ to be the first time t ≤ T such that µ̄l,t ≥ µ̄u,t. It follows from (9) that

the time τ̄ is well-defined and that τ̄ ≥ 2. It further follows (see below) that exactly one

of the following three conditions holds:

(a) µ̄u,τ̄ ≤ µ̄l,τ̄−1, in which case define also τ to be the greatest lower record time t < τ̄ ,

and define the parameter µ̂ = µl,τ = µ̄l,τ = µ̄l,τ̄−1;

(b) µ̄l,τ̄ ≥ µ̄u,τ̄−1, in which case define also τ to be the greatest upper record time t < τ̄ ,

and define the parameter µ̂ = µu,τ = µ̄u,τ = µ̄u,τ̄−1;

(c) neither (a) nor (b) holds, in which case necessarily τ̄ = T ; here define also τ = T , and

define the parameter µ̂ to be such that ST (µ̂) = S∗T .

For τ̄ ≤ T − 1 that exactly one of the conditions (a) or (b) holds follows from (9) and

the definition of the sequences {µ̄l,t} and {µ̄u,t}. For τ̄ = T , it necessarily follows that

µ̄l,T−1 < µ̄u,T−1. Since this implies that at the last time t ≤ T − 1 such that µl,t = µ̄l,T−1,

we have, from (8), that St(µ̄
l,T−1) < St(µ̄

u,T−1), it follows from (7) that also ST (µ̄l,T−1) <

ST (µ̄u,T−1). We now have that, for τ̄ = T , the condition (a), (b) or (c) holds according as

S∗T ≤ ST (µ̄l,T−1), S∗T ≥ ST (µ̄u,T−1), or ST (µ̄l,T−1) < S∗T < ST (µ̄u,T−1).

We now give the algorithm for the determination of the times τ̄ and τ , and hence also the

parameter µ̂. We then define also ((S∗1 , µ
∗
1), . . . , (S∗τ , µ

∗
τ )) by

µ∗t = ρ1−tµ̂, S∗t = St(µ̂), 1 ≤ t ≤ τ. (11)

Iterative application of this algorithm yields a pair of vectors (S∗, µ∗) which we show in

Theorem 2 satisfies the conditions of Theorem 1 and so forms the optimal solution of the

problem P. Since τ̄ , τ and µ̂ do not depend on the cost functions Ct for times t > τ̄ , it

follows that τ̄ and τ are respectively initial forecast and decision horizons.

The algorithm proceeds inductively by considering successive times 1 ≤ t < T (the “while”

loop of Algorithm 1). At each such time t it is checked whether τ = t (via either the

condition (a) or the condition (b) above) and if so the corresponding value of τ̄ > t is

identified. Thus suppose it is established that the time t < T is such that τ ≥ t. The

latter condition implies in particular that τ̄ > t, i.e. that µ̄l,t < µ̄u,t. It now follows from

the definitions of the times τ̄ and τ above that, for any t̄ > t, in order that τ̄ = t̄ with
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τ = t being defined via the condition (a) above, it is necessary and sufficient that t should

be a lower record time, i.e., from (8),

St(µ̄
l,t−1) ≤ at, (12)

and further that µl,t
′
< µ̄l,t < µu,t

′
for t < t′ < t̄ and that µ̄l,t ≥ µu,t̄. Given that t is a

lower record time, it follows from (8) that these latter two conditions are equivalent to

at′ < St′(µ̄
l,t) < bt′ , t < t′ < t̄, St̄(µ̄

l,t) ≥ bt̄. (13)

(Thus the steps 3.–8. of Algorithm 1 check, for the current value of t, whether τ = t via

the condition (a), and if so determine also τ̄ and µ̂ as required; in this case the algorithm

then stops.)

Similarly, for any t̄ > t, in order that τ̄ = t̄ with τ = t being defined via the condition (b)

above, it is necessary and sufficient that t should be an upper record time, i.e. that

St(µ̄
u,t−1) ≥ bt, (14)

and further that

at′ < St′(µ̄
u,t) < bt′ , t < t′ < t̄, St̄(µ̄

u,t) ≤ at̄. (15)

(Thus the steps 9.–14. of Algorithm 1 similarly check whether τ = t via the condition (b),

and if so determine again τ̄ and µ̂; in this case the algorithm again then stops.)

