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SUMMARY 

 

 

We reformulate the original model of Hatchell and Bourne (2005) and Røste, Stovas and 

Landrø (2005) that couples fractional velocity change to subsurface strain via a fundamental 

constant R. The new model combines elastic compressibility of a dual porosity system for a 

sand-shale mixture with horizontal planes of inter-granular weakness. The majority of observed 

R-factor magnitudes from post-stack 4D seismic data in both the reservoir and overburden can 

thus be explained. R is predicted to depend strongly on lithology and also initial strain state. 

The model is also extended to predict the observed angle-dependence of time-lapse time-shifts 

from pre-stack data. An expression for the gradient of time-shift with incidence angle is 

obtained in terms of the background VP/VS, and also the ratio of tangential to normal 

compliance BT/BN representing loss or creation of inter-granular coupling. If accurately 

estimated from data, this compliance ratio can be used as an additional parameter to assess the 

post-production state of the overburden. It is concluded that whilst R remains the over-arching 

parameter controlling the magnitude of time-shifts measured from 4D seismic data, BT/BN is a 

subtler parameter that may also prove of future value. 
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INTRODUCTION 

 

Production and recovery of oil volumes from hydrocarbon reservoirs naturally generate strain 

in both the reservoir and surrounding rocks, and these may also manifest as a visible surface 

subsidence. Thus, for example, hydrocarbon depletion with inadequate pressure support will 

lead to reservoir compaction (loading of the reservoir rocks) and a corresponding extension of 

the overburden and underburden (unloading of the surrounding rocks). These geomechanical 

responses can, under unfavourable circumstances, result in effects detrimental to production 

such as sanding, well failures, and excessive elevation changes in surface facilities (Doornhof 

et al. 2006). The geomechanical model forms an essential tool for understanding and mitigating 

the risks posed by these deformations. Necessary input to the calibration process for this model 

are data from sensitive tiltmeters measuring surface movement (Davis et al. 2000), satellite 

imaging via interferometric SAR images on land (Raikes et al. 2008), radioactive bullets or 

gamma ray correlation downhole (Barkved et al. 2003), seafloor or water pressure sensors 

(Dunn et al. 2016), or by time-lapse (4D) seismic surveys. It is the latter surveys that are the 

subject of this current study, and in particular the interpretation of the time-lapse time-shifts 

caused by velocity changes induced by the strain.  

 

Time-shifts form a primary source of indirect spatial information on the geomechanical effects, 

and hence are of importance when helping to quantitatively constrain the sub-surface model. 

They are measured between time-lapsed seismic datasets that have been migrated using a 

common (baseline) velocity model (see Figure 1). It has been clearly demonstrated in many 

previous studies that shifts can be accurately estimated between surveys shot several years 

apart such as marine towed streamer surveys, or even several months apart using permanent 

reservoir monitoring. Time-shifts in the overburden due to geomechanical effects were first 
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observed by Hall et al. (2002) for the Valhall field and Hatchell et al. (2003) for a depleting 

gas field in the North Sea. The approach has now gained widespread popularity, and 

measurements of time-shifts in 4D seismic data associated with moderate to strong 

geomechanical effects in the overburden, reservoir, and also the underburden, appear now to 

be universally observed for many types of producing reservoir. From the results of the 

multitude of field data studies now available, it is possible to draw a common and 

comprehensive list of key conclusions that may help identify the nature of the phenomenon 

that connects physical strain to the seismic velocity changes inducing the time-shifts observed 

in the data. 

 

Key conclusions from vertical time-shifts observed in 4D seismic data 

Figure 2 shows a range of published vertical time-shift measurements for overburden and 

reservoir rocks, in clastic, chalk, and hard-rock carbonate (limestone) fields. The collection is 

representative but not wholly exhaustive of the available published data. Table 1 provides more 

details of the individual reservoir depths and thicknesses, and the time periods over which these 

measurements are made. The majority of time-shifts shown have been measured on stacked 

migrated data predominantly using the methods of cross-correlation (Hodgson 2009) or non-

linear inversion (Rickett et al. 2007), and these are typically applied on a trace-by-trace basis. 

The values reported are the maximum observed over the interval being considered, whether 

this is the overburden or reservoir. Seismic acquisition is mainly from offshore towed streamer 

systems, although some specific examples with short repeat period from permanent reservoir 

monitoring or node-based systems have been published (such as Valhall and Ekofisk offshore, 

and Peace River onshore). Although most of the reservoirs in these case studies are normally 

pressured, there are several high-pressure high-temperature examples (Elgin, Franklin, 

Shearwater). 
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There are four regions of interest in Figure 2 – these correspond to the time-shifts measured 

during compaction or extension of either the reservoir or overburden. The reservoir signals are 

less certain because the strain-related signals (relative change in vertical velocity V/V and 

physical strain) combine with saturation change signals - these are difficult to separate, 

particularly for the case of gas saturation. The most noticeable feature of the time-shift 

estimates is the prominence of slowdown (velocity decrease) due to extension in the 

overburden as a consequence of reservoir depletion and also due to reservoir inflation 

(pressuring up by fluid injection). For these effects, the values tend to be large, ranging from 

2ms in deep (> 3km) reservoirs over short production/injection time periods of several months 

- see, for example, Curlew-D (Fehmers et al. 2007) and Skua (Staples et al. 2007), to more 

dramatic effects (> 20ms) for compacting chalks such as in the Valhall field (Barkved et al. 

2003) or Ekofisk field (Janssen, Smith and Byerley 2007) over a period of several years. 

Indeed, some of the largest reported signals of overburden extension are for the high porosity 

compacting chalk reservoirs of the North Sea, although many unconsolidated clastics such as 

in the Genesis field, Gulf of Mexico also exhibit well-developed overburden time-shifts 

(Hodgson et al. 2007). 

 

In contrast, time-shift signals associated with compaction in the overburden or reservoir are 

less frequently observed. In principle, a compaction response in the overburden is anticipated 

to be present above active injectors or within the pattern of deformation created by the 

phenomenon of stress-arching (Røste, Dybvik and Søreide 2015). Reservoir-related speedups 

are expected to be less easily observed as these changes make targets appear thinner in time 

and their signal is more difficult to measure. Time-shift values for speedup tend to be small, 

lying in the range 0.3 to 3ms. This is true even in thick and well-developed intervals of 
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depletion found in gas reservoirs in regions such as the Southern Gas Basin (MacBeth, 

Stammeijer and Omerod 2006; Brain et al. 2017). However, in these fields the time-shifts are 

noisier due to imaging difficulties and residual multiple energy from the overlying Zechstein 

carbonate sequence. Further details on published time-shifts and a description of their origin 

can be found in the review of MacBeth, Mangriotis and Amini (2018). 

 

In addition to the above observations, a number of general conclusions can be drawn from the 

extensive published literature available on observed data studied internally by the authors of 

this paper. These relate to the nature of the phenomenon generating the subsurface time-shifts 

induced by geomechanical effects, and hence lay the foundation for building a model to 

understand the behaviour. These statements are ranked below according to prominence: 

 

I. Slowdown due to extension is more generally observed in the overburden and 

reservoir than speedup due to compaction. In the time-shifts measured from 4D 

seismic data there appears to be an over-abundance of slowdowns and less frequent 

occurrence of speedups. Geomechanical simulations do not predict this observational 

asymmetry.  

 

II. Speedup is rarely observed at stress arches or above injectors - the observation of 

stress arches also ties into the previous statement. Stress arching should be most 

noticeable for regions of the reservoir where the area of depletion is spatially 

confined. Compaction is predicted to exist at the sides of the stress arch, and thus 

sideburden speedups should be also seen. Observations show that this compaction 

effect is hard to detect in the seismic data, but extension is always more readily visible 

(Røste et al. 2015; Rodriguez-Herrera et al. 2015). In addition, speedup is predicted to 
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occur above water or gas injectors that inflate pressure in the reservoir – this is rarely 

observed. 

 

III. Seismic velocity changes induced by geomechanical effects relate to whole volumes of 

rock and spread across many varied lithologies – ‘time-strains’ appear pervasive and 

distributed across large volumes of rock in the subsurface, and are therefore not 

confined to discrete interfaces or subsurface features. Indeed, the strain signals are 

long wavelength observations and appear to mimic the character of the modelled 

strain due to production. 

 

IV. Observations display hysteresis – time-shifts are associated with pressurised 

compartments that may or may not diminish during pressure relaxation (Floricich 

2006). Evidence for hysteresis also comes from the laboratory (Holt and Stenebråten 

2013). However, Røste and Ke (2017) show a complete return with pressure. Surface 

wave data show speedups in compressional zones only where previous extension took 

place. 

