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A coercivity property of temporal convolution operators is an essential tool in the analysis of time-
dependent boundary integral equations and their space and time discretizations. It is known that this
coercivity property is inherited by convolution quadrature time discretization based on A-stable multistep
methods, which are of order at most 2. Here we study the question as to which Runge–Kutta-based
convolution quadrature methods inherit the convolution coercivity property. It is shown that this holds
without any restriction for the third-order Radau IIA method, and on permitting a shift in the Laplace
domain variable, this holds for all algebraically stable Runge–Kutta methods and hence for methods of
arbitrary order. As an illustration the discrete convolution coercivity is used to analyse the stability and
convergence properties of the time discretization of a nonlinear boundary integral equation that originates
from a nonlinear scattering problem for the linear wave equation. Numerical experiments illustrate the
error behaviour of the Runge–Kutta convolution quadrature time discretization.

Keywords: Runge–Kutta convolution quadrature; coercivity; stability; boundary integral equation; wave
equation.

1. Introduction

This paper is concerned with a discrete coercivity property that ensures the stability of time discretiza-
tions of boundary integral equations for wave equations, also in situations such as the following:

• nonlinear boundary integral equations; and

• boundary integral equations coupled with a wave equation in an interior domain, with an explicit
time discretization in the domain.

For convolution quadrature based on A-stable multistep methods (which have approximation order at
most 2) it is known from the study by Banjai et al. (2015) that the coercivity property is preserved under
time discretization uniformly in the temporal step size. Here we study the preservation of convolution
coercivity under time discretization by Runge–Kutta convolution quadrature. Up to a shift in the Laplace
variable and a corresponding reformulation of the boundary integral equation for an exponentially scaled
solution function, we show that the convolution coercivity property is preserved by all convolution
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2 L. BANJAI AND C. LUBICH

quadratures based on algebraically stable Runge–Kutta methods, which include in particular Radau IIA
methods of arbitrary order. Without any such shift and exponential scaling the convolution coercivity is
shown to be preserved by the two-stage Radau IIA method of order 3.

We illustrate the use of the discrete convolution coercivity by the stability and convergence analysis
of the Runge–Kutta convolution quadrature time discretization of a nonlinear boundary integral equation
for a nonlinear scattering problem for the acoustic wave equation. This problem has been studied with
different numerical methods in the study by Banjai & Rieder (2018).

The discrete convolution coercivity is not needed for the corresponding linear scattering problem,
because there the convolution quadrature time discretization of the linear boundary integral equation can
be interpreted as a convolution quadrature discretization of the convolution operator that maps the data
to the solution. Therefore, known bounds of the Laplace transform of the solution operator and known
error bounds of convolution quadrature yield stability and error bounds (Lubich, 1994; Sayas, 2016). The
same argument can also be used for the coupling of a linear wave equation in an interior domain with the
boundary integral equation that describes transparent boundary conditions, provided that the convolution
quadrature for the boundary integral equation is based on the same (implicit) time discretization method
as for the wave equation in the interior domain. This precludes explicit time-stepping in the interior.
For the coupling of convolution quadrature on the boundary with an explicit time discretization in the
interior, the discrete convolution coercivity as considered in the present paper is needed; see Banjai et
al. (2015), Kovács & Lubich (2017) and Eberle (2018) for the coupling of implicit BDF2 convolution
quadrature on the boundary with explicit leapfrog time-stepping in the domain for acoustic, elastic and
electro-magnetic wave equations, respectively.

The paper is organised as follows:
In Section 2 we recall the continuous-time convolution coercivity, which is related to a coercivity

property of the Laplace transform of the (distributional) convolution kernel that holds uniformly for all
values of the Laplace-domain frequency variable in a (possibly shifted) right half-plane.

In Section 3 we study the preservation of the convolution coercivity under time discretization by
Runge–Kutta convolution quadrature. This preservation depends on the numerical range of the Runge–
Kutta differentiation symbol, which is shown to lie in the right half-plane for algebraically stable Runge–
Kutta methods. With a matrix-function inequality that is obtained as an extension of a theorem of von
Neumann, we then prove our main result, Theorem 2, which yields the discrete convolution coercivity.

Section 4 recapitulates error bounds of Runge–Kutta convolution quadrature shown in the study by
Banjai et al. (2011).

In Section 5 we apply our results to the time discretization of the wave equation with a nonlinear
impedance boundary condition. We study only semidiscretization in time, but note that this could be
extended to full discretization with the techniques of Banjai & Rieder (2018). The error behaviour is
illustrated by numerical experiments in Section 6. In the numerical experiments it is observed that the
convolution quadrature based on the three-stage Radau IIA method performs well even without the shift
and exponential scaling, which is more favourable than our theoretical results.

2. Coercivity of temporal convolutions

The following coercivity result is given in the study by Banjai et al. (2015), where it is used as a basic
result in studying boundary integral operators for the acoustic wave equation; see also Kovács & Lubich
(2017) for Maxwell’s equation and Eberle (2018) for elastic wave equations. The result can be viewed
as a time-continuous operator-valued extension of a theorem of Herglotz from 1911, which states that
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RUNGE–KUTTA CONVOLUTION COERCIVITY 3

an analytic function has positive real part on the unit disk if and only if convolution with its coefficient
sequence is a positive semidefinite operation.

Let V be a complex Hilbert space and V ′ its dual, and let 〈·, ·〉 denote the anti-duality between V and
V ′. Let L(s) : V → V ′ and R(s) : V → V be analytic families of bounded linear operators for Re s > σ ,
continuous for Re s � σ . We assume the uniform bounds, with some real exponent μ,

‖L(s)‖V ′←V � M(1 + |s|)μ, ‖R(s)‖V←V � M(1 + |s|)μ, Re s > σ . (2.1)

This polynomial bound guarantees that L is the Laplace transform of a distribution �. If we write L(s) =
skLk(s) with an integer k > μ + 1, then the Laplace inversion formula

�k(t) = 1

2π i

∫
σ ′+iR

est Lk(s) ds, t � 0 (σ ′ > σ)

defines a continuous and exponentially bounded function �k, which has � as its kth distributional
derivative. We write the convolution with � as

u(t) = L(∂t)f (t) = (� ∗ f )(t) =
(

d

dt

)k ∫ t

0
�k(t − τ) f (τ ) dτ , t > 0,

for functions f on [0, T] whose extension to t < 0 by 0 is k times continuously differentiable. Similarly,
we consider the convolution R(∂t)f .

Theorem 2.1 (Banjai et al., 2015, Lemma 2.2). Let α � 0. In the above situation, the following
statements are equivalent:

1. Re 〈v, L(s)v〉 � α‖R(s)v‖2 for all v ∈ V , Re s > σ .

2.
∫ ∞

0 e−2σ t Re〈 f (t), L(∂t)f (t)〉 dt � α
∫ ∞

0 e−2σ t ‖R(∂t)f (t)‖2 dt for all f ∈ Ck([0, ∞), V) with finite
support and f (j)(0) = 0 for 0 � j < k, and for all t � 0.