Finally in the event that the algorithm does not find τ = t for any time t < T (so that the

“while” loop of Algorithm 1 terminates with t = T ), then necessarily τ̄ and τ are defined

via the condition (c) above with τ = τ̄ = T . In all cases ((S∗1 , µ
∗
1), . . . , (S∗τ , µ

∗
τ )) is then

determined as above.

For τ < T the algorithm may then be restarted at the time τ with the time 0 replaced

by the time τ and the initial level S∗0 replaced by the level S∗τ , and this process repeated

at such subsequent times as necessary in order to construct the entire pair (S∗, µ∗) =

((S∗1 , µ
∗
1), . . . , (S∗T , µ

∗
T )). We now have the following theorem, the proof of which is given

in the Appendix, and from which, as previously indicated, it follows immediately that

the time τ̄ is indeed a forecast horizon for the determination of the solution of P to the

decision horizon τ .

Theorem 2. Under the assumed strict convexity of the functions Ct, the pair (S∗, µ∗)

constructed by the above algorithm satisfies the conditions of Theorem 1. In particular S∗

is the (optimal) solution to the problem P.

Remark 1. It follows from the above algorithm, by considering separately the conditions

(a)–(c) for the definition of τ and using the continuity of S(µ) in µ, that the defined

scalar µ̂ may be varied by suitable variation of the cost functions Ct for t ≥ τ̄ . Then

also S∗1 = S1(µ̂) necessarily varies (at least when C1 is differentiable). In this sense the

identified forecast horizon τ̄ is the shortest possible for the identification of even (S∗1 , µ
∗
1).

Remark 2. It should further be clear from the definition of the time τ̄—and is illustrated in

the examples of Section 5—that the length of the forecast horizon is typically of the same

order as that of the time for the optimally controlled store to empty or fill. In particular

when the store is emptying and filling in a completely periodic manner, it is not difficult

to see that the length of the forecast horizon does not exceed the period of the cycle.
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Algorithm 1 Algorithm for the determination of the initial forecast and decision hori-

zons τ̄ and τ respectively, and initial segment ((S∗1 , µ
∗
1), . . . , (S∗τ , µ

∗
τ )) of the pair (S∗, µ∗)

of Theorem 1.
INPUT: S∗0 , S∗T , E, ρ, functions x̂t(µ) for t = 1, . . . , T

1: set t = 1

2: while t < T do

3: calculate µ̄l,t as given by (10)

4: for t̄ = t+ 1, . . . , T do

5: if equations (12) and (13) hold then

6: set τ̄ = t̄ and set τ = t

7: set µ̂ = µ̄l,t and calculate ((S∗1 , µ
∗
1), . . . , (S∗τ , µ

∗
τ )) via (6) and (11)

8: STOP

9: end if

10: end for

11: calculate µ̄u,t as given by (10)

12: for t̄ = t+ 1, . . . , T do

13: if equations (14) and (15) hold then

14: set τ̄ = t̄ and set τ = t

15: set µ̂ = µ̄u,t and calculate ((S∗1 , µ
∗
1), . . . , (S∗τ , µ

∗
τ )) via (6) and (11)

16: STOP

17: end if

18: end for

19: set t = t+ 1

20: end while

21: set τ = τ̄ = T

22: calculate µ̂ such that ST (µ̂) = S∗T where ST (µ̂) is given via (6)

23: calculate ((S∗1 , µ
∗
1), . . . , (S∗τ , µ

∗
τ )) via (6) and (11)

We now provide a simple bound for the work involved in the implementation of the above

algorithm. We assume an ability to evaluate as necessary the quantities St(µ) defined

by (6). This requires only an ability to evaluate, again as necessary, the quantities x̂t(µ)

minimising Ct(x)−µx in x ∈ X; depending on the cost functions Ct the functions x̂t may

be available analytically or numerically (in particular when Ct is differentiable x̂t(µ) is

simply the value of x ∈ X whose marginal cost C ′t(x) is closest to µ). In the determination

of the initial forecast horizon τ̄ and decision horizon τ , the algorithm is driven by the

determination of the sequences {µ̄l,t} and {µ̄u,t} up to the time τ . For the former, for

each time t we have µ̄l,t = µ̄l,t−1 except perhaps where t is a lower record time, i.e. the

condition (12) holds. At such a time t we have µ̄l,t = µl,t; the latter quantity is the defined

as solution of St(µ
l,t) = at and St(µ) is (continuous and) increasing in µ. Similar remarks

apply to the determination of the sequence {µ̄u,t}. It follows from these observations

and from the specification of the algorithm as summarised in Algorithm 1 that, in the

determination of τ̄ and τ and so also of the initial segment ((S∗1 , µ
∗
1), . . . , (S∗τ , µ

∗
τ )) of the

(optimal) solution of P, the computation involved consists of at most 2τ one-dimensional

searches for the zero of a monotonic function—together with a finite number of simple

evaluations of St(µ) for given values of t and µ and a finite number of binary comparisons.