 

V. Time-shift variations with offset appear difficult to rationalise - consideration has 

been given to the possibility of offset/angle dependent time-shifts (Landrø and 

Stammeijer 2004) as an additional source of information. Several datasets have shown 

that time-shifts may, or may not, vary with offset or azimuth (for example, Hawkins 

2008, Røste, Landrø and Hatchell 2007; Kudarova et al. 2016). Currently, there is no 

consensus on the expected trend or value of measured pre-stack time-shifts. 

 

VI. Strong shear-wave birefringence and surface wave anisotropy - observations for shear 

waves are limited, however, strong shear-wave birefringence is observed in the 
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shallowest layers at flanks of field where extension is known to take place (Barkved et 

al. 2003; Olofsson et al. 2003). Such changes are an order of magnitude larger than in 

the P-wave data. Scholte waves (dispersive interface waves travelling along the 

liquid-solid boundary) are also shown to be sensitive to production-induced strains 

and exhibit an anisotropic behaviour (Hatchell, Willis and Didraga 2009; Kazinnik et 

al. 2014). These waves sample the seabed sediment to depths of 100 to 200m.  

 

VII. Microseismic events occur in response to extension and compression – there are many 

published examples of microseismic events occurring when the subsurface is 

extended or compacted in response to production. These small magnitude events may 

be distributed along faults or lines of weakness, but also distributed throughout the 

volume of rock (van Gestel et al. 2008). 

 

The above statements point towards the mechanisms governing the behaviour of the 

subsurface rock volume changes, under the action of strain. They suggest that the velocity 

changes due to strain are pervasive, asymmetric with respect to the polarity of the mechanical 

response – i.e., larger slowdown response than speedup for the same strain magnitude, and 

may not vary significantly with azimuth or offset. The microseismic observations also 

indicate an inelastic response to the mechanical deformation even for quite small strains. In 

this study, we will attempt to honour the statements listed above by constructing a micro-

structural model that connects the production-induced strain to the seismic velocity changes, 

and hence, to the magnitude and angle dependence of this time-shift phenomenon. 
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Seismic data analysis and the empirical R-factor 

The time-shifts observed in 4D seismic data are defined as the difference in two-way time, T, 

between a common ‘event’ or trace feature identified on both the baseline and monitor surveys. 

For post-stack seismic data, the vertical time-shift written in terms of two-way time, t, is given 

by  

 

 






 


T

zz dt
V

V
T

0

 ,                               (1) 

 

where V is the change in vertical velocity, V, and T is the time to the event of interest on the 

baseline seismic data. Thus, the fractional change in two-way time, T, is expressed by the 

competing effects of elongation/shortening of the propagation path and the fractional velocity 

changes that slow down/speed up the waves. Key to using this relation is a physical model that 

links the velocity change to the vertical strain, zz. For this, the empirical equation proposed 

simultaneously by both Hatchell and Bourne (2005) and Røste, Stovas and Landrø (2005) is 

widely used 

 

.ZZR
V

V


                                      (2) 

 

Values of R are positive, such that positive (extensional) strains give rise to a velocity decrease. 

The benefits of the Hatchell-Bourne-Røste (HBR) model are that it is intuitive, and immediately 

unites the geomechanical and seismic domains. Thus, the relation may be used when modelling 

time-shifts from the strains output by geomechanical simulation or for transforming time-shifts 

measured from the seismic data to vertical strains, zz, to provide the required constraints for 

geomechanical modelling. Hatchell and Bourne (2005) reported that equation (2) matched the 
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observed time-shifts for four field datasets (a North Sea chalk, a North Sea HPHT field, and 

two further clastic fields), when comparing time-shifts modelled from the geomechanical 

simulator with measured time-shifts evaluated using cross-correlation. A constant magnitude 

for the R-factor of approximately 5 for the whole overburden was found to replicate the results 

adequately, suggesting a weak variability of R with lithology and geological setting.  

 

Since the early studies of a decade ago, many additional R-values have been calculated for a 

range of fields by various authors. Many published R-values for the HBR model are now 

available for a range of fields, both for the compacting reservoir 

resR and the overburden in 

extension 

obR  (where the superscript ‘-‘ refers to compression, and ‘+’ to extension). Table 1 

provides a list of overburden and reservoir R-factors obtained from field studies published in 

open literature prior to and including 2017. Note that these values are averages for the 

overburden and reservoir, and do not split the observations into individual zones. There are 

several categories of estimate, based on the robustness of the estimation procedure. Those 

values for which we have the largest confidence are calculated from well-determined 

subsurface strain data and highly repeatable time-lapse seismic data. Strain is well determined 

if the simulation predictions are calibrated via core data, seafloor subsidence records, 

gravimetric data, direct measurement underneath the platform, or radioactive bullets. Onshore, 

satellite imaging of the subsidence can also be employed together with tiltmeters. Three such 

well-calibrated examples exist for Valhall, Ekofisk and Mars (Hatchell, Kawar and Savitski 

2005; Janssen et al. 2007; Hatchell and Bourne 2005), and indicate 

obR  values that lie between 

4 and 9, and 

resR values of less than 2. Estimates extracted from data using unconstrained 

geomechanical modelling or techniques such as the Geertsma modelling (Geertsma 1973) of 

Wong and MacBeth (2016) must be regarded with less confidence. Nevertheless, these 

estimates show a similar range of relative magnitudes. In general, published data indicate 

obR
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values lying between 4 and 35, whilst 

resR values are typically a factor of 3 lower. Most 

measurements occupy a narrow range despite the varied field settings and lithologies sampled. 

Occasional outliers are recorded with 

obR values as high as 100, in addition to an unexplained 



obR  of -1 in a Malaysian field (Shell, private communication).  For this latter case, explanations 

of a fluid origin or physical displacement were sought but discounted. Finally, it is noted that 



obR and 

resR are rarely reported from field data studies – indeed it is assumed naively that 

obR

= 

resR and 

obR = 

resR . 

 

The time-shift observations in Figure 2 can be related directly back to the HBR model as a 

practical cross-check. This requires knowledge of the magnitude of subsurface strain induced 

by reservoir production and recovery. Geomechanical simulation provides one route to this 

understanding, and the published literature provides many direct measurements of strain. For 

example, the during many years of production, the Ekofisk field compacted by 30cm per year 

to give 6m of subsidence over a 2500m thick overburden; the Valhall field exhibited a 

compaction rate of 20cm a year to give a subsidence of 5.6m over a 2400m thick overburden; 

the Groningen gas field displayed 25 cm subsidence at 3km depth; and in Matagorda Island, 

Gulf of Mexico, poorly consolidated sands exhibited a subsidence bowl of about 30cm (1ft) at 

depths of about 3048m (10,000ft) (Doornhof et al. 2006). Such observations conform to 

approximate overburden strains of between 10-3 and 10-4, with those in the reservoir roughly 

an order of magnitude higher. Thus an R-factor of 2 for compaction could lead to a maximum 

time-shift developed over a 100ms interval (such as a thick reservoir) of 2ms, whilst an R-

factor of 5 for extension gives a time-shift of 10ms developed over a 2000ms overburden 

(corresponding to velocity changes of 2% and 0.5%, respectively). In contrast, extension in the 

reservoir and compaction in the overburden, give time-shifts of 5ms and 4ms. These ballpark 
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levels are marked on Figure 2, and are seen to mostly agree with the observations, despite the 

variability of field setting and measurement intervals. 

 

In the laboratory, there have been numerous historical experiments on extracted core samples 

detailing rock stress sensitivity stretching back to Nur and Simmons (1969). However, there 

are only a limited number of studies that report the explicit behaviour with strain (see the 

value range drawn in Table 2). In this latter group of publications, some clear dependent 

variables emerge and some overall qualitative trends can be obtained. It is concluded that R 

strongly depends on the initial stress state and stress path (hydrostatic loading producing 

larger values than uniaxial loading). R decreases with increasing stress, varies with lithology 

and decreases with water saturation (by a factor of about 2). Tests on unconsolidated samples 

indicate that near the onset of plasticity (grain-grain crushing and sliding), R-values decrease 

to zero or are negative. In general, laboratory values tend to be much larger than field 

observations, if core samples contain internal microfractures and cracks. The condition 

  RR  is also tested and confirmed in several laboratory studies as being independent of 

lithology. Holt, Nes and Fjaer (2005), Holt et al. (2008), and Holt and Stenebraten (2013)  

describe a comprehensive set of experiments that measure R-factors for uniaxial and 

hydrostatic loading of artificial materials (for example, uncemented beads), synthetic 

sandstone and claystone, unconsolidated sands, and field core samples of sandstone and 

shale. Their values generally agree with field values, although some tend to be higher. The 

exception to this is a synthetic sandstone, for which R is measured under unloading as 75, 

whilst loading gives 15, but unloading after loading is 55. Similarly, Janssen et al. (2007) 

observed values of 10 to 30 for Ekofisk chalk in the laboratory (as opposed to 2 to 6 in the 4D 

seismic data). Bathija, Batzle and Prasad (2009) measured three sandstones and one shale 
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sample under hydrostatic and uniaxial loading, and found R-factors of between 6 and 91 for 

the sandstones and 6 to 11 for the shales. Also this publication provides R-values calculated 

from the data of Sarkar, Bakulin and Kranz (2003), Vega (2003), and Wang (2002) – all 

values are much higher than those reported elsewhere.   