Property 1 is known to be satisfied for the Laplace transforms of various boundary integral operators
for wave equations (Bamberger & Ha-Duong, 1986; Laliena & Sayas, 2009; Banjai et al., 2015; Sayas,
2016; Kovács & Lubich, 2017), and it is a fundamental property in the study of boundary integral
equations for wave equations.

We are interested in time discretizations of the convolution operators L(∂t) and R(∂t) that preserve
this coercivity property. It was shown in the study by Banjai et al. (2015) that this is achieved
by convolution quadrature based on A-stable multistep methods such as the first- and second-order
backward differentiation formulae. In Theorem 3.1 below we will show that the coercivity property
is also preserved by convolution quadrature based on certain Runge–Kutta methods such as the third-
order, two-stage Radau IIA method. For the particular case σ = 0, it will be shown to be preserved for
all algebraically stable Runge–Kutta methods.
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4 L. BANJAI AND C. LUBICH

3. Preserving coercivity by Runge–Kutta convolution quadrature

3.1 Runge–Kutta differentiation symbol and convolution quadrature

An m-stage Runge–Kutta discretization of the initial value problem y′ = f (t, y), y(0) = y0, is given by

Yni = yn + τ

m∑
j=1

aij f (tn + cjh, Ynj), i = 1, . . . , m,

yn+1 = yn + τ

m∑
j=1

bj f (tn + cjh, Ynj),

where τ > 0 is the time step, tn = nτ , and the internal stages Yni and grid values yn are approximations
to y(tn + ciτ) and y(tn), respectively. In the following we use the notation

A = (aij)
m
i,j=1, b = (b1, . . . , bm)T , 1 = (1, 1, . . . , 1)T .

We always assume that the Runge–Kutta matrix A is invertible.
As has been shown in the studies by Lubich & Ostermann (1993), Schädle et al. (2006), Banjai &

Lubich (2011) and Banjai et al. (2011), and in applications to wave propagation problems further in
the studies by Wang & Weile (2011), Banjai et al. (2012), Banjai & Kachanovska (2014) and Banjai
& Rieder (2018), Runge–Kutta methods can be used to construct convolution quadrature methods that
enjoy favourable properties. Here one uses the Runge–Kutta differentiation symbol

Δ(ζ) =
(

A + ζ

1 − ζ
1bT

)−1

, ζ ∈ C with |ζ | < 1. (3.1)

This is well defined for |ζ | < 1 if R(∞) = 1 − bTA −11 satisfies |R(∞)| � 1. In fact, the Sherman–
Morrison formula then yields

Δ(ζ) = A −1 − ζ

1 − R(∞)ζ
A −11bTA −1.

To formulate the Runge–Kutta convolution quadrature for L(∂t)g, we formally replace in L(s) the
differentiation symbol s by Δ(ζ)/τ and expand the operator-valued matrix function

L

(
Δ(ζ)

τ

)
=

∞∑
n=0

Wn(L)ζ n,

where in the case of L(s) : V → V ′ we have the convolution quadrature matrices Wn(L) : Vm → (V ′)m.
For the discrete convolution with these matrices we use the notation

(
L(∂τ

t )f
)

n =
n∑

j=0

Wn−j(L) f j
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RUNGE–KUTTA CONVOLUTION COERCIVITY 5

for any sequence f = ( f n) in Vm. For vectors of function values of a function f : [0, T] → V given as
f n = (

f (tn + ciτ)
)m

i=1, the ith component of the vector
(
L(∂τ

t ) f
)

n is considered as an approximation to(
L(∂t)f

)
(tn + ciτ).

In particular if cm = 1, as is the case with Radau IIA methods, then the continuous convolution at
tn+1 is approximated by the last component of the discrete block convolution:

(L(∂t)f ) (tn+1) ≈ eT
m

(
L

(
∂τ

t

)
f
)

n ,

where em = (0, . . . , 0, 1)T is the mth unit vector. We recall the composition rule

L2
(
∂τ

t

)
L1

(
∂τ

t

)
f = (L2L1)

(
∂τ

t

)
f .

For λ ∈ C the convolution quadrature (∂τ
t − λ)−1f (which is to be interpreted as L(∂τ

t )f for the
multiplication operator L(s) = (s−λ)−1) contains the internal stages of the Runge–Kutta approximation
to the linear differential equation y′ = λy + f with initial value y(0) = 0.

Results on the order of convergence of this approximation are given in the studies by Lubich &
Ostermann (1993), Banjai & Lubich (2011) and Banjai et al. (2011). The result of the study by Banjai et
al. (2011), which is relevant for operators L(s) arising in wave propagation, will be restated and extended
to the internal stages in Section 4.

3.2 Numerical range of the Runge–Kutta differentiation symbol

We now consider methods that are algebraically stable:

• All weights bi are positive.

• The symmetric matrix with entries biaij + bjaji − bibj is positive semidefinite.

Gauss methods and Radau IIA methods are widely used classes of methods that satisfy this condition.
We refer the reader to Hairer & Wanner (1996) for background literature on Runge–Kutta methods and
their stability notions.

We consider the weighted inner product on C
m,

(u, v) =
m∑

i=1

biuivi, u, v ∈ C
m. (3.2)

We have the following characterisation.

Lemma 3.1 For an algebraically stable Runge–Kutta method and for the b-weighted inner product (3.2),

Re (w, Δ(ζ)w) � 0 for all w ∈ C
m, |ζ | < 1.

Conversely, if the differentiation symbol of a Runge–Kutta method with positive weights bi satisfies this
inequality, then the method is algebraically stable.
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6 L. BANJAI AND C. LUBICH

Proof. With a different notation, this is shown in Lubich & Ostermann (1987, p. 232, (6.19)). For the
convenience of the reader we include the short proof. Since for v = Δ(ζ)w we have (w, Δ(ζ)w) =
(Δ(ζ )−1v, v), it suffices to show that

Re (v, Δ(ζ)−1v) � 0 for all v ∈ C
m, |ζ | < 1.

We rewrite

Δ(ζ)−1 = A + ζ

1 − ζ
1bT = C + 1

2

1 + ζ

1 − ζ
1bT , with C = A − 1

21bT ,

and observe that (cf. Hairer & Lubich, 1984)

(1bTv, v) =
∣∣∣∣∣

m∑
i=1

bivi

∣∣∣∣∣
2

2 Re (C v, v) =
m∑

i,j=1

(biaij + bjaji − bibj)v̄ivj.

Since Re (1 + ζ )/(1 − ζ ) > 0 for |ζ | < 1 the result follows. �
In this paper we will need a stronger positivity property, for which we show the following order

barrier and a positive result for the two-stage Radau IIA method, which is of order 3 and has the
coefficients

A =
(

5/12 −1/12
3/4 1/4

)
, bT = (3/4, 1/4).