The algorithm is now restarted at the time τ , and so ultimately a maximum of 2T such

one-dimensional searches are required in order to determine the optimal control to the
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time T . In the case where the cost functions Ct have an appropriate analytical form, e.g.

are linear or quadratic (see Section 5 for a justification of the latter as first approximation

to market impact), the quantities µl,t and µu,t may be determined analytically and so only

a finitely terminating calculation is required in the operation of the entire algorithm.

5 Examples

We illustrate some of our results with an example storage facility which has market impact.

We use half-hourly time units and a cost series (p1, . . . , pT ) corresponding to the real half-

hourly spot market wholesale electricity prices in Great Britain for the year 2011, as

supplied, along with corresponding total GB demand data, by National Grid plc—see

[16]. (Spot prices are readily available and used for convenience; ideally one might use

forward prices or forecasted prices.) These prices show a strong daily cyclical behaviour.

We assume that the store is large enough to have market impact on prices, but small

enough in relation to the rest of the network that, at each time t, the unit price at which

the store buys sufficient energy to increase its level by x > 0 units may be approximated

by a linear function pt+p
′
tx, where p′t ≥ 0 is a measure of the market impact of the store on

the price at that time. This linearised dependence of price on modest variations in overall

traded volumes on energy seems a reasonable first approximation to market impact and

is consistent with the existing energy economics literature—see, for example, [22, 23] and

the references therein. It follows that the corresponding cost Ct(x) is quadratic in x. We

assume the same linear dependence of price on quantity sold for x < 0; however, since the

round-trip efficiency η of the store means that it only sells back to the market a fraction η

of what it buys, the complete cost function Ct is assumed to be given by

Ct(x) =

{
(pt + p′tx)x if x ≥ 0,

(pt + ηp′tx)ηx if x < 0.
(16)

In the following examples, we assume further that each p′t is proportional to the wholesale

price pt at that time, so that p′t = λpt for some λ ≥ 0. This reflects the intuition that the

market becomes more price-responsive when prices are high. We assume a common input

and output rate constraint Pi = Po = P and, as before, denote by E the capacity of the

store. Finally, we assume throughout that there is no leakage from the store over time, i.e.

that ρ = 1. This assumption is consistent with the existing literature on energy storage,

where round-trip inefficiency (which we do model) is significant, but where gradual leakage

over time is much less so and not usually modelled—see, for example, [9, 22, 23].

The optimal strategy associated with the cost function (16) is shown in Figure 1 (the

upper plot in each of the four panels) for various choices of parameters. We present the

behaviour of the store over the month of December. The optimisation is started at a point

in time sufficiently prior to the beginning of that month that the optimal behaviour of the

store throughout that month is independent of the store level at the earlier starting time.

(Since the problem P is invariant under time reversal, this “lead” interval is of the same

order as the running forecast horizon for the solution of the problem.)

The plot in panel (a) corresponds to a “base” case, with the parameter choices E = 10,

P = 1, η = 0.8 and λ = 0.05. The time E/P = 10 half-hours units for the store to

completely fill or empty and the round-trip efficiency of 0.8 correspond approximately to

the Dinorwig pumped storage facility in Snowdonia in North Wales. On the assumption
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Figure 1: Examples in which the parameters associated with the store are varied. In

each case, the upper plot shows the optimal level of storage and the lower plot shows the

forecast horizon required at each stage of the optimisation.

that the observed relationship between price and total GB demand throughout the period

of the example is approximately that which would also obtain at any point in time as

demand was varied, the available price-demand data appear reasonably compatible with

the modelling assumption p′t = λpt. In particular the prices pt at their daily peak are

approximately twice those at their nightly minimum, and correspond to an approximate 25

GW variation in demand. The choice of market impact factor λ = 0.05 then corresponds

to the power units of our example being a little less than 2 GW; since the parameter

P = 1, this implicit 2 GW power unit is also the rate constraint for our example, and

again corresponds closely to that of the Dinorwig facility. The upper portion of the plot in

panel (a) shows the variation of the store level with time t, while the lower portion shows,

for each time t, the corresponding forecast horizon at that time as defined in Section 4.