Whilst the empirical HBR model appears robust and capable of predicting the majority of our 

observations to date, there are a number of questions that have not been addressed in the 

literature:  

(a) An underlying physical model to explain the origin of the R-factor and its possible 

relation to lithology is unclear – such a description is important to enhance the 

predictive capability of the model; 

(b)  Accurate relative values for the four possible factors 

obR , 

resR , 

obR , and 

resR still 

requires investigation; 

(c) The general applicability of the HBR model beyond vertical wave propagation is still 

under dispute (see, for example, Kudarova et al. 2016); 

(d) In the HBR model only the vertical strain is used and not the full strain tensor – this 

may inherently limit the usefulness of the observed time-lapse data; 

(e) The velocity changes are currently assumed to be isotropic, despite mathematical 

predictions, geomechanical and laboratory studies, and intuition suggesting otherwise. 

 

The purpose of this current study is to address the above criticisms (a) to (e), and to extend the 

HBR model to fit the context provided by observations (I) to (VII) outlined in the previous 

section. In the following sections a pragmatic model is developed which attempts to address 

these observations and as a starting point based on the original conceptual understanding of 

Hatchell and Bourne (2005). The next section will describe the development of a model for 
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velocity change based on two elements: firstly, the compressibility of the rock pore volume 

which we consider to be a sand-shale system with dual-porosity; and secondly, multiple planes 

of granular weakness created by the geomechanical deformations. It will then be seen how this 

model can be used to explain offset or angular dependent velocity change and hence time-shift 

variation.   
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SEISMIC VELOCITY CHANGE  

INDUCED BY ROCK DEFORMATION 

 

In this current study we seek to reconcile the observations (I) to (VII) listed in the previous 

section and resolve the issues in (a) to (e) above, using a model that aligns closely with the 

empirically-driven HBR model. We generalise to offset/angle dependence to provide an 

understanding of the physics behind the R-factor for the benefit of reservoir interpretation. 

Before doing this, we firstly review current literature on the topic of velocity change induced 

by subsurface strain, for which some development and explanations have already been 

provided.  

 

There are several schools of thought regarding the appropriate physics to describe the velocity-

strain dependence. One of the most popularized originates from acoustoelastic theory 

(Murnaghan 1937; Landau and Lifshitz 1986), where third order coefficients are introduced to 

describe a nonlinear relation between stress and strain (the coefficients in the expansion of the 

strain energy function up to the third order in strain). Prioul, Bakulin and Bakulin (2004) used 

this theory to capture the behaviour of the full anisotropic elastic tensor in response to applied 

anisotropic stresses/strains. The principal motivation behind this approach was to better 

understand the effect of anisotropic stresses on the shear-wave or angle-dependent P-wave 

propagation. Here it is recognised that uniaxial deformation creates transverse isotropy with a 

vertical symmetry axis, for which three independent nonlinearity parameters are required in 

addition to the five linear elasticity VTI parameters to define the wave properties. Prioul et al. 

(2004) invert for these three coefficients from laboratory datasets: a Jurassic North Sea shale 

undergoing hydrostatic loading and Colton sandstone under biaxial loading with equal 
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horizontal stresses. The proposed theory is believed to be sufficiently general to act as a macro-

model description for a wide range micro-structural mechanisms of deformation such as grain 

stiffening and fracture closure. However, in its original form, it is too general for practical use 

in 4D seismic interpretation. As a step towards simplification, Herwanger (2008) presented an 

equation from the third order elasticity approach that connects the change in vertical strain zz 

and horizontal strain xx and yy, to the vertical velocity, V, via two independent 3rd order 

coefficients, 111c  and 112c , 

 

,
)(

2

1

33

112111

C

cc

V

V yyxxzz  



                 (3) 

 

where C33 is the vertical component of the pre-production elastic stiffness tensor such that 

/33CV  , where  is the density. Using numerical modelling, Herwanger (2008) 

concludes that the observation   resob RR  can be explained by this equation. For zero overall 

volumetric changes such that xx+yy+zz = 0 (expected to be approximately the case for the 

overburden, provided there are no mechanical contrasts, structural dip and there is linear 

elasticity), ]/)[(21 33112111 CccR  . For a uniaxial condition, in which lateral strain is zero 

(believed to be similar to the reservoir state), ]/[21 33111 CcR  . Substituting the coefficients 

from the laboratory study of Prioul et al. (2004), yields 51

obR  and 38

resR . Rodriguez-

Herrera et al. (2015) continues this theme by proposing a strain sensitivity model with two 

polarity-insensitive R-factor parameters, R1 and R2 (similar to those suggested by Fuck, Bakulin 

and Tsvankin 2007). This is believed to extend the HBR model to a generalised principal strain 

tensor:  
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),(21 zzvolzz RR
V

V
 


                      (4) 

 

where vol is the volumetric strain, and )/(21 331111 CcR  and )./(21 331122 CcR  These 

factors relate respectively to components parallel and perpendicular to the wave propagation 

direction. Using the Prioul et al. (2004) data, R1=51 and R2=45. These proposed models 

collapse to the HBR model under conditions of zero volumetric strain, hydrostatic loading, and 

uniaxial loading. Finally, Rodriguez-Herrera et al. (2015) perform numerical calculation of the 

time-shifts for a field case study involving stress arching and employing the full tensor strain 

output from a geomechanical simulation with a favourable comparison to field data. However, 

to make practical use of equation (4), the laboratory-derived coefficients R1 and R2 must be 

fully calibrated to the field study observations.  

 

Although the R-factor is linked directly to the third-order coefficients in some work, it is 

important to understand that the third-order coefficients are the intrinsic elastic properties of a 

material, while the R-factor, as introduced by Hatchell and Bourne (2005), is stress-dependent. 

It has been noted by Holt et al. (2005) that the R-factor depends not only on rock properties, 

but also on local stress geometry and it can vary laterally in the field even if the rock properties 

are uniform. Obtaining an R-factor from laboratory tests is therefore difficult and a direct 

relation between the R-factor and the third-order coefficients is not appropriate. This may be 

the reason for discrepancies in the R-factor values estimated with the use of third-order 

coefficients, and the strong offset dependence predicted by the models which employ these 

coefficients (for example, Fuck, Bakulin and Tsvankin 2009). 
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A separate school of thought from the above considers instead of the full anisotropic tensor a 

specific micro-structural model for the subsurface rocks. Sayers (2006) employs such a model 

to explain the observation 

obR > 

resR from reservoir depletion. His underlying model assumes 

stress-sensitive grain-grain contacts that vary their contact weakness exponentially according 

to the applied normal stress at their boundaries. This inter-granular compliance function is 

sufficient to explain the observed extension-compaction asymmetry in addition to the non-

linear variation of velocity with stress. He also notes that the impact of stress path will 

exaggerate the asymmetry. Two further micro-model estimates for R have been considered by 

Carcione et al. (2007), who developed an expression based on the ‘bed of nails’ asperity 

distribution which gave an R of between 3 and 5 both for hydrostatic and uniaxial deformation. 

He also considered the popular Hertz-Mindlin contact theory for a spherical grain pack, which 

gave similar values of between 2 and 5. 