Lemma 3.2 (a) For the two-stage Radau IIA method and for the b-weighted inner product (3.2) and
corresponding norm | · | we have

Re (w, Δ(ζ)w) � 1
2 (1 − |ζ |2)|w|2 for all w ∈ C

m, |ζ | � 1. (3.3)

(b) For none of the Gauss methods with two or more stages and none of the Radau IIA methods with
three or more stages, there exists c > 0 such that for all sufficiently small Δ > 0,

Re (w, Δ(ζ)w) � cΔ |w|2 for all w ∈ C
m, |ζ | � e−Δ. (3.4)

Clearly, (3.3) implies (3.4) with c arbitrarily close to 1 for small Δ. We further note that the implicit
Euler method and the implicit midpoint rule (which are the one-stage Radau IIA and Gauss methods,
respectively) also satisfy (3.4).

Proof.

(a) For the two-stage Radau IIA method we find

Δ(ζ) = 1

2

(
3 1 − 4ζ

−9 5 + 4ζ

)
.
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RUNGE–KUTTA CONVOLUTION COERCIVITY 7

Denoting the diagonal matrix of the weights by B = diag(3/4, 1/4), we note

Re (w, Δ(ζ)w) = wTB1/2 · B−1/2 1
2 (BΔ(ζ) + Δ(ζ)TB)B−1/2 · B1/2w.

We obtain the hermitian matrix

B−1/2 1
2 (BΔ(ζ) + Δ(ζ)TB)B−1/2 = 1

2

(
3 −√

3(1 + 2ζ )

−√
3(1 + 2ζ ) 5 + 4 Re ζ

)
,

which has the trace 4 + 2Re ζ and the determinant 3(1 − |ζ |2). It follows that both eigenvalues
are positive and bounded by 6, and hence the smaller eigenvalue is bounded from below by 3(1 −
|ζ |2)/6 = (1 − |ζ |2)/2. This yields the inequality (3.3).

(b) The proof uses the W-transformation of Hairer & Wanner, see Hairer & Wanner (1996, p. 77). For
each of the m-stage Gauss and Radau IIA methods, there exists an invertible real m × m matrix W
with first column 1 such that, with the diagonal matrix B of the weights bi,

WTBW = Im

or in other words, WTB1/2 is an orthogonal matrix (with respect to the Euclidean inner product),
and

A = WXW−1,

where X − 1
2 e1eT

1 − βmemeT
m is a skew-symmetric matrix with βm = 0 for the Gauss method and

βm > 0 for the Radau IIA method. We write

Re (w, Δ(ζ)w) = Re wTBΔ(ζ)w

= Re wTB1/2 · B1/2W · WTB1/2 · B1/2Δ(ζ)B−1/2 · B1/2W · WTB1/2 · B1/2w

= Re wTB1/2 · B1/2W · WTBΔ(ζ)W · WTB1/2 · B1/2w,

where we note

WTBΔ(ζ)W = W−1Δ(ζ)W = (W−1Δ(ζ)−1W)−1.

Now, by the definition of Δ(ζ) and the above-mentioned property of W−1A W = X together with
WTb = e1, the matrix W−1Δ(ζ)−1W is the sum of a skew-hermitian matrix plus a rank 1 or rank
2 matrix for Gauss or Radau IIA methods, respectively, and by the Sherman–Morrison–Woodbury
formula so is its inverse:

WTBΔ(ζ)W = Y + Z(ζ ),

where Y is skew-hermitian and Z(ζ ) is of rank 1 or 2 for Gauss or Radau IIA methods, respectively.
If w = 0 is in the null space of Z(ζ )WTB, which is of codimension 1 or 2 for Gauss or Radau,
respectively, then we obtain from the above formulas that

Re (w, Δ(ζ)w) = 0

in contradiction to (3.4). �

Downloaded from https://academic.oup.com/imajna/advance-article-abstract/doi/10.1093/imanum/dry033/5032994
by Heriot-Watt University user
on 13 June 2018



8 L. BANJAI AND C. LUBICH

As we will show in Theorem 3.1 below, Runge–Kutta convolution quadrature with (3.4) preserves
the coercivity property of Theorem 2.1 for arbitrary abscissa σ � 0, while general algebraically stable
methods preserve it in the case σ = 0. Before we state and prove this theorem in Section 3.4, we need
an auxiliary result of independent interest.

3.3 A matrix-function inequality related to a theorem by von Neumann

We consider again a complex Hilbert space V and its dual V ′, with the anti-duality denoted by 〈·, ·〉.
On C

m we consider an inner product (·, ·) and associated norm | · |. An inner product on Vm and the
anti-duality between Vm and (V ′)m are induced in the usual way: for Kronecker products a⊗u and b⊗v
with a, b ∈ C

m and u, v ∈ V one defines (a ⊗ u, b ⊗ v) = (a, b) (u, v) and extends this to a sequilinear
form on Vm × Vm, and in the same way one proceeds for the anti-duality 〈·, ·〉 on Vm × (V ′)m.

Lemma 3.3 On the Hilbert space V , let L(s) : V → V ′ and R(s) : V → V be analytic families of
bounded linear operators for Re s > σ , continuous for Re s � σ , such that (2.1) is satisfied and for some
α � 0,

Re 〈v, L(s)v〉 � α‖R(s)v‖2, for all v ∈ V , Re s � σ .

Let the matrix S ∈ C
m×m be such that

Re (w, Sw) � σ |w|2, for all w ∈ C
m.

Then,

Re 〈v, L(S)v〉 � α‖R(S)v‖2, for all v ∈ Vm.

This result can be viewed as an extension of a theorem of von Neumann (1951) (see also Hairer &
Wanner (1996, p. 179)), which corresponds to the particular case where L(s) is the identity operator on
V (when V is identified with V ′ with the anti-duality given by the inner product on V).

Proof. The proof adapts Crouzeix’s proof of von Neumann’s theorem as given in Hairer & Wanner
(1996, p. 179 f.). Without loss of generality we assume here σ = 0.

First we note that for a diagonal matrix S the result holds trivially, and so it does for a normal matrix
S, which is diagonalised by a similarity transformation with a unitary matrix.

For a nonnormal matrix S we consider the matrix-valued complex function

S(z) = z

2
(S + S∗) + 1

2
(S − S∗)

and we observe that S = S(1) and

Re (w, S(z)w) = (Re z) Re (w, Sw).

Together with the condition on S this shows that the numerical range of S(z) is in the right complex
half-plane for Re z � 0, and hence all eigenvalues of S(z) have non-negative real part. Therefore, the
operator functions L(S(z)) and R(S(z)) are well defined for Re z � 0.