It is seen that, under the optimal strategy, the store usually completely empties and fills

on a daily cycle, with some lull in activity over the Christmas period. As might then be

expected (again see Section 4) the forecast horizon necessary for an optimal decision is of

the order of a day or so.

The plots in the remaining three panels of Figure 1 are each formed by varying one of the

parameters of the base case example, in each case in such a way that the store is less active.

The plot in the panel (b) corresponds to a reduction in the round-trip efficiency of the store

from η = 0.8 to η = 0.6. (The latter figure is something of a lower bound: the round-trip

efficiencies of nearly all forms of storage technologies in significant current use are in the

10



region 0.70–0.85 (see [14]). Here it is seen that the store level cycles less frequently and

tends to remain at the same value for longer periods of time than in the base case; further

the forecast horizons necessary for optimal decision making are significantly longer than

in the base case. The plot in panel (c) corresponds to an increase in the “market impact”

factor from λ = 0.05 to λ = 0.5, while that in panel (d) corresponds to a tightening of

the rate constraint from P = 1 to P = 0.25, the resulting ratio E/P = 40 half-hours

corresponding to the Cruachan and Foyers pumped storage facilities in Scotland. In both

cases the store is almost continuously active but trades at lower volumes than in the base

case; consequently forecast horizons are considerably longer. The broad similarity of the

behaviour in these two examples may be explained by noting that an increased market

impact factor acts to slow down the activity rate of the store in much the same way as a

tightening of the rate constraint.

Finally we consider the effect of failing to account for market impact when the latter is

present. For the example here, and for the base case parameter choices E = 10, P = 1,

η = 0.8, Figure 2 shows the total annual profit (negative cost) of the store as a function of

the market impact factor λ, the behaviour of the store being optimised over the entire year

2011. If the units of power of the example are gigawatts, then the example corresponds to

a store of the approximate size of Dinorwig, and the units in which the profit is recorded

are millions of pounds. Figure 2 further shows, again as a function of λ, the corresponding

profit when the behaviour of the store is optimised on the assumption λ = 0 but in which

the profit of the store is then calculated according to the actual value of λ. The latter

profit decreases linearly in λ and becomes negative at around λ = 0.12—a value which,

as argued above, is not at all unrealistic in the presence of significant storage. As noted

above, forecast horizons increase with increasing λ: mean forecast horizons for λ =0, 0.05,

0.10, and 0.15 are respectively 0.87, 1.40, 2.50, and 3.26 days.
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Figure 2: Optimised annual profit as function of market impact factor λ (solid line)

and corresponding annual profit when market impact has been ignored in performing the

optimisation (dashed line).

6 Conclusion

In the present paper we have developed the strong Lagrangian theory of the optimal

control of energy storage which is used for arbitrage and whose activities are sufficiently

significant as to have market impact. We have further shown how this theory may be

used to determine a simple and efficient algorithm for the identification of that control

and of the associated forecast and decision horizons. We have given examples based on

real GB electricity price data and realistic storage parameters. These show the relevance

11



of modelling market impart to the optimal control.
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[3] N. Bäuerle and V. Riess. Gas storage valuation with regime switching. Energy

Systems, 7(3):499–528, 2016.

[4] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press,

2004.

[5] S. Chand, V. Ning Hsu, and S. Sethi. Forecast, solution, and rolling horizons in

operations management problems: A classified bibliograph. Manufacturing & Service

Operations Management, 4(1):25–43, 2002.

[6] C. Chaton and L. Durand-Viel. Real asset valuation under imperfect competition:

Can we forget about market fundamentals? Journal of Economics & Management

Strategy, 22(1):125–139, 2013.

[7] C. Courcoubetis and R. Weber. Pricing Communication Networks: Economics, Tech-

nology and Modelling. Wiley, 2003.

[8] J. R. Cruise, R. J. Gibbens, and S. Zachary. Optimal control of storage for arbitrage,

with applications to energy systems. In 48th Annual Conference on Information

Sciences and Systems (CISS), pages 1–6, 2014.

[9] B. Felix, O. Woll, and C. Weber. Gas storage valuation under limited market liquidity:

an application in Germany. The European Journal of Finance, 19(7–8):715–733, 2012.