 

The above models satisfy points (d) and (e) above (although clearly in the formal sense this 

does not mean they describe the physics and the anisotropy in the right manner). They also 

address the observations I, II and III. However some points still remain - these require an 

understanding of how sedimentary rocks deform under the stresses created by production and 

recovery. An overarching model that satisfies the remaining requirements, and combines the 

benefits of both 3rd order theory and the compliance model, can be found by re-considering the 

original conceptual model of Hatchell and Bourne (2005). The underlying basis for this will 

now be discussed below. 
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Micromechanical deformation of rocks 

Key to our understanding of rock deformation is the behaviour of sedimentary rocks under 

applied stress. Subsurface sedimentary rocks contain a fabric of grains of varied mineralogy, 

bonded by differing proportions of carbonate cements, clays or pressure solution, depending 

on diagenetic history (Pettijohn, Potter and Siever 1987). At the depths relevant to most 

hydrocarbon production activities, the grains are relatively incompressible and strongly 

resistant to applied stress, whilst the cements and clays are variable in weakness. As a rock is 

compressed, it initially responds elastically to small strains by stiffening contacts and 

decreasing pore volume. However, as strains increase, the rock fails at grain-grain contacts, 

and at progressively higher loads due to sliding, rotation and breakage of grains. Jones et al. 

(1992) suggest that the elastic limit for compaction may be as small as a few millistrains, 

particularly for unconsolidated or over-pressured sandstones – which is similar to those strains 

encountered in the inter-well space during production. The observation of microseismic 

activity (item VII above) also suggests small-scale internal damage occurs.  

 

For reservoir compaction, a general velocity change is given by: 

 

      , cwcspvres VVVV                      (5)      

 

where Vpv is the increase ( ) due to the pore volume reduction, Vcs the increase due to 

contact stiffening, and Vcw a decrease ( ) from contact or pore space damage. The balance of 

these contributions depends on the rate of depletion, the lithology, degree of overpressure and 

initial stress state. For extensional strains in the overburden, pore volume increases may be 

small except in regions where net volumetric strain is significant. Irreversible failure of inter-

granular cement bonds is expected to be the dominant mechanism as rocks are known to be an 
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order of magnitude weaker in extension than compression (Holt et al. 2005). This mechanism 

may dominate despite the subsurface being in an initial static state of compression. In the case 

of extension, the velocity change is therefore given by:   

 

    , cwpvob VVV                      (6) 

 

where Vpv refers to the decrease due to pore volume inflation, andVcw that due to contact 

detachment. Here, the velocity changes act together to enhance the response and an overall 

reduction in velocity is guaranteed. Inelastic mechanisms for the response to both compaction 

and extension may also explain some of the evident hysteresis in observation IV above – this 

has also been observed in the laboratory (Holt and Stenebråten 2013). Clearly, the mechanisms 

for extension and compaction will be observed particularly strongly in shear wave data – as 

indicated in observation VI.  

 

To quantify the velocity change for the individual mechanisms, we initially follow the 

conceptual model of Hatchell and Bourne (2005) and determine the relationship to the strain 

change. The focus on strain (rather than stress) is preferred because in practice it removes the 

need to involve compressibilities and stress-strain relations in the link to the seismic 

observations. It is also easier to relate to the geomechanical consequences of the reservoir 

production, and also more intuitive. According to Hatchell and Bourne (2005) and the above 

description there are two main components of velocity change to consider: the contributions 

from: (i) pore volume changes and; (ii) inter-granular bonds (breakage or creation). These are 

discussed separately in the sections below.  
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Velocity changes due to the pore volume compressibility or expansion 

Consider first the control on seismic velocity from mechanically induced changes of pore 

volume alone (due to change of external stresses or pore pressure). We assume that the pore 

space exhibits no preferential alignment as a consequence of the strain, such that the rock 

properties and their changes may be considered isotropic. Clearly, this assumption is not valid 

for rocks such as shales, for which the following will, instead, be an approximation. Also 

assumed is that the deformation is not influenced by contributions from the cements and clays 

in the rock. The fractional change in velocity 
V

V
generated predominantly by small 

volumetric strain is: 

 

1
vol

vol

V dV

V V d





 ,      (7) 

 

where vol is the bulk volumetric strain as before, with positive strain defined as rock dilation. 

Assuming the strain is fully accommodated by a change of pore volume, but no change in pore 

shape, equation (7) can be re-written in terms of porosity, 
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from which the R-factor may be derived by definition. The relationship between measured 

volumetric strain and porosity change, depends upon whethermechanicaldeformation has 
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taken place under drained or undrained conditions. The rock response is drained if fluids flow 

freely out of the pore space upon application of applied stress, and thus pore pressure is 

constant. However, for undrained conditions, fluid does not flow into or out of the pore space, 

and, hence, in this case a change in pore pressure will be induced. In the undrained case, the 

volumetric strain is smaller for any given applied stress than for the drained case. Over the time 

period of deformations caused by fluid production or injection (hours or days), loading may be 

considered slow enough to lead to a drained response for clean permeable sandstones. For 

shales with permeability of only a few millidarcies, the undrained response is more applicable. 

For the drained response, the change of porosity depends on strain, initial porosity, and the 

Biot-Willis coefficient  (Schutjens et al. 2004):

 

      ( ) ( ),
1

vol
vol

vol


  


    


                     (9a) 

 

where  = 1 – Cr/Cbc, and Cr is the grain compressibility and Cbc the bulk compressibility. Note 

the sign change in the denominator from Schutjens et al. (2004) to take care of our definition 

of sign for strain. The approximation is accurate for the small values of strain (10-3) observed 

in our field cases; that is,  up to 0.1%. When the grains can be considered incompressible 

or insignificant,  is unity –  this is the situation for unconsolidated sediments. However,  

tends towards much lower values for consolidated rocks with more rigid skeletons such as 

strongly cemented sandstones. For the undrained case, the change of porosity is linked to strain 

via a function, F, of porosity, fluid compressibility, Cf, and bulk compressibility, Cbc. For the 

general case, calculations based on Zimmerman (1991) show that 
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For the specific case of incompressible grains, then (1 ),F    and equation (9b) is identical 

to equation (9a) when  = 1. In the case of a fluid compressibility much greater than the bulk 

rock compressibility, then ( ),F    and equation (9b) is identical to (9a). An example of a 

saturated rock in the latter condition is shown by Zimmerman (1991) for which the 

compressibility of water is 4x10-4 MPa-1 whilst the low porosity Fort Union sandstone has a 

bulk rock compressibility of 0.286x10-4 MPa-1. To generalise the development to follow for 

the drained and undrained case, we choose to work with equation (9a) and  = 1, but understand 

that if these assumptions are not fulfilled, the resultant R-factor will deviate from our 

predictions. Combining equations (8) and (9a), and inspection of equation (2), yields an 

equation for the R-factor based on the sensitivity of the velocity to pore size for constant pore 

shape alone. The relevant R-factor, R, defined for the vertical velocity V can now be written:  

 

( / )
(1 ).vol zz

A

V
R

V

   
   

 
                (10) 

 

Given our observation of a negative R in Table 1, it is interesting to note that for the drained 

case, if  < , then RA does indeed become negative. It should also be noted that these 

calculations predict that 
  AA RR , provided the stress paths for compression and elongation 

are exactly replicated. For a predominantly uniaxial strain in the reservoir, the ratio, vol/zz, is 
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close to unity and the expression in Hatchell and Bourne (2005) is recovered. For the 

overburden, the net volumetric strain may be close to zero, provided there are no strong 

mechanical contrasts between the reservoir and the overburden. Hence, the R-factor from the 

compressibility mechanism is small. In practice, vol/zz , will be a function of the local stress 

geometry, and may therefore vary with position (Holt et al. 2005). 

 

The term V  in equation (8) expresses the sensitivity of the vertical velocity to small 

changes in porosity. In practice, this depends on the initial stress state, lithology, cements, 

clays, pore volume geometry and porosity. As velocity usually decreases with increasing 

porosity, the resultant R-factors in equation (10) are therefore positive. A multitude of velocity-

porosity relations exist in the literature from empirical trends derived by regression fit of 

analytic equations to laboratory or wireline log data (for example, see Mavko, Mukerji and 

Dvorkin 2009). Hatchell and Bourne (2005) calculated R-factors for a selection of such trends 

and determined that values must lie between 1 and 3. Assuming a uniaxial stress path and 

taking a selection of well-known laboratory–derived linear relations between porosity and 

velocity, Røste et al. (2015) similarly concluded that R is 1.5 for chalk, 1.6 to 2.4 for sand, and 

2.7 to 3.6 for clay. However such empirically-driven velocity-porosity trends do not properly 

capture the sensitivity of velocity to porosity changes directly induced by strain in the 

producing reservoir, as the empirical variations they capture are ostensibly lithological in 

origin. For an alternative approach we use a velocity-porosity relation derived from a model 

for which lithology can be held constant, whilst porosity can be reduced. The popular inclusion-

based model of Xu and White (1995) is chosen as it is known to accurately predict velocity in 

shaley sand formations. In this approach, the pore volume is built from two sets of oblate 

spheroidal inclusions: one set is the stiff sand-related pores, and the other the more compliant 

shale-related pores. The proportion of each set of pores is determined by the measured volume 
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of shale. To compute the porosity sensitivity of velocity we firstly calculate the dry rock bulk 

modulus, dry, and shear modulus, dry, using the Keys and Xu (2002) dry rock approximation 

for the Xu-White model: 

 

p

dry )1(0              (11) 

and  

q

dry )1(0               (12) 

 

where p and q are known functions of the sand and shale-related pore aspect ratios sa and cl 

respectively, and 0 and 0 are the grain modulus,. These functions are valid up to the critical 

porosity, which is determined according to crit = 1/p for equation (11) and crit = 1/q for 

equation (12). Next, we saturate the dry rock frame using Gassmann’s equation (Mavko et al. 