If Re z = 0, then the matrix S(z) is normal, and hence the desired inequality is valid for S(z) with
Re z = 0. The function

ϕ(z) = α‖R(S(z))v‖2 − Re 〈v, L(S(z))v〉
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RUNGE–KUTTA CONVOLUTION COERCIVITY 9

is subharmonic, since the last term is harmonic as the real part of an analytic function and the first
term is the inner product of an analytic function with itself, which is subharmonic (as is readily seen
by computing the Laplacian and noting that the real and imaginary parts of the analytic function are
harmonic). Hence, by the maximum principle (or its Phragmén–Lindelöf-type extension to polynomially
bounded subharmonic functions on the half-plane),

ϕ(1) � sup
Re z=0

ϕ(z) � 0,

which is the desired inequality. �

3.4 Preserving the convolution coercivity under discretization

We are now in the position to formulate the main result of this paper and give its proof, which relies on
the auxiliary results of the previous subsections.

Theorem 3.1 Let the m-stage Runge–Kutta method satisfy (3.4) for some inner product (·, ·), as in
particular is the case for the two-stage Radau IIA method. In the situation of Theorem 2.1, Condition 1
of that theorem implies, for sufficiently small step size τ > 0 and with σ̃ = σ/c,

τ

∞∑
n=0

e−2σ̃nτ Re 〈 f n, (L(∂τ
t )f )n〉 � ατ

∞∑
n=0

e−2σ̃nτ‖(R(∂τ
t )f )n‖2,

for every sequence f = ( f n)n�0 in Vm with finitely many nonzero entries. Moreover, in the case σ = 0
this inequality holds for every algebraically stable Runge–Kutta method, with σ̃ = 0 and with respect
to the b-weighted inner product (2) on C

m.

Proof. The proof uses Parseval’s formula and combines Lemma 3.3 with Lemmas 3.1 and 3.2. By (3.4),
with σ̃ = σ/c and ρ = e−σ̃ τ we have with respect to the inner product weighted by the bi that

Re
(

w,
Δ(ρ eiθ )

τ
w

)
� σ |w|2 for all w ∈ C

m, θ ∈ R. (3.5)

We abbreviate

L̂(θ) = L

(
Δ(ρ eiθ )

τ

)

and similarly R̂(θ). We denote the Fourier series

f̂ (θ) =
∞∑

n=0

ρneinθ f n.

By Parseval’s formula and the definition of the convolution quadrature weights Wn(L),

∞∑
n=0

Re

〈
ρnf n,

n∑
j=0

ρn−jWn−j(L)ρ jf j

〉
= 1

2π

∫ π

−π

Re 〈 f̂ (θ), L̂(θ )̂f (θ)〉 dθ .
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10 L. BANJAI AND C. LUBICH

Here (3.5) used in Lemma 3.3 yields

Re 〈 f̂ (θ), L̂(θ )̂f (θ)〉 � α‖R̂(θ )̂f (θ)‖2.

Moreover, again by Parseval’s formula,

1

2π

∫ π

−π

‖R̂(θ )̂f (θ)‖2 dθ =
∞∑

n=0

ρ2n

∥∥∥∥∥∥
n∑

j=0

Wn−j(R)f j

∥∥∥∥∥∥
2

,

which yields the result. �

4. Error bounds of Runge–Kutta convolution quadrature

In this section we restate the result of the study by Banjai et al. (2011) and extend it to cover the
approximation properties of the internal stages, which will be needed in the next section. To avoid
restating the list of properties required for the underlying Runge–Kutta method we state the results just
for the Radau IIA methods, which appear to be the most important class of Runge–Kutta methods to be
used for convolution quadrature.

Let K(s), for Re s > σ > 0, be an analytic family of operators between Hilbert spaces V and W (or
just Banach spaces are sufficient here), such that for some real exponent μ and ν � 0 the operator norm
is bounded as follows:

‖K(s)‖ � M(σ )
|s|μ

(Re s)ν
for all Re s > σ . (4.1)

Theorem 4.1 (Banjai et al., 2011, Theorem 3). Let K satisfy (4.1) and consider the Runge–Kutta
convolution quadrature based on the Radau IIA method with m stages. Let r > max(2m − 1 + μ, 2m −
1, m + 1) and f ∈ Cr([0, T], V) satisfy f (0) = f ′(0) = . . . = f (r−1)(0) = 0. Then, there exists τ̄ > 0
such that for 0 < τ � τ̄ and tn = nτ ∈ [0, T],

∥∥∥eT
m

(
K

(
∂τ

t

)
f
)

n − (
K(∂t)f

)
(tn+1)

∥∥∥
� C hmin(2m−1, m+1−μ+ν)

(
‖ f (r)(0)‖ +

∫ t

0
‖ f (r+1)(τ )‖ dτ

)
.

The constant C is independent of τ and f , but does depend on τ̄ , T , and the constants in (4.1).

The proof in the study by Banjai et al. (2011) is readily extended to yield the following error bound
for the internal stages. Note that here the full order 2m−1 is replaced by the stage order plus one, m+1.
We give the result for m � 2 stages, so that m + 1 � 2m − 1. (For m = 1, the implicit Euler method,
one can use the previous result.)

Theorem 4.2 Let K satisfy (4.1) and consider the Runge–Kutta convolution quadrature based on the
Radau IIA method with m � 2 stages. Let r > max(m + 1 + μ, m + 1) and f ∈ Cr([0, T], V) satisfy

Downloaded from https://academic.oup.com/imajna/advance-article-abstract/doi/10.1093/imanum/dry033/5032994
by Heriot-Watt University user
on 13 June 2018



RUNGE–KUTTA CONVOLUTION COERCIVITY 11

f (0) = f ′(0) = . . . = f (r−1)(0) = 0. Then, there exists τ̄ > 0 such that for 0 < τ � τ̄ and tn = nτ ∈
[0, T],

∥∥(
K

(
∂τ

t

)
f
)

n − (K(∂t) f (tn + ciτ))m
i=1

∥∥

� C hmin(m+1, m+1−μ+ν)

(
‖ f (r)(0)‖ +

∫ t

0
‖ f (r+1)(τ )‖ dτ

)
.

The constant C is independent of τ and f , but does depend on τ̄ , T , and the constants in (4.1).

5. Application to the time discretization of the wave equation with a nonlinear impedance
boundary condition

5.1 A nonlinear scattering problem

We consider the wave equation on an exterior smooth domain Ω+ ⊂ R
3. Following the study by Banjai

& Rieder (2018) we search for a function u(·, t) ∈ H1(Ω+) satisfying the weak form of the wave
equation

ü = Δu in Ω+ (5.1)

with zero initial conditions and with the nonlinear boundary condition

∂+
ν u = g(u̇ + u̇inc) − ∂+

ν uinc on Γ , (5.2)

where ∂+
ν is the outer normal derivative on the boundary Γ of Ω+, where g : R → R is a given

monotonically increasing function and where uinc(x, t) is a given solution of the wave equation. The
interpretation is that the total wave utot = u+uinc is composed of the incident wave uinc and the unknown
scattered wave u. The nonlinear boundary condition is a simplification of nonlinear acoustic boundary
conditions as investigated in the study by Graber (2012) and of boundary conditions in electromagnetism
obtained by asymptotic approximations of thin layers of nonlinear materials, see Haddar & Joly (2002).
Though simpler, the nonlinear boundary condition (5.2) is sufficiently complex that the analysis requires
the convolution quadrature coercivity preservation property.