[10] A. Garcia and R. Smith. Solving nonstationary infinite horizon dynamic optimization

problems. Journal of Mathematical Analysis and Applications, 244(2):304–317, 2000.

[11] R. F. Hartl. A forward algorithm for a generalized wheat trading model. Zeitschrift

für Operations Research, 30(3):A135–A144, 1986.

[12] R. F. Hartl. On forward algorithms for a generalized wheat trading model. Engineer-

ing Costs and Production Economics, 15:367–370, 1988.

[13] G. Lai, F. Margot, and N. Secomandi. An approximate dynamic programming ap-

proach to benchmark practice-based heuristics for natural gas storage valuation. Op-

erations Research, 58(3):564–582, 2010.

[14] W. Manuel. Turlock Irrigation District: Energy Storage Study 2014. At

http://www.energy.ca.gov/assessments/ab2514 reports/Turlock Irrigation District/2014-

10-28 Turlock Irrigation District Energy Storage Study.pdf, 2014.

[15] F. Modigliani and F. E. Hohn. Production planning over time and the nature of the

expectation and planning horizon. Econometrika, 23(1):46–66, 1955.

[16] National Grid. Personal communication. 2012.

13

http://www.energy.ca.gov/assessments/ab2514_reports/Turlock_Irrigation_District/2014-10-28_Turlock_Irrigation_District_Energy_Storage_Study.pdf
http://www.energy.ca.gov/assessments/ab2514_reports/Turlock_Irrigation_District/2014-10-28_Turlock_Irrigation_District_Energy_Storage_Study.pdf


[17] D. M. Newbery, G. Strbac, D. Pudjianto, P. Noel, Booz & Co., and LeighFisher.

Benefits of an integrated european energy market: Final report for DG ENER. At

https://ec.europa.eu/energy/sites/ener/files/documents/20130902 energy integration benefits.pdf,

2013.

[18] N. Secomandi. Optimal commodity trading with a capacitated storage asset. Man-

agement Science, 56(3):449–467, 2010.

[19] N. Secomandi. Merchant commodity storage practice revisited. Operations Research,

63(5):1131–1143, 2015.

[20] N. Secomandi, G. Lai, F. Margot, A. Scheller-Wolf, and D. Seppi. Merchant com-

modity storage and term-structure model error. Manufacturing & Service Operations

Management, 17(3):302–320, 2015.

[21] S. P. Sethi and G. L. Thompson. Optimal Control Theory: Applications to Manage-

ment Science and Economics, 2nd ed. Springer, 2000.

[22] R. Sioshansi. Welfare impacts of electricity storage and the implications of ownership

structure. The Energy Journal, 31(2):173–198, 2010.

[23] R. Sioshansi. When energy storage reduces social welfare. Energy Economics, 41:106–

116, 2014.

[24] B. Steffen and C. Weber. Optimal operation of pumped-hydro storage plants with

continuous time-varying power prices. European Journal of Operational Research,

252(1):308–321, 2016.

[25] P. Whittle. Optimization Under Constraints: Theory and Applications of Nonlinear

Programming. Wiley, 1971.

[26] O. Q. Wu, D. D. Wang, and Z. Qin. Seasonal energy storage operations with lim-

ited flexibility: the price-adjusted rolling intrinsic policy. Manufacturing & Service

Operations Management, 14(3):455–471, 2012.

[27] Y. Zhou, A. Scheller-Wolf, N. Secomandi, and S. Smith. Electricity trading and

negative prices: storage vs. disposal. Management Science, 62(3):880–898, 2016.

14

https://ec.europa.eu/energy/sites/ener/files/documents/20130902_energy_integration_benefits.pdf


Appendix

Proof of Theorem 1

We introduce vector Lagrange multipliers α = (α1, . . . αT−1) and β = (β1, . . . , βT−1),

associated respectively with the capacity constraints St ≥ 0 and St ≤ E for 1 ≤ t ≤ T −1,

and a further multiplier µT associated with the constraint ST = S∗T . For any vector

S = (S0, . . . , ST ) and for any α, β, µT as above, define the Lagrangian

L(S, α, β, µT ) =
T∑
t=1

Ct(xt(S))−
T−1∑
t=1

[(αt + βt)St − βtE]− µT (ST − S∗T ). (17)

Suppose now that there exist some vectors S∗, α∗ and β∗ and some µ∗T such that

(i’) S∗ is feasible for the problem P,

(ii’) S∗ minimises L(S, α∗, β∗, µ∗T ) within the set of all S satisfying both S0 = S∗0 and

the rate constraints (4),

(iii’) S∗, α∗ and β∗ satisfy the complementary slackness conditions, for 1 ≤ t ≤ T − 1,

α∗t ≥ 0, α∗t = 0 when S∗t > 0,

β∗t ≤ 0, β∗t = 0 when S∗t < E.