2009) to determine sat and sat, and hence derive V. This permits a calculation of the RA factor 

for pore size change alone as V is readily computed numerically. 

 

Another benefit of the dual-porosity Xu-White model is that a change of pore space shape can 

also be taken into account. Thus, instead of reducing the pores by size, the porosity can also be 

varied by changing the aspect ratio in response to stress. The change in velocity with porosity 

can now be written according to the chain rule: 
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 sa cl

sa cl

V V V 

 

    
 

    
                           (13) 

 

from which the R-factor determined for aspect-ratio change alone may be written: 

 

(1 ),sa cl
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sa cl

V V
R
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 

  
   

    
                    (14) 

 

as the fractional change in the mean aspect ratio is determined to be proportional to the 

fractional change in porosity, scaled by strain. In practice, the partial differentials are 

determined numerically for any particular pair of aspect ratios. 

 

The resultant R (pore size changes only) and R (aspect ratio changes only) factors for two 

different sand and shale-related aspect ratios are shown in Table 3(a), and as a function of 

porosity and shale content in Figures 4 and 5 respectively. The R-factors are determined (and 

defined) for a uniaxial strain path only, and therefore represent an upper limit on the possible 

values. Aspect ratios are chosen to represent the extremes of the accepted distribution from the 

literature, for which sand-related pores lie in the range 0.15 to 0.27 and shale-related pores are 

calculated to be between 0.02 to 0.04 (see, for example, Keys and Xu 2002; Simm and Bacon 

2014). Using these typical values, R-factors are larger for shaley-sand than for pure sandstone 

due to the more compliant nature of the shale-related pores. This effect is more pronounced 

when considering only aspect ratio changes. The effect of 100% brine saturation via Gassmann 

is to decrease all R-factors. This agrees in general with the observations from the laboratory as 
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discussed above. R-values of 1 to 6 are predicted when the porosity change is caused by pore 

size reduction, but much larger values of 28 to 95 (dry rock frame) and 1 to 30 (brine-saturated 

rock) are predicted for porosity changes caused by variation of aspect ratio. The Xu-White 

model is also sufficiently versatile to simulate a range of lithologies. Thus, homogeneous 

chalks are known to contain a high percentage of stiff pores, and can be modelled by inclusions 

with aspect ratios close to 0.65 (see also Table 3(a)). Using the Xu-White theory the R-factors 

are predicted to be between 1 and 3 for porosities between 0% and 25% porosity respectively. 

For carbonates containing fractures, low aspect ratio inclusions ( = 0.01) dominate to yield 

high R-factors up to 20.  

 

Comparing the values above with the field and laboratory values in Tables 1 and 2 (also Figure 

3), it is clear that the Xu-White model for sand-shales systems, calibrated using an acceptable 

range of aspect ratios, can simulate the majority of the R-factors observed in our data which lie 

in the range 1 to 30. However there still exist some anomalously large measured values (> 30) 

from field and laboratory data (see Figure 3). For example, seismic data at Ekofisk and Snorre 

(compacting chalk and clastic reservoirs) give values for the overburden of 20 (Table 1), but 

for the HPHT fields of Shearwater and Elgin-Franklin values are between 20 and 100. Our 

calculations indicate that large R-factors can be generated by low aspect ratio pores (or 

cracks/fractures). In the laboratory, high values of R are attributed to contact breakage and 

micro-fracturing within the rock samples (Holt et al. 2005). Such fractures may assume a 

distribution of preferred alignment for which the Xu-White model in the form presented above 

is not readily applicable. Thus, to explain this additional set of observations, a model for the 

damage component must also be developed. 
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Velocity changes due to contact breakage or creation 

We consider the popular excess compliance approach of Sayers (2006) to link inter-granular 

weakening to velocity change. In this theory, all grain-grain bond weakening (or strengthening) 

is represented by small planar elements of excess compliance embedded in the rock – variously 

referred to in publications over the past four decades as ‘cracks’ (a term that will be preserved 

here for convenience and succinctness of expression, but with the recognition that cracks per 

se may not actually be physically present). Firstly, consider the extension scenario described 

in equation (6) above. As the rock weakens, the population of compliances increases. 

Following Sayers and Kachanov (1995), the total elastic compliance tensor, Sijkl, of the rock 

can be written 

 

ijklijklijkl SSS  0 ,     (15) 

 

where 0

ijklS is the compliance at the initial (pre-production) state which we assume to be 

isotropic, and 
ijklS the excess compliance created by the “cracks”. The excess compliance 

term is defined formally by the normal, BN, and tangential, BT, compliances for each crack and 

their three-dimensional orientation angles. Sayers and Kachanov (1995) define an expression 

for excess compliance: 
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where the summation is over all r cracks in the volume VT. Each crack has a cross-sectional 

area, Ar, the vector n = (n1, n2, n3) points normal to the crack face, and ij is the Kronecker 

delta. To apply this theory, the orientation of the cracks must be decided. The scenarios most 

relevant to our reservoir condition can be classified into four possible end-member 

distributions: horizontal alignment, vertical alignment, isotropic orientation distribution, and 

cracks with normals distributed randomly within a horizontal plane. Grain-grain bonds may 

break in the reservoir or overburden along horizontal planes if the extensional stress is uniaxial 

and vertical. For more general extensional conditions, vertical planes of cracks with normals 

aligned along the direction of maximum horizontal stress or a more random distribution may 

prevail. For uniaxial compression, grain-grain contacts may close along horizontal planes but 

also may be damaged if the load becomes excessive and a random distribution with co-planar 

normals becomes relevant.    

 

A horizontal distribution of cracks was also considered by Hatchell and Bourne (2005) as an 

explanation for large R-factors, thus we also consider this distribution. According to Sayers 

(2006) the relevant stiffness matrix C for the post-production state with horizontal cracks 

aligned with their normal pointing along the vertical 3-axis is calculated after inversion of the 

compliance tensor: 
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where the isotropic reference state is given by the Lamé parameters,  and , and the parameter      

r = /(+2), and M is the P-wave modulus (). N and T are the reduction in stiffness 

corresponding to the excess compliance introduced by the elements of weakness. Consider the 

damage components to be represented by N self-similar cracks per unit volume with a circular 

cross-section of radius a, and described by BN and BT. In this case we can write 

a2and a2for small compliances (Sayers and Kachanov 1995) 

The stiffness matrix in equation (15) has transverse isotropy with a vertical axis of symmetry. 

For the particular case of vertically propagating P-waves the vertical velocity is /33CV  . 

Hence, the desired fractional time-lapse change in velocity, 
V

V
, between post and pre-

production strain states is given by:  
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Thus, the fractional change in vertical velocity depends, as expected for horizontal cracks, only 

on the normal compliance of the cracks. To determine the corresponding R-factor, we assume 

that the cracks are solely responsible for the pore volume change. For N cracks of volume VC, 

the overall macroscopic change of porosity, , is given as NVC, this giving the volumetric 

strain, vol, from the horizontal cracks as NVC/(1-). Thus the number of cracks grows in 

proportion to the strain change. The fractional velocity change is therefore: 
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The specific case of ‘dry’ oblate spheroidal cracks in a homogeneous isotropic background 

gives EaBN  3/)1(16 2 , where )(2   and )/()23(  E  are the 

Poisson’s ratio and Young’s modulus, respectively, for the initial pre-production state. This 

solution relates only to ‘dry’ cracks and the subsurface being fully saturated. However, fluid 

pressure equilibrates freely between the cracks and the pore volume at seismic frequencies (i.e., 

no resistance to deformation of the crack shape with the passage of the elastic wave). It is 

therefore expected that the ‘dry’ solution for the normal crack compliance may also be 

applicable, or at least only slightly reduced in the saturated case (Sayers and Kachanov 1995). 