One approach to solve this exterior problem is to determine the Dirichlet and boundary data from
boundary integral equations on Γ and then to compute the solution at points of interest x ∈ Ω+ from the
Kirchhoff representation formula. Here we are interested in the stability and convergence properties of
the numerical approximation when the time discretization in the boundary integral equation and in the
representation formula is done by Runge–Kutta convolution quadrature. Since our interest in this paper
is the aspect of time discretization, we will not address the space discretization by boundary elements,
though with some effort this could also be included; cf. Banjai & Rieder (2018).

5.2 Boundary integral equation and representation formula

Using the standard notation of the boundary integral operators for the Helmholtz equation s2u−Δu = 0
(Re s > 0) as used, for example, in the works by Laliena & Sayas (2009), Banjai et al. (2015), Sayas
(2016) and Banjai & Rieder (2018), we denote by

S(s) : H−1/2(Γ ) → H1(R3 \ Γ ) and D(s) : H1/2(Γ ) → H1(R3 \ Γ )
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12 L. BANJAI AND C. LUBICH

the single-layer and double-layer potential operators, respectively, and by V(s), K(s), KT(s), W(s) the
corresponding boundary integral operators that form the Calderón operator

B(s) =
(

sV(s) K(s)
−KT(s) s−1W(s)

)
: H−1/2(Γ ) × H1/2(Γ ) → H1/2(Γ ) × H−1/2(Γ ) (5.3)

and the related operator

Bimp(s) = B(s) +
(

0 − 1
2 I

1
2 I 0

)
, (5.4)

where the suffix imp stands for impedance. With these operators the solution u is determined by first
solving, for

ϕ = −∂+
ν u and ψ = γ +u̇

(where γ + is the trace operator on Ω+), the time-dependent boundary integral equation (see Banjai &
Rieder, 2018)

Bimp(∂t)

(
ϕ

ψ

)
+

(
0

g(ψ + u̇inc)

)
=

(
0

∂+
ν uinc

)
. (5.5)

The solution u is then obtained from the representation formula

u = S(∂t)ϕ + D(∂t)∂
−1
t ψ . (5.6)

We will address the question as to what are the approximation properties when the temporal convolutions
in (5.5) and (5.6) are discretised by Runge–Kutta convolution quadrature. Since this will not turn out
fully satisfactory, we will further consider time-differentiated versions of (5.5).

The following coercivity property was proved in the study by Banjai et al. (2015).

Lemma 5.1 (Banjai et al., 2015, Lemma 3.1). Let 〈·, ·〉Γ denote the anti-duality pairing between
H−1/2(Γ ) × H1/2(Γ ) and H1/2(Γ ) × H−1/2(Γ ). There exists β > 0 so that the Calderón operator
(5.3) satisfies

Re

〈(
ϕ

ψ

)
, B(s)

(
ϕ

ψ

)〉
Γ

� β cσ

(
‖s−1ϕ‖2

H−1/2(Γ )
+ ‖s−1ψ‖2

H1/2(Γ )

)

for Re s � σ > 0 and for all ϕ ∈ H−1/2(Γ ) and ψ ∈ H1/2(�), with cσ = min(1, σ 2) σ .

Since Bimp(s) differs from B(s) by a skew-hermitian matrix the same estimate then also holds for
Bimp(s). Note that Lemma 5.1 yields property 1 of Theorem 2.1 for the Calderón operator B(s) and for
the multiplication operator R(s) = s−1.

5.3 Time discretization by Runge–Kutta convolution quadrature

Using the notation of Section 3.1, the boundary integral equation (5.5) is discretised in time with a step
size τ > 0 over a time interval (0, T) with T = Nτ by

Bimp
(
∂τ

t

) (
ϕτ

Ψ τ

)
+

(
0

g(Ψ τ + u̇inc)

)
=

(
0

∂+
ν uinc

)
, (5.7)
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RUNGE–KUTTA CONVOLUTION COERCIVITY 13

where (ϕτ , ψτ ) = (ϕn, ψn)
N−1
n=0 with (ϕn, ψn) = (ϕn,i, ψn,i)

m
i=1 and (ϕn,i, Ψn,i) ≈ (ϕ(tn + ciτ), Ψ (tn +

ciτ)) is the numerical approximation that is to be computed, and u̇inc = (u̇inc
n )N−1

n=0 with u̇inc
n = (u̇inc(tn +

ciτ))m
i=1. The function g acts componentwise. At the nth time step, a nonlinear system of equations of

the following form needs to be solved:

Bimp

(Δ(0)

τ

) (
ϕn
ψn

)
+

(
0

g(ψn + u̇inc
n )

)
= . . . ,

where the dots represent known terms. This has a unique solution because the eigenvalues of Δ(0) =
A −1 have positive real part, and Lemma 5.1 and the monotonicity of g then yield the unique existence
of the solution by the Browder–Minty theorem; cf. Banjai & Rieder (2018) for the analogous situation
for multistep-based convolution quadrature.

As an alternative to (5.7), we further consider the time discretization of the time-differentiated
boundary integral equation:

Bimp(∂
τ
t )

(
ϕ̇τ

Ψ̇
τ

)
+

(
0

g′(Ψ τ + u̇inc)(Ψ̇
τ + üinc)

)
=

(
0

∂+
ν u̇inc

)
, (5.8)

which is now solved for the approximations (ϕ̇τ , Ψ̇
τ
) (where the dot is just suggestive notation) to

(ϕ̇, Ψ̇ ) (where the dot means again time derivative). Here we define Ψ τ = (∂τ
t )−1Ψ̇

τ
and the same for

ϕτ . Furthermore, üinc contains the values üinc(tn + ciτ).
We can go even further and consider the time discretization of the twice-differentiated boundary

integral equation:

Bimp
(
∂τ

t

) (
ϕ̈τ

Ψ̈
τ

)
+

(
0

g′(ψτ + u̇inc)(Ψ̈
τ + ...

u inc) + g′′(Ψ τ + u̇inc) · (Ψ̇
τ + üinc)2

)
=

(
0

∂+
ν üinc

)
, (5.9)

where again the dots on the approximation (ϕ̈τ , Ψ̈
τ
) are suggestive notation, and we set Ψ̇

τ = (∂τ
t )−1Ψ̈

τ

and Ψ τ = (∂τ
t )−2Ψ̈

τ
, and the same for ϕτ .

Finally, at any point x ∈ Ω+ of interest we compute the approximation to the solution value u(x, tn +
ciτ) by using the same Runge–Kutta convolution quadrature for discretizing the representation formula
(5.6):

uτ = S
(
∂τ

t

)
ϕτ + D

(
∂τ

t

) (
∂τ

t

)−1
Ψ τ . (5.10)

5.4 Error bounds for the linear case

We consider first the case of a linear impedance function

g(ξ) = αξ with α � 0.