Then, for any S satisfying all the constraints (3) and (4),

T∑
t=1

Ct(xt(S
∗)) = L(S∗, α∗, β∗, µ∗T ) ≤ L(S, α∗, β∗, µ∗T ) ≤

T∑
t=1

Ct(xt(S)),

where the equality and the second inequality above follow from the above definition of

the Lagrangian L(S, α, β, µT ) and the conditions (i’), (iii’), and where the first inequality

follows from the condition (ii’). It thus follows that the vector S∗ solves the problem P.

Now given a pair (S∗, µ∗) satisfying the conditions (i)–(iii) of the theorem, it follows from

the condition (iii) that there exist (unique) vectors α∗, β∗ satisfying the condition (iii’)

and such that

µ∗t = ρT−tµ∗T +
T−1∑
u=t

ρu−t(α∗u + β∗u), 1 ≤ t ≤ T − 1. (18)

Further, from (1), St = ρtS0 +
∑t

u=1 ρ
t−uxu(S) for t = 1, . . . , T and for any S. It now

follows from (17) that for any vector S satisfying both S0 = S∗0 and the rate constraints (4),

L(S, α∗, β∗, µ∗T ) =
T∑
t=1

Ct(xt(S))−
T−1∑
t=1

[(α∗t + β∗t )St − βtE]− µ∗T (ST − S∗T )

=
T∑
t=1

Ct(xt(S))−
T−1∑
t=1

(α∗t + β∗t )
t∑

u=1

ρt−uxu(S)− µ∗T
T∑
u=1

ρT−uxu(S) + k

=
T∑
t=1

[Ct(xt(S))− µ∗txt(S)] + k,

where k consists of terms which are constant over vectors S as above, and where the

final inequality in the above display follows from (18) on interchanging the roles of the

subscripts t and u. Thus the condition (ii) of the theorem implies the condition (ii’)

above. Hence, finally, S∗, α∗, β∗ and µ∗T satisfy the conditions (i’)–(iii’) above, and so the

vector S∗ solves the problem P.
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Proof of Theorem 2

Recall that the scalar µ̂ defined in Section 4 is such that µ∗t = ρ1−tµ̂ and S∗t = St(µ̂)

for 1 ≤ t ≤ τ , where the functions St(·) are as given by (6) and where τ (the asserted

first decision horizon) is also as defined in Section 4. It follows from the definitions of τ

and µ̂ that µl,t ≤ µ̂ ≤ µu,t for 1 ≤ t ≤ τ ; this follows since, when τ is defined via the

condition (a) of Section 4, then µ̂ = µl,τ = µ̄l,τ < µ̄u,τ and so the claimed result follows

from the definitions of µ̄l,τ and µ̄u,τ ; the argument when τ is defined via the condition (b) or

the condition (c) is similar. It now follows from (8) that at ≤ S∗t ≤ bt for 1 ≤ t ≤ τ , and so

the constructed path (S∗1 , . . . , S
∗
τ ) (which by construction satisfies the rate constraints) is

feasible for the problem P to the time τ . Hence, since the algorithm of Section 4 is restarted

at the time τ and at subsequent similar times, it follows that the entire constructed path

(S∗1 , . . . , S
∗
T ) is feasible for the problem P, and so the condition (i) of Theorem 1 is satisfied.

Further, from the definitions in Section 4 of the functions x̂t(·) and St(·), and from those of

µ∗t and S∗t , the constructed pair (S∗, µ∗) satisfies the condition (ii) of Theorem 1. Similarly,

by construction the pair (S∗, µ∗) satisfies the complementary slackness conditions (iii) of

Theorem 1, except perhaps at those times at which the algorithm of Section 4 is restarted.