Inserting VC=4/3a3 for an oblate spheroid gives the final R-factor for this contribution: 
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where  is the ratio of the minor to major axis of each crack. The R-factor is therefore a constant 

for any particular rock, and a function of porosity and aspect ratio (as in the Xu-White model 

described earlier). It should be noted that there is a similarity in the background theory between 

Xu and White (1995) and Sayers and Kachanov (1995), and this explains why both predictions 

are controlled by aspect ratio. Setting g = (VS/VP)2, where VP is the P-wave velocity and VS the 

shear-wave velocity, we observe that  = (1-2g)/2(1-g) and E= (3-4g)/(1-g). Assigning g = 

1/4 (or VP/VS = 2) gives =1/3 and E/(+2)=2/3, and hence /)1(1 CR . Values for this 

crack-related R-factor are tabulated alongside those obtained from the Xu-White model in 

Table 3(b). For a 25% porosity rock an aspect ratio of 0.001 predicts an R-factor of 750, whilst 

an aspect ratio of 0.01 predicts an R-factor of 75. There is a strong velocity sensitivity to the 

very small aspect ratios associated with these ‘cracks’, and this explains the large R-factors 

found in the laboratory for micro-fractured samples (Holt et al. 2008) or observed in the field 
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data. The predictions above represent an upper limit on R, as they assume strain is 

predominantly created by the appearance of ‘cracks’. In practice, the pore space and grain 

contact mechanisms share the strain according to their relative compressibilities and thus 

values are lower. 

 

For an isotropic orientation distribution of self-similar cracks that grow in number in proportion 

to the magnitude of the strain, the post-production state is isotropic. In this case, Sayers and 

Kachanov (1995) yield, after some manipulation, the elastic constant associated with vertical 

P-wave velocity after production: 
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where )2/(  r  as before, and TB2aN   and )(aN 2

TN BB    for small 

compliances. Thus, assuming once again, oblate spheroids, )2(3/)1(32 2   EaBT
, 

the R-factor can be written as: 
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where )2(/)1(8 2   Ek  and  Ek /)1(
2

4 2



 


 . For cracks with normals 

randomly distributed in the horizontal plane, the post-production state is transversely isotropic. 

Again, after some manipulation, Sayers and Kachanov (1995) give the elastic constant 

associated with the vertical velocity, or: 
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and the relevant R-factor becomes: 
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Finally, for the case of vertical cracks oriented with normal along the x1 axis, the overall 

stiffness tensor for the post-production state can be obtained from equation (15) 
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This stiffness matrix has transverse isotropy with a horizontal axis of symmetry oriented along 

the x1 direction. The vertical velocity is in this case modified relative to the case of horizontal 

cracks, as N is now multiplied by r2 in the C33 term. This scales the R-factor 4CR  such that

1

2

4 CC RrR  . For a typical VP/VS of 2, r2 becomes 1/4 – this point was mentioned also by 

Hatchell and Bourne (2005).  

 

Table 3(b) shows the relative magnitudes of the R-factors as defined in equation (2) for the four 

classes of crack distribution given above. Although these classes relate to very different rock 

strain mechanisms, the R-values are very similar and differ at most by a factor of 4. However, 
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all do show that the mechanism of contact breakage is an efficient generator of large R-values. 

For contact creation upon compression, similar arguments would hold.  The following is 

observed for an R defined by vertical velocity, V, and vertical strain, zz, only: RC1 > RC4 > RC2 

> RC3. In practice, it may be possible to have more than one crack distribution (i.e., contact 

mechanism) present - for example, horizontal cracks plus random cracks. In this case, the result 

can be obtained by summing the individual contributions above in the compliance domain, 

weighted by the preponderance of each mechanism. 

 

 It can be concluded from the above and the seismic observations, that whilst the grain-grain 

contact mechanism per se has the potential to explain the anomalously large values that appear 

in our data, it may not be currently possible to differentiate between the particular ‘crack’ 

mechanisms causing extension and compression of the overburden or reservoir on the basis of 

vertical P-wave propagation alone. For this, more information is required – and this must come 

from offset and/or azimuthal dependency. 
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OFFSET-DEPENDENT TIME-SHIFTS 

 

 

Measurements of time-shifts with offset/angle are of growing interest as high quality 

acquisitions are now available with sufficient offset coverage to measure these variations. 

There is therefore the possibility of using these as an additional source of information. Here we 

discuss the predictions of time-shift variations with offset or incidence angle for the semi-

empirical model detailed above. We begin by discussing published observations in the open 

literature and also some data examples.  

 

Observations of offset-dependent time-shifts 

It is expected that time-lapse time-shifts should vary with offset/angle in seismic data, even if 

the time-lapse velocity changes themselves are isotropic. Landrø and Stammeijer (2004) 

predict this theoretically: 

   

     






 


T

zz dt
V

V
T

0

2 ,))(tan1(      (26) 

 

for a measurement at two-way time, T, and velocity, V, at angle . They demonstrate that 

measurement of these changes on the near and far-angle sub-stacks could be used to separate 

the combined influence of physical displacement, zz, and velocity change, V/V. Observations 

of time-shifts with offset/angle have been published by only a small number of authors, these 

are shown in Table 4. For example, Herwanger, Palmer and Schiøtt  (2007) measure time-shifts 

on the compacting chalk of the South Arne field, and conclude that they decrease with angle, 
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being 50% smaller at the further offsets. Hawkins (2008) on the other hand measures an 

increase with offset in the high pressure-high temperature (HPHT) Elgin field. Røste et al. 

(2007) measure time-shifts based on a permanent reservoir monitoring systems for the 

compacting chalk of the Valhall field using 2D seismic lines, observing offset-varying time 

shifts caused by a time-lapse velocity anomaly with small lateral extent. They are able to 

reproduce the observed offset-variation in the time shifts by building a synthetic velocity model 

representing a slipping fault. For cases where the velocity changes have larger lateral extent, 

the offset-variation in the time shifts will typically be less pronounced, and might therefore be 

more challenging to detect. Recently, Kudarova et al. (2016) presented examples of time-shifts 

obtained with angle sub-stacks of marine seismic data acquired in ocean bottom node (OBN) 

surveys in deep water (Gulf of Mexico, Mars) and narrow-azimuth streamer surveys in shallow 

water (North Sea, HPHT Shearwater). They did not observe a strong variation of time-shifts 

with offset as reported in previous publications. Additionally, despite OBN delivering a wide 

range of azimuthal coverage, they have observed no clear azimuthal dependence of the time-

shift with offset behaviour to date*.  

 

*[Footnote: Note that the reader might get the impression that offset-varying time-shifts are 

typically not present in 4D seismic data, however, there might be several reasons why these 

offset-variations are not available, e.g.: they have not been looked for in the data; they have not 

been published; the offset-variation is small and hard to detect; the processing of the pre-stack 

data is uncertain; noise makes the interpretation the offset-variation difficult.] 

 

Predictions of time-shift dependence on incidence angle 

For the Xu-White model and the isotropic orientation distribution of cracks, V/V is an 

isotropic function of angle, and hence the analysis remains unchanged as in equation (24). 
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However for horizontal cracks, vertical cracks, or those with co-planar normals, V/V needs to 

be calculated to take the anisotropic variations into account. For horizontally aligned cracks, 

the stiffness matrix has transverse isotropy with a vertical axis of symmetry. For this 

anisotropy, the phase velocity variation, v(), with incidence angle,  is specified by the 

Thomsen (1986) parameters,   and  
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The Thomsen parameters can be written in terms of the crack parameters for horizontal crack 

distributions 

 

Ngg  )1(2                     (30) 

and 

)(2 TNg   .     (31) 

 

We now find the phase velocity changes as a function of incidence angle  
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This predicts that fractional phase velocity change decreases with incidence angle and scales 

with the R-factor defined previously. As the group velocity variation at the group angle may 

be approximated by the phase velocity variation at the group angle (determined by the offset 

ray) for the weak anisotropy approximation (Thomsen 1986), equation (32) is also valid for 

our travel-time computations where we replace 
V

V
in equation (26) by 

v

v
. Figure 6 shows 

the resultant time-shift variation with angle (TVA), calculated for a range of VP/VS and BT/BN 

values. Importantly, the time-shift gradient for the anisotropic case is reduced or negative 

compared to the original isotropic prediction. Note, however, that the calculations here assume 

no lateral variations in the time-lapse changes, which are another clearly identifiable cause of 

time-shifts variations with offset (Røste et al. 2007) not considered in this current work. In 

practice, lateral variations must imprint upon the trends we predict from anisotropy through 

equation (33). Our result is consistent with previous work by Herwanger et al. (2007) who 

established through numerical modelling that a decrease with offset could be achieved using 

an anisotropic velocity variation calibrated by the third order coefficients on Prioul et al. 