Let uτ = (un)
N−1
n=0 with un = (un,i)

m
i=1 be the solution approximation obtained by the discretised

representation formula (5.10) with either of the discretised boundary integral equations (5.7), (5.8) or
(5.9). The discretization is done by Runge–Kutta convolution quadrature based on the Radau IIA method
with m stages.
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14 L. BANJAI AND C. LUBICH

Here we obtain the following optimal-order pointwise error bounds for x bounded away from Γ .

Proposition 5.1 Suppose that in a neighbourhood of the boundary Γ , the incident wave uinc together
with its extension by 0 to t < 0 is sufficiently regular. For x ∈ Ω+ with dist(x, Γ ) � Δ > 0, the
following optimal-order error bound is satisfied in the linear situation described above: for 0 � tn =
nτ � T ,

|un(x) − u(x, tn)| � C(Δ, T) τ 2m−1.

Proof. We denote

Bα(s) = Bimp(s) +
(

0 0
0 αI

)
.

By Lemma 5.1 Bα(s) is invertible for α � 0 with the bound, for Re s � σ > 0,

‖Bα(s)−1‖ � C(σ )
|s|2
Re s

. (5.11)

The exact solution u(x, t) is given by the representation formula (5.6) with

(
ϕ

Ψ

)
= B−1

α (∂t)

(
0

∂+
ν uinc − αu̇inc

)
.

For x ∈ Ω+ we define the operators Sx(s) : H−1/2(Γ ) → C and Dx(s) : H1/2(Γ ) → C by

Sx(s)ϕ = (S(s)ϕ)(x) and Dx(s)Ψ = (D(s)Ψ )(x).

These operators are bounded for Re s � σ > 0 and dist(x, Γ ) � Δ > 0 by

‖Sx(s)‖C←H−1/2(Γ ) � C(σ , Δ) |s| e−Δ Re s (5.12)

‖Dx(s)‖C←H1/2(Γ ) � C(σ , Δ) |s| e−Δ Re s. (5.13)

The first bound is proved in the study by Banjai et al. (2011, Lemma 6) and the second bound is proved
similarly.

We thus have

u(x, t) = (Mx(∂t)f )(t)

with

Mx(s) = (Sx(s), Dx(s)s
−1)Bα(s)−1 and f =

(
0

∂+
ν uinc − αu̇inc

)
.

With the above operator bounds we obtain for Re s � σ > 0 and dist(x, Γ ) � Δ > 0

‖Mx(s)‖C←H1/2(Γ )×H−1/2(Γ ) � C(σ , Δ)
|s|3
Re s

e−Δ Re s . (5.14)
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RUNGE–KUTTA CONVOLUTION COERCIVITY 15

By the composition rule the numerical solution obtained by (5.7) and (5.10) is given as

uτ (x) = Mx
(
∂τ

t

)
f ,

where f contains the values of f at the points tn + ciτ . If we take instead (5.8) or (5.9), then we have

uτ (x) = Mx
(
∂τ

t

) (
∂τ

t

)−1 ḟ or uτ (x) = Mx
(
∂τ

t

) (
∂τ

t

)−2 f̈ ,

respectively. In view of (5.14) Theorem 4.1 then yields the result. �
The situation is different if we consider the H1(Ω+) norm of the error.

Proposition 5.2 Suppose that in a neighbourhood of the boundary Γ , the incident wave uinc together
with its extension by 0 to t < 0 is sufficiently regular. Then the following error bounds are satisfied in
the linear situation described above: for 0 � tn = nτ � T ,

‖un − u(·, tn)‖H1(Ω+) � C(T) τ k

with

k = m + 1/2 if (5.7) is used,

k = min(2m − 1, m + 3/2) if (5.8) is used,

k = min(2m − 1, m + 5/2) if (5.9) is used.

Proof. Consider the Laplace transformed wave equation (5.1)

−Δû + s2û = 0 in Ω+,

∂+
ν û − αsû = f̂ on Γ ,

(5.15)

where û is the Laplace transform of u and f̂ the Laplace transform of

f = ∂+
ν uinc − αu̇inc.

We will require the estimate, see Bamberger & Ha-Duong (1986, Equation (2.9)),

∥∥∂+
ν û

∥∥
H−1/2(Γ )

� C(σ )|s|1/2‖û‖|s|,Ω+ , (5.16)

with Re s � σ > 0 and the scaled H1 norm

‖û‖2
|s|,Ω+ = ‖∇û‖2

L2(Ω+)
+ |s|2‖û‖2

L2(Ω+)
.

Downloaded from https://academic.oup.com/imajna/advance-article-abstract/doi/10.1093/imanum/dry033/5032994
by Heriot-Watt University user
on 13 June 2018



16 L. BANJAI AND C. LUBICH

Testing (5.15) with sû integrating by parts and taking the real part gives

Re s‖û‖2
|s|,Ω+ = −Re

〈
∂+
ν û, sγ +û

〉
Γ
� C(σ )|s|1/2‖û‖|s|,Ω+‖Ψ̂ ‖H1/2(Γ ),

where Ψ̂ = sγ +û is the Laplace transform of Ψ . Making use of ‖û‖H1(Ω+) � C(σ )‖û‖|s|,Ω+ and the
bound (5.11) gives

‖û‖H1(Ω+) � C(σ )
|s|5/2

(Re s)2 ‖f̂ ‖H−1/2(Γ ).

The stated result then follows from Theorem 4.1. �

5.5 Convergence for the nonlinear problem

There are several aspects that make the error analysis of the nonlinear problem more intricate:

• The numerical solution can no longer be interpreted as a mere convolution quadrature for an
appropriate operator K(s) acting on the data (i.e., the incident wave).

• We need to impose regularity assumptions on the solution rather than the data.

• Convolution coercivity now plays an important role in ensuring the stability of the time
discretization.

We assume strict monotonicity of the nonlinear function g : R → R: there exists β > 0 such that

(ξ − η)
(
g(ξ) − g(η)

)
� β |ξ − η|2 for all ξ , η ∈ R. (5.17)

Furthermore, we assume that the pointwise application of g maps H1/2(Γ ) to H−1/2(Γ ). As is shown
in the study by Banjai & Rieder (2018) by Sobolev embeddings, this is satisfied if g(ξ) grows at most
cubically as |ξ | → ∞. Similar assumptions on the nonlinearity are also made in the study by Graber
(2012), which investigates nonlinear acoustic boundary conditions.

In the following we write for a step size τ > 0 and a sequence e = (en)
N−1
n=0 with en = (en,i)

m
i=1 and

en,i in a Hilbert space V

‖e‖�τ
2(0:N;Vm) = τ

N−1∑
n=0

m∑
i=1

‖en,i‖2
V .

We denote the numerical solution by uτ = (un,i) and the corresponding values of the exact solution by
u = (u(tn + ciτ)), where in both cases n = 0, . . . , N − 1 and i = 1, . . . , m.