In order to verify the condition (iii) at these remaining times, we make use of the following

observation. Suppose that for some µ and for some t̄ ≤ T ,

at < St(µ) < bt, 1 ≤ t < t̄, St̄(µ) ≥ bt̄. (19)

Then necessarily µ̂ ≤ µ, where µ̂ is as defined by the algorithm of Section 4 (i.e. is such

that µ∗t = ρ1−tµ̂ and S∗t = St(µ̂) for 1 ≤ t ≤ τ). To show this result we make use also of

the fact that, from (8), the conditions (19) are equivalent to

µ̄l,t̄−1 < µ < µ̄u,t̄−1, µ ≥ µu,t̄. (20)

The first of these relations implies that τ̄ ≥ t̄. If τ̄ > t̄, then, regardless of which of the

conditions (a)–(c) of Section 4 defines µ̂, we have µ̂ ≤ µ̄u,t̄ ≤ µu,t̄, so that the claimed

result is here immediate on using the second relation in (20). Suppose therefore that (19)

(or equivalently (20)) holds and that τ̄ = t̄. We consider separately each of the three

conditions (a)–(c) of Section 4. Under the condition (a) we have µ̂ = µ̄l,t̄−1, so that,

from (20), µ̂ ≤ µ as required. The condition (b) of Section 4 cannot hold here. To see this

assume the contrary; the assumption τ̄ = t̄ implies that τ < t̄; hence, from (20), µ < µu,τ

and, from (19), Sτ (µ) < bτ = Sτ (µu,τ ); it now follows from (7) that

St̄(µ) < St̄(µ
u,τ ) ≤ St̄(µl,t̄) = at̄ ≤ bt̄,

where the second inequality above follows by the monotonicity of St̄(·) and since, for

τ̄ = t̄, the condition (b) implies µl,t̄ ≥ µ̄u,t̄−1 = µu,τ ; however, the relation St̄(µ) < bt̄
contradicts (19). Finally, under the condition (c) of Section 4, we necessarily have τ̄ = T

and so, for τ̄ = t̄, the conditions (19) imply that ST (µ) ≥ S∗T ; since here µ̂ is such

that ST (µ̂) = S∗T , it follows from the monotonicity of ST (·) that (or, in the event of

nonuniqueness of µ̂, we may take) µ̂ ≤ µ as required.

Now suppose, without loss of generality, that the time τ (the asserted first decision hori-

zon) and parameter µ̂ identified by the algorithm of Section 4 are determined via the

condition (a) of that section. Since in this case we have S∗τ = Sτ (µl,τ ) = aτ = 0, in order

to complete the proof it is necessary to show that ρµ∗τ+1 ≤ µ∗τ . It follows from (13) that

at < St(µ̂) < bt, τ < t < τ̄ , Sτ̄ (µ̂) ≥ bτ̄ ,
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and so, from the observation of the preceding paragraph, that µ̂′ ≤ ρ−τ µ̂ where µ̂′ plays

the role of µ̂ in the algorithm restarted at the time τ (the factor ρ−τ arising on account of

role of ρ in the path definition (11)). Since µ∗τ = ρ1−τ µ̂ and µ∗τ+1 = µ̂′, the required result

now follows.

Relaxation of the strict convexity assumption for the algorithm

We discuss the modifications required to the algorithm of Section 4 when the convex cost

functions Ct fail to be strictly convex. In practice non-strict convexity might be dealt with

by some extremely small perturbation of these functions; however, a more formal approach

may also be easily implemented. The problem here is that the functions x̂t introduced in

the description of the algorithm are no longer uniquely defined. Rather, for each time t

and for each value of µ, x̂t(µ) may take any value in the closed interval [xlt(µ), xut (µ)], say,

defining the set of minima x in X of the function Ct(x)−µx (where we may of course have

xlt(µ) = xut (µ)). However, uniqueness may be restored by appending to the variable µ a

second variable κ taking values in [0, 1] and, for each t, replacing x̂t(µ) by the well-defined

function x̂t(µ, κ) = κxlt(µ) + (1 − κ)xut (µ). If we now define a linear ordering on the set

of possible values of (µ, κ) by (µ1, κ1) ≤ (µ2, κ2) if and only if either µ1 < µ2 or µ1 = µ2,

κ1 ≤ κ2, then (µ, κ) and x̂t(µ, κ) play the roles of µ and x̂t(µ) in the earlier theory. In

particular, under the above linear ordering the function x̂t(µ, κ) is increasing as required,

so that it is easily checked that the earlier theory goes through as before—removing in

particular what would otherwise be some ambiguity in the definitions of the times τ̄ and τ .
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