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Abstract: Over the last few years, the operation of the Furnas Hydropower Plant (HPP) reservoir,
located in the Grande River Basin, has been threatened due to a significant reduction in inflow.
In the region, hydrological modelling tools are being used and tested to support decision making
and water sustainability. In this study, the streamflow was modelled in the area of direct influence
of the Furnas HPP reservoir, and the Soil and Water Assessment Tool (SWAT) model performance
was verified for studies in the region. Analyses of sensitivity and uncertainty were undertaken
using the Sequential Uncertainty Fitting algorithm (SUFI-2) with a Calibration Uncertainty Program
(SWAT-CUP). The hydrological modelling, at a monthly scale, presented good results in the calibration
(NS 0.86), with a slight reduction of the coefficient in the validation period (NS 0.64). The results
suggested that this tool could be applied in future hydrological studies in the region of study.
With the consideration that special attention should be given to the historical series used in the
calibration and validation of the models. It is important to note that this region has high demands for
water resources, primarily for agricultural use. Water demands must also be taken into account in
future hydrological simulations. The validation of this methodology led to important contributions
to the management of water resources in regions with tropical climates, whose climatological and
geological reality resembles the one studied here.

Keywords: hydrological modelling; hydroelectric reservoir; SWAT model; streamflow

1. Introduction

Hydrological changes are mainly being associated with climate change and changes in land use
and cover [1–3]. Climate change has impacts on precipitation and evapotranspiration, which interfere
with the amount of water available in the soil [2]. However, changes in soil use can interfere with the
contribution of rainfall to runoff, affecting the main hydrological components: groundwater recharge,

Water 2018, 10, 458; doi:10.3390/w10040458 www.mdpi.com/journal/water

http://www.mdpi.com/journal/water
http://www.mdpi.com
https://orcid.org/0000-0001-8041-7671
http://dx.doi.org/10.3390/w10\num [minimum-integer-digits = 2]{4}\num [minimum-integer-digits = 4]{458}
http://www.mdpi.com/journal/water
http://www.mdpi.com/2073-4441/10/4/458?type=check_update&version=2


Water 2018, 10, 458 2 of 13

surface runoff, evaporation, and infiltration [4]. This is similar to what has been observed in the
Tana Basin in Ethiopia, where declining native vegetation and agricultural expansion has altered
groundwater flow and runoff, significantly affecting streamflow [5].

The Grande River Basin has been the subject of hydrological modelling [6–9] due to its importance
in the production of electric energy in Brazil. It is located in a region with a high demand for
water resources, not only for hydroelectric plants, but also for industrial use and agriculture [10].
Due to climate change and changes in land use and cover the water resources in the region are
becoming growingly vulnerable. This has concerned the managers of the energy generation sector,
and has been the focus of plans focused on water sustainability [11].

According to studies conducted in the Rio Grande Basin region, the replacement of the remaining
forests with grasslands could increase the streamflow rate by up to 157 mm year−1, resulting in
an increased flood risk [6]. An increase in the average air temperature may also impact the average
annual discharge of the rivers, and the change may vary between +8 and +51% in relation to the years
1961–1990 [9]. However, Viola et al. [7] showed a possible reduction in the flow between the years
2011 and 2040. From 2040 onwards, the average annual flow may increase. Similar results were found
by Ribeiro Junior et al. [8]. Hydrological changes are related to intra-annual changes in precipitation.
In late winter and early spring, the period of recession of flow caused by reduced precipitation can
affect the dynamics of groundwater, directly impacting the flow of rivers. In summer, the increase in
rain can impact the flood regime [7].

Hydrological modelling using the Soil and Water Assessment Tool (SWAT) has been widely used in
other countries, and has presented valuable results for streamflow simulation. In Brazil, the application
of SWAT in some regions is still limited, as in the Grande River Basin [12]. Thus, the objectives of
this study are: (1) to model the streamflow in the area of direct influence of the Furnas HPP reservoir;
(2) to verify the performance of the SWAT model in the flow simulation of the region; (3) to contribute
to the behaviour understanding of tropical zones; and (4) to model from an unpublished database that
is of high complexity.