We have the following error bound for the nonlinear problem. Here the restriction to the two-stage
Radau IIA method stems from Lemma 3.2.

Proposition 5.3 Let the nonlinear function g be continuous, strictly monotone and have at most cubic
growth. Suppose that the solution u to the problems (5.1) and (5.2) is sufficiently regular.

Consider the time discretization (5.7) and (5.10) by the two-stage Radau IIA convolution quadrature
method. Then, there is τ̄ > 0 such that for step sizes 0 < τ � τ̄ , the error in the boundary values
satisfies the bound

‖γ +uτ − γ +u‖�τ
2(0:N;H1/2(Γ )2) � Cτ 3, (5.18)
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RUNGE–KUTTA CONVOLUTION COERCIVITY 17

and the error in the exterior domain is bounded by

‖uτ − u‖�τ
2(0:N;H1(Ω+)2) � Cτ 3/2. (5.19)

The constants C are independent of τ and N with 0 < Nτ � T , but depend on T .

Proof. We eliminate ϕ in the system of boundary integral equations (5.5) to arrive at a boundary integral
equation for Ψ ,

L(∂t)Ψ + g(Ψ + u̇inc) = ∂+
ν uinc, (5.20)

where

L(s) = s−1
(

W(s) −
(

1
2 I − KT(s)

)
V(s)−1

(
1
2 I − K(s)

))
= −s−1DtN+(s)

with the exterior Dirichlet-to-Neumann operator DtN+(s). It follows from Propositions 17 and 18 (and
their proofs) in the study by Laliena & Sayas (2009) that, for Re s � σ > 0, there exist C(σ ) and
α(σ) > 0 such that

‖L(s)‖H−1/2(Γ )←H1/2(Γ ) � C(σ )
|s|

Re s
, (5.21)

Re 〈Ψ , L(s)ψ〉 � α(σ)
Re s

|s|2 ‖Ψ ‖2
H1/2(Γ )

for all Ψ ∈ H1/2(Γ ), (5.22)

where 〈·, ·〉 denotes the anti-duality pairing between H−1/2(Γ ) and H1/2(Γ ).
Thanks to the composition rule we can do the same for the numerical discretization (5.7) and reduce

the numerical system to an equation for Ψ τ , which is just the convolution quadrature time discretization
of (5.20),

L
(
∂τ

t

)
Ψ τ + g(Ψ τ + u̇inc) = ∂+

ν uinc. (5.23)

For the error ε = Ψ τ − Ψ with Ψ = (
(Ψ (tn + ciτ))m

i=1

)N−1
n=0 we then have the error equation

L
(
∂τ

t

)
ε + g(Ψ τ + u̇inc) − g(Ψ + u̇inc) = d (5.24)

with the defect

d = L
(
∂τ

t

)
Ψ − (

(L(∂t)Ψ (tn + ciτ))m
i=1

)N−1
n=0 ,

which is the convolution quadrature error for L(∂t)Ψ . By Theorem 4.2 and our assumption of a
sufficiently regular Ψ = γ +u̇ this is bounded by

‖dn‖H−1/2(Γ ) � C τ 3 for 0 ≤ nτ � T .

Since we can apply the same argument also to spatial derivatives of Ψ (in the assumed case of a smooth
boundary Γ ) we even have

‖dn‖H1/2(Γ ) � C τ 3.
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18 L. BANJAI AND C. LUBICH

We test (5.24) with ε, multiply with e−2σ̃ t with σ̃ = 1/T and integrate from 0 to T . With (5.22) and the
Runge–Kutta convolution coercivity as given by Theorem 3.1 and with the strict monotonicity (5.24)
we conclude that

ατ

N∑
n=0

e−2σ̃nτ
∥∥∥
((

∂τ
t

)−1
ε
)

n

∥∥∥2

H1/2(Γ )
+ βτ

N∑
n=0

e−2σ̃nτ‖εn‖2
L2(Γ )

� τ

N∑
n=0

e−2σ̃nτ 〈εn, dn〉 (5.25)

and estimate further

〈εn, dn〉 � ‖εn‖L2(Γ ) ‖dn‖L2(Γ ) �
β

2
‖εn‖L2(Γ ) + 1

2β
‖dn‖2

L2(Γ ).

We thus find the stability estimate

∥∥∥(
∂τ

t

)−1
ε

∥∥∥
�τ

2(0:N;H1/2(Γ )2)
+ ‖ε‖�τ

2(0:N;L2(Γ )2) � C ‖d‖�τ
2(0:N;L2(Γ )2).

Since (∂τ
t )−1ε = γ +uτ − γ +u, this proves (5.18).

Let us denote by M(s) = S(s)V−1(s) : H1/2(Γ ) → H1(Ω+) the operator that maps Dirichlet data
in H1/2(Γ ) to the corresponding solution û ∈ H1(Ω+) of the Helmholtz equation s2û − Δû = 0. By
Sayas (2016, Equation (3.10)) this is bounded for Re s � σ > 0 by

‖M(s)‖H1(Ω+)←H1/2(Γ ) � C(σ )
|s|3/2

Re s
.

We then have

uτ − u = M(∂τ
t )γ +uτ −

((
M(∂t)γ

+u(tn + ciτ)
)2

i=1

)N−1

n=0

= M
(
∂τ

t

)
(γ +uτ − γ +u) +

(
M

(
∂τ

t

)
γ +u −

((
M(∂t)γ

+u(tn + ciτ)
)2

i=1

)N−1

n=0

)
.

By Theorem 4.2 and the bound for M the last term is bounded by O(τ 5/2) in the H1(Ω+) norm. The
first term is only O(τ 3/2) since we lose a factor τ 3/2 from the O(τ 3) error bound for γ +u because of
the O(|s|3/2) bound of M(s); this follows from Lemma 5.2 in the study by Banjai & Lubich (2011) and
Parseval’s identity. �

In a similar way we obtain the following results for the alternative discretizations (5.8) and (5.9):
(i) In addition to Proposition 5.3 assume that g has bounded second derivatives. With the discretiza-

tion (5.8) instead of (5.7) the error bound in the H1(Ω+) norm improves to O(τ 5/2), and the �τ
2 error in

a point x bounded away from the boundary Γ is at most O(τ ).
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(ii) In addition to Proposition 5.3 assume that g has bounded second and third derivatives. With the
discretization (5.9) instead of (5.7) the error bound in the H1(Ω+) norm improves to O(τ 3), and the �τ

2
error in a point x bounded away from the boundary Γ is at most O(τ 2).

The proofs of these error bounds are very similar to that of Proposition 5.3, using in addition a
discrete Gronwall inequality at the end of the estimation of ε, and an O(|s|3) bound for the norm of
the operator from H1/2(Γ ) → C that maps Dirichlet data to the solution of the Helmholtz equation
s2û − Δû = 0 at a point x ∈ Ω+ bounded away from Γ , for s in a right half-plane. Since our main
concern here is to illustrate the use of the convolution coercivity we omit the details of these extensions.