(2004). Here, it is observed that the time-shift gradient is determined predominantly by the first 

term containing g = (VS/VP)2, and to a lesser degree by the second term containing g and BT/BN. 

When g is small and BT/BN < 1, the net time-shift gradient in equation (26) can be negative. 

The factor BT/BN is recognized as relating to the nature and geometry (for example aspect ratio) 

of the internal rock damage (see for example, MacBeth and Schuett 2007). Many previous 
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laboratory and theoretical studies have concluded that BT/BN < 1 (e.g. Angus et al. 2009; Liu, 

Hudson and Pointer 2000; Verdon and Wuestefeld 2013). Hence, the second term may indeed 

reduce the overall time-shift gradient, especially for a shaley overburden for which VP/VS is 

large. The approximation TN BB  is valid for thin, dry cracks (Sayers 2006), for this case = 

and the second term in equation (32) is zero and the gradient fixed only by gThis is a special 

case of a transversely isotropic (TI) system and the velocity dependence with angle of incidence 

is now elliptical and the wave surface is an ellipse.  

 

For a random set of cracks, the post-production state is isotropic. In this case  and  are both 

zero and there is no additional velocity variation with incidence angle. For vertical cracks, the 

post-production state is TI with a horizontal symmetry axis. Thus, for a vertical plane of 

propagation aligned along the crack strike direction (i.e., in a plane of isotropy) the TVA 

gradient is positive. For a vertical plane of propagation perpendicular to the cracks, the 

variation is identical to equation (32), but with being replaced by 90 - . The gradient of 

V/V now increases with incidence angle and thus enhances the existing isotropic variation 

(particularly if BT is close to BN). Thus, the magnitude of the TVA gradient along two mutually 

perpendicular sections can indicate whether the cracks are horizontal or vertical (or random). 

For a vertical plane of propagation between these two extremes, the TVA gradient varies with 

incidence angle and azimuth, and this can be calculated as a function of the angle with respect 

to the symmetry axis. Thus, sin should be replaced by coscos and cos by cossinin 

equation (32). There is now a predicted dependence on both incidence angle and azimuth. 

Although azimuthal effects are not currently observed in practice using OBN data, theoretical 

predictions suggest that scanning over both incidence angle and/or azimuth could potentially 

yield information regarding BT/BN if g is known.  
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It should be noted that the above result predicts a fairly moderate (5 to 20%) variation in time-

shift with offset/angle, and a separation between the different classes of ‘crack’ distribution of 

the same amount. Such findings contrast with the much larger magnitude predictions from the 

3rd order approach (Fuck et al. 2007) where the coefficients c111 and c112 have been calibrated 

using laboratory data (Prioul et al. 2004). We contend that our results appear closer to the data 

and provide a physical model for understanding the processes of rock mechanics in the 

subsurface. 
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DISCUSSION 

 

 

This study began by outlining a number of key conclusions (I to VII) and current challenges 

((a) to (e)) for the model that couples fractional velocity change to vertical strain. In response 

to these challenges, the relation proposed by Hatchell and Bourne (2005), and Røste et al. 

(2005), has been improved to better understand the underlying physical processes behind the 

R-factor magnitude. The magnitude of the R-factor across a range of lithologies is addressed 

by combining the compressibility of a dual-porosity volume with contact breakage/creation. It 

is thought that the hysteresis effect described in conclusion IV may be explained by inelastic 

effects related to contact breakage, especially in extension. The contact breakage also explains 

conclusion VI and the shear-wave birefringence in conclusion VII. Regarding conclusion V, it 

has also been shown that the R-factor model can be readily extended to provide an offset/angle 

dependence. This may explain the diversity in the observed variability of TVA gradient.  

 

The general observations common to most field measurements in I and II are understood as

  resob RR . Our studies indicate that this inequality can be understood in three separate parts:  

 

(1) Lithology dependence - it has been shown that the magnitude of most of the observed R-

factors (in the range 1 to 20 in Figure 3) can be matched to pore volume changes alone. The 

Xu-White model replicates the pore volume for a sand-shale system, and provides a 

straightforward route to calculate R for sandy shale or shaley sand. Application of the model 

for a realistic set of pore aspect ratios shows that rocks with a greater proportion of shale (or 

clay) will have larger R-factors than clean sands. Homogeneous chalk is predicted to have the 

smallest R-factors (1 to 2). R is also expected to increase with consolidation and cementation, 
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and in rocks with stiffer pore space. These findings mostly agree with both the field seismic 

data and laboratory data. In particular, as the overburden is likely to have a higher shale fraction 

than the reservoir, this partly explains the elevated R-factors due to the compliant shale-related 

pores. We believe that despite the current theoretical predictions being isotropic, this result will 

remain valid if the rocks were to be treated as initially anisotropic. A second category of 

‘anomalously high’ (> 20) R-factors is also identified in our data: for example, in fractured 

chalk. These values are caused by grain-grain contact breakage or micro-fractures which 

enhance the sensitivity of the seismic velocity to changes in porosity. The magnitude of the R-

factor is relatively insensitive to the orientation distribution of these crack sets, varying at most 

by a factor of 4. Thus, large R-factors are expected to be observed in fractured chalk formations 

in the overburden of the Shearwater field (Staples et al. 2007), and also within the chalk 

reservoir of Ekofisk (Janssen et al. 2007). Anomalously high values in the overburden can 

signal that the rocks have failed significantly and may be mechanically unstable and highly 

permeable. Negative R-factors are also predicted to be possible in the reservoir due to grain-

grain contact crushing, and are again a sign of failure. This offers a possible explanation for 

the Malaysian example in Table 1 as collapse of the vugs in the carbonate under compression.  

 

(2) Stress/strain dependence – the dependence of R on the stress/strain path is well documented 

from laboratory studies (Holt et al. 2016; Holt et al. 2008; Holt and Stenebråten 2013). Also, 

a significant stress path dependence of velocity stress sensitivity has been predicted by Sayers 

(2006) for a reservoir undergoing pore pressure increase and decrease. Using 3rd order elasticity 

theory to describe the triaxial strain dependence, Herwanger (2008) argues that direct use of 

the HBR model described by equation (2) neglects the horizontal strain components. The 

relative magnitude of Rob versus Rres is therefore understood by the sensitivity of vertical 

velocity to differing triaxial strain. According to this theory, applying equation (2) to the zero 
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volumetric strain conditions of the overburden naturally yields a higher R than the uniaxial 

conditions of the reservoir. The R-factor predictions based on our pore volume and contact 

models also demonstrate a requirement to know the horizontal strain components in order to 

determine the overall volumetric strain. We therefore suggest that R in equation (2) could be 

modified to include this dependence by changing vertical strain to volumetric strain. That is 

 

.volR
V

V


                                      (34) 

 

However, it can be concluded that individual principal strain components cannot be separately 

estimated using the time-shift data.   

 

(3) Strain polarity asymmetry – unfortunately there are insufficient data points for 

resR and 

obR  

to enable sensitivity to strain polarity to be strictly compared only in the reservoir or the 

overburden. It is therefore currently not possible to evaluate the relative magnitude of R+ and 

R- from 4D seismic data, although laboratory data do find that R+ > R- (Holt et al. 2008). The 

pore volume model is sufficient to explain 

resR values in the range 1 to 2, and 

obR  values of 5 

to 20, but is not by itself polarity sensitive. It is possible that a few large or anomalously high 



obR values observed are explained by a greater propensity for damage in extension rather than 

compression, and the inelastic processes of grain-grain contact breakage. Damage could 

therefore boost R+ according to the theory described above and lead to polarity asymmetry. It 

is anticipated that this will be a function of the strain magnitude. A separate perspective is 

offered by Sayers (2006), who predicts asymmetry in velocity sensitivity with reservoir pore 

pressure (injection versus depletion in the reservoir) from stress dependent grain-grain contact 

compliances. Asymmetry of the velocity as a function of applied stress has also been measured 
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extensively in laboratory data (MacBeth 2004). For small strains, the exponential dependencies 

in these models can be approximated by the linear strain model, and it is this regime that is 

believed to be applicable to this current study. Rock damage can possibly be further assessed 

using time-shift versus offset/angle (TVA) analysis. This is because the TVA gradient could be 

used to estimate the parameter BT/BN, which could help determine if the damage that has 

occurred is from micro-fracturing. Azimuthal variations of the TVA gradient could provide an 

additional source of information regarding these effects. However, robust TVA or TVA-azimuth 

effects are relatively subtle and may not be detected with confidence by current acquisition and 

measurement techniques. Currently, time-shift variations with offset/angle remain useful for 

complex stress regimes and fault reactivation problems (Røste et al. 2007) where discrete 

velocity change anomalies are evident. 

 

Speculation - finally, it is well known that whilst P-waves are clearly not as sensitive to 

cracks as shear waves (Crampin 1985), there is still clearly much potential in this technique 

due to the predominant use of the reflection seismic method in industry, and as almost all 4D 

surveys use P-wave recording. Should high quality shear-wave data become more readily 

available in industry, then clearly the assessment of failure in the overburden can be more 

precisely determined. In this case changes of shear-wave splitting are linked to the tangential 

compliance and another R-factor could be defined. Velocity changes with offset in this case 

may not be needed as a single measurement path may be sufficient.  
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CONCLUSIONS 

 

 

It is shown that a simple dual pore-volume model can adequately explain the magnitude of the 

R-factors measured in observed 4D seismic data and select laboratory data. Anomalously high 

values occasionally observed in the overburden with field data or more extensively in the 

laboratory require a separate mechanism that simulates damage due to micro-fracturing or pore 

collapse. Based on these models, it can be deduced that the R-factor varies with lithology, being 

larger as shale content increases. Rob > Rres can be explained by a combination of lithology and 

stress path effects. The development in this study aligns with the original conceptual model of 

Hatchell and Bourne (2005), and Røste et al. (2005), but extends this work to offset/angle 

dependence. The subtle variation of the time-shift gradient with offset can be explained in terms 

of the orientation distribution of the internal rock damage. Whilst R remains the over-riding 

parameter controlling strain-sensitivity measured from 4D seismic data, BT/BN is a weaker 

parameter that may also prove of value. It is possible to estimate the parameter BT/BN from 

time-shift variation with offset, which could help assess the post-production state of the 

overburden. It is understood that observations of time-shift variation with angle must 

incorporate both these anisotropic effects and lateral variations in velocity change. The R-factor 

as originally defined for vertical P-wave propagation remains a useful generic parameter for 

monitoring the lithology-dependent strain state of the overburden, and to some degree the 

reservoir.  It is not yet possible to precisely measure R-value variations across and throughout 

a field, however, the suggestion from our study is that this could be a useful tool for assessment 

of subsurface risk in the future. 
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Table 1 R-factors calculated for the overburden and reservoir for a variety of field settings, 

together with the data used to constrain these observations. Only 

obR and 

resR are shown, as 

values for 

obR and 

resR are not typically reported and data points are still actively sought for 

these important parameters.  

 

 

 

 

 

 



59 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 R-factors calculated in the laboratory for a variety of rocks and stress/strain 

conditions. * - calculated by Bathija et al. (2009). 
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 (a) 

 

 

(b) 

 

 

 

 

 

 

Table 3 (a) Uniaxial strain path R-values for a selection of aspect ratios and lithologies 

calculated using the Xu and White (1995) model for the dry rock frame only – the RA and RB 

values are described in the main text. Top four rows are for size changes only – thus, RA 

values. Bottom four rows refer to the model in which the aspect ratios are varied to simulate 

porosity change – RB values. The middle four rows are RA values for specific scenarios. (b) R-

values for the four contact breakage scenarios described in the main text (defined as RC1, RC2, 

RC3 and RC4), for two selected aspect ratios and a background rock with VP/VS=2. 

 

 

 

 

sa cl Vcl  R+ and R- 

 

Lithology 

0.15 0.02 0 25 1.4 Shaley sand (RA) 

0.27 0.04 0 25 0.8 Shaley sand – stiff (RA) 

0.15 0.02 0.6 5 6.0 Sandy shale (RA) 

0.27 0.04 0.6 5 3.0 Sandy shale – stiff (RA) 

0.27 - - 25 0.8 Stiff sandstone pores (RA) 

0.65 - - 25 0.5 Porous chalk (RA) 

0.65 0.01 0.1 25 2.7 Fractured porous chalk (RA) 

- 0.01 - 5 19.9 Only fractures (RA) 

0.15 0.02 0 25 1.0 Shaley sand (RB) 

0.27 0.04 0 25 1.2 Shaley sand – stiff (RB) 

0.15 0.02 0.6 5 95 Sandy shale (RB) 

0.27 0.04 0.6 5 28 Sandy shale – stiff (RB) 

  R+ or R- 

 

Crack distribution 

0.001 25 750 Horizontal cracks (RC1) 

0.001 25  975 Random cracks (RC2) 

0.001 25 435 Random crack normals (RC3) 

0.001 25 187 Vertical cracks (RC4) 

0.01 25 75 Horizontal cracks (RC1) 

0.01 25 96 Random cracks (RC2) 

0.01 25 44 Random crack normals (RC3) 

0.01 25 19 Vertical cracks (RC4) 
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Table 4 Approximate estimates of the time-shift with offset/angle gradient G= (Tfar – 

Tnear)/Tnear published in open literature and also observed by the authors. Most results are 

purely qualitative in nature to date and uncertainty still remains. 

  

G 

 
Field Publication 

 0.50 South Arne Herwanger et al. (2007)  
 Increase Elgin Hawkins (2008)  
 Various Valhall Røste et al. (2007)  

 Close to zero Shearwater Kudarova et al. (2016)  
   Small increase Mars Kudarova et al. (2016)  
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FIGURES 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 Example of vertical sections for baseline and monitor seismic data, together with 

the time-shifts measured between the two datasets.  The positive time-shifts indicate that 

overburden rock is extending as a result of compaction in the reservoir (visible as a slight 

reduction in the time-shift variation with two-way time). The velocity strain sensitivity in this 

case is governed by the factor 

obR  in the overburden and 

resR in the reservoir. Key horizons are 

drawn on the seismic sections for reference. The sections are migrated using the baseline 

velocity model.  
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Figure 2 Observed maximum time-shifts for a range of field datasets reported in the open 

literature (adapted from MacBeth et al. 2018). Values are reported as attributed to overburden 

or reservoir as recorded by the authors of the publications. For reference only, dashed lines 

are drawn to represent a 2000ms overburden with a uniform mean vertical strain of 10-3. Also 

shown are dashed lines for a 100ms reservoir with a vertical strain of 10-2. For these 

calculations the R-factor for extension is R+ = 5 and for compaction R- = 2. The reservoir 

measurements may also be contaminated by fluid changes, and are thus not wholly 

representative of the geomechanical effects.  
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Figure 3 The range of R-factors estimated from observed seismic data and also from the 

laboratory extracted from published literature and datasets to date (corresponding to Tables 1 

and 2). Those determined for extension R+ are designated by solid lines, whilst the dashed 

lines are for those values determined for compression R-. Values higher than 25 are not 

shown for clarity (see Table 2 for details). 
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Figure 4 R-factors for pore size change only (i.e. RA described in the main text) calculated 

using the Xu-White (1995) model for two aspect ratio combinations typically used to model 

sand-shale systems, as a function of the fractional porosity. (a) Sand and shale aspect ratios of 

0.27 and 0.04 respectively; (b) sand and shale aspect ratios of 0.15 and 0.02. Solid lines are 

for the dry rock, and dashed lines are for brine-filled rock. Lines 1 to 5 are drawn for 10% 

increments of shale fraction, from 40% shale (sandy shale) to 100% sand. For all cases the 

lines terminate at the critical porosity as defined by Keys and Xu (2002) – see main text. 
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Figure 5 R-factors calculated using the Xu-White (1995) model based on a change of aspect 

ratio with strain (i.e. the RB values described in the main text). As in Figure 4, two commonly 

quoted aspect ratio combinations are employed: (a) Sand and shale aspect ratios of 0.27 and 

0.04 respectively; (b) sand and shale aspect ratios of 0.15 and 0.02. Solid lines are for the dry 

rock, and dashed lines are for brine-filled rock. Lines 1 to 5 are drawn for 10% increments of 

shale fraction, from 100% sand (5) to 60% sand (1, sandy shale). For all cases the lines 

terminate at the critical porosity as defined by Keys and Xu (2002) – see main text. 
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Figure 6 Time-shifts as a function of offset for a VTI overburden, and then three select 

combinations of VP/VS and BT/BN for the horizontal crack model. The isotropic R-factor for 

this calculation is 5, and a uniform strain of 10-3 is assumed.   

 