2. Materials and Methodology

2.1. Area of Study

The study was carried out in the area of direct influence of the Furnas HPP reservoir (16,252 km2).
The reservoir is located in the Grande River Basin, in the southeastern region of Brazil (Latitude
−20◦67′ and Longitude −46◦32′). The Furnas reservoir is one of the largest Brazilian reservoirs,
with a maximum extension of 220 km and a usable volume of 17.217 billion m3 of water, which has
faced a significant reduction from 2012 [13].

The predominant climate in the region is tropical of altitude (a variation of the tropical climate).
It has the typical climate of mountainous regions, with rains in summer and drought in winter,
as well as mild temperatures with narrow variations (annual averages between 21 and 23 ◦C) [14]
and an annual average precipitation between 16 and 296 mm. The location of the study area is shown
in Figure 1.

2.2. Hydrological Modelling

SWAT, version 2012, was used in the simulation of the Furnas reservoir’s streamflow. In the case
of large basins, the SWAT model divides the basin into smaller areas (sub-basins). The limits of
the basin, sub-basin, and flow network were defined based on the information provided by the
Digital Elevation Model (DEM). An exclusion approach was adopted to control the number of HRUs
(Hydrological Response Units); excluding areas of land use, soil types, and negligible slope degrees
(minimum limits 20%, 10%, and 20%, respectively). Thus, 290 HRUs were generated combining the
information on soil type, declivity, land use and land cover. In this study, the Curve Number (CN)
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method was adopted to estimate the surface runoff, while the Penman–Monteith method was used to
estimate evapotranspiration.

Figure 1. Map of study area: Grande River Basin, Furnas HPP (Hydropower Plant) reservoir, Brazil.

2.3. Input Data for the Simulation

The data needed to develop the model were gathered by the following: The Digital Terrain
Elevation Model (Figure 2a); soil type (Figure 2b); land use and land coverage data (Figure 2c);
and weather information. Georeferenced files were obtained through the State System of
Geoinformations (SIEG). The files were treated using the ArcGIS software, associated with SWAT,
and later thematic maps were generated.

Figure 2. Cont.
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Figure 2. Spatial input data. (a) Digital elevation model (DEM); (b) Soils; (c) Land use.

Twelve categories of soil type were considered; where the most observed soils in the studied
area were dystrophic Red Latosol (32.5%), dystrophic Red Argisol (19.8%), and dystrophic Haplic
Cambisol (18.9%). The category of dystrophic Red Latosol presents the following main characteristics:
high infiltration rate; high degree of resistance and tolerance to erosion; and low surface runoff potential.
Physical–hydrological characteristics of the soil were obtained from the literature [15,16], due to the
absence of field data for the study area. Based on the studies of Sartori et al. [17], hydrologic soil
groups were included. Each type of land use and cover was associated with the existing information
in the SWAT database (Table 1).
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Table 1. Types of land use and land coverage found in the basin.

Land Use and Land Cover SWAT Area (km2) Relative Area (%)

Forest Forest ever green (FRSE) 6270.75 38.58%
Soil with no vegetation cover Rock outcrop 2573.54 15.83%

Agriculture Agricultural and generic (AGRL) 2343.41 14.42%
Pasture Pasture (PAST) 2092.06 12.87%

Range grasses Range grasses (RNGE) 1798.37 11.07%
Water bodies Water (WATR) 1174.42 7.23%

The climate data (precipitation, temperature, relative humidity, wind speed, and total insolation)
of two weather stations (Table 2) were extracted from the database of the Brazilian Institute of
Meteorology [18]. Total insolation data were used to calculate solar radiation [19]. The historical series
of climate data used incorporated a 16 year period (January 1998–December 2013). Existing faults
were filled by the statistical climate generator function of SWAT (WXGEN). The necessary streamflow
data for calibration and validation processes were obtained by the National Water Agency [20] and the
fluviometric station, located at the outlet of the Grande River Basin, in the drainage area of the
Furnas reservoir. Mann–Kendall and Pettitt tests were applied to verify the behaviour of the data.
The Mann–Kendall test verified the significance and direction of the data trend [21], and the Pettitt test
identified the change-point [22]. The data decomposition was used to visualize the seasonal behaviour
and changes in the trend over time.

Table 2. Location of weather stations.

Weather Station Identification Latitude Longitude Elevation (m)

Lavras 83687 −21◦75′ −45◦00′ 918.84
Machado 83683 −21◦66′ −45◦91′ 873.35

2.4. Calibration and Validation of