Remark 5.1 If we set L̃(s) = L(s+σ) and ψ̃(t) = e−σ tΨ (t) for some σ > 0 then the boundary integral
equation (5.20) is equivalent to

(̃
L(∂t)Ψ̃

)
(t) + e−σ tg(eσ tΨ̃ (t) + u̇inc(t)) = e−σ t∂+

ν uinc(t). (5.26)

By (5.22) we then have the coercivity estimate for L̃(s) for all Re s � 0 (and not just for Re s � σ ):

Re 〈Ψ , L̃(s)Ψ 〉 � α(σ)
Re s + σ

|s + σ |2 ‖Ψ ‖2
H1/2(Γ )

for all Ψ ∈ H1/2(Γ ).

By Theorem 3.1 the coercivity estimate for the convolution quadrature approximation of L̃(∂t)Ψ̃ is
then obtained for every algebraically stable Runge–Kutta method (and not just the two-stage Radau IIA
method). Hence, by discretising the shifted boundary integral equation (5.26) on an interval [0, T] with
shift σ = 1/T , we obtain Runge–Kutta-based convolution quadrature time discretizations of arbitrarily
high order of convergence (assuming sufficient regularity of the exact solution). We remark that similar
shifts are familiar in the convergence analysis of space-time Galerkin methods for time-dependent
boundary integral equations (Bamberger & Ha-Duong, 1986). As in that case numerical experiments
indicate that implementing the shift may not be necessary in practical computations, although this is not
backed by theory.

6. Numerical experiments

6.1 Scattering by the unit sphere

In these experiments we let Ω+ be the exterior of the unit sphere and the trace of the incident wave
uinc on the sphere be space independent. As constant functions are eigenfunctions of all the integral
operators on the sphere (Nédélec, 2001) the solution will also be constant in space. The eigenvalue for
the combined operator L(s) in (5.20) is given by

L(s)Ψ̂ = −s−1DtN+(s)Ψ̂ =
(

1 + 1

s

)
Ψ̂ , (6.1)

for any Ψ̂ constant in space. This operator will reflect well the behaviour of scattering by a convex
obstacle, but not that of a general scatterer. For this reason we concentrate on the corresponding interior
problem with

L−(s)Ψ̂ = s−1DtN−(s)Ψ̂ =
(

−1

s
+ 1 + e−2s

1 − e−2s

)
Ψ̂ , (6.2)
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Fig. 1. Convergence of the error for the two-stage Radau IIA method with the two different nonlinear impedance conditions.

again for Ψ̂ constant. Treating both these operators as scalar, complex valued functions of s we see that
both have a better behaviour than the general operators, see (5.21) and (5.22). Namely,

|L(s)| � C(σ ), Re L(s) � 1

and

|L−(s)| � C(σ ), Re L−(s) � α(σ).

As the operator L(s) is too simple, in the numerical experiments we only consider the scalar, nonlinear
equation

L−(∂t)Ψ + g(Ψ + u̇inc) = 0. (6.3)

Even though these operators are of such a simple form, due to the nonlinearity the exact solution is
not available. Nevertheless, a highly accurate solution is not expensive to evaluate and can be used to
compute the error in the �τ

2 norm at time steps tn. We have performed the numerical experiments with
the following choices of g and uinc

g1(ξ) = 1
4ξ + ξ |ξ |, g2(ξ) = 1

4ξ + ξ3, uinc(t) = 2e−10(t−5/2)2

and with final time T = 6. Note that g1 is once continuously differentiable whereas g2 is infinitely
differentiable. The data uinc is not causal, but it is vanishingly small for t < 0 and we have found that
this discrepancy has no significant effect on the results.

In Fig. 1 we show the convergence of the two-stage Radau IIA convolution quadrature in the �τ
2 norm

at tn. As expected, for the smooth nonlinear boundary condition we obtain full order of convergence. For
the nonsmooth boundary condition the solution is less smooth and the order of convergence is reduced.
To investigate this further the solution and its first derivative are shown in Fig. 2. Note that the two
solutions have a similar shape, but a closer look at the derivative in Fig. 3 reveals that one is smooth and
the other only once continuously differentiable.

Downloaded from https://academic.oup.com/imajna/advance-article-abstract/doi/10.1093/imanum/dry033/5032994
by Heriot-Watt University user
on 13 June 2018



RUNGE–KUTTA CONVOLUTION COERCIVITY 21

Fig. 2. We show the solution and its first derivative. On the left is the solution with the once continuously differentiable impedance
g1 and on the right with the smooth impedance g2.

Fig. 3. A closer look at the derivatives of the solutions reveals the differing smoothness.

Fig. 4. A closer look at the derivatives of the solutions reveals the differing smoothness.
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Fig. 5. Scattering of a plane wave by an L-shaped domain with a nonlinear impedance condition.

For the exterior as Re L(s) � 1 the theory also applies to higher order Radau IIA methods. This is,
however, not the case with L−(s). We nevertheless perform experiments with the three-stage Radau IIA
method and obtain good results as shown in Fig. 4. For the smooth case we again obtain full convergence
order, which in this case is of order 5. For the less smooth case we obtain the same reduced convergence
order as with the two-stage Radau IIA method, but a better error constant.

6.2 A fully nonscalar example

We end the paper with a two-dimensional example that requires the full BEM discretization in space.
The domain is an L-shape and the incident wave is a plane wave. Piecewise linear boundary element
space is used to approximate the Dirichlet trace Ψ and piecewise constant boundary element space to
approximate the Neumann trace ϕ and the time-discretization is performed using the two-stage Radau
IIA method. We have set the incident wave to

uinc(x, t) = −2e−100(x1+t−3)2
, x = (x1, x2), t � 0,

and the boundary function g to the less smooth case g1. The images of the solution are shown in Fig. 5.
To estimate the error we fix the dimension of both boundary element spaces to 1.2 × 103 degrees
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Fig. 6. Convergence of the error (6.4) with decreasing τj.

of freedom and compute the solutions until time T = 2 with decreasing time steps τj = T/Nj, Nj =
5, 10, 20, 40, 80. The error is then estimated by computing

errorj = ‖γ +uτj+1 − γ +uτj‖�τ
2(0:N;H1/2(Γ )) =

⎛
⎝τj

Nj∑
n=0

‖γ +uτj+1(tn) − γ +uτj(tn)‖2
H1/2(Γ )

⎞
⎠

1/2

. (6.4)

The H1/2 norm is computed by using the equivalence of norms ‖φ‖2
H1/2(Γ )

∼ Re 〈φ, W(1)φ〉Γ . This
equivalence follows from the continuity properties of the hypersingular operator and the coercivity of
W(s) on H1/2(Γ ) for Re s > 0; see Sayas (2016). The convergence of this error estimate is shown in
Fig. 6. The convergence order is not as clear as in the scalar case, but as expected, indicates a lower than
optimal order.
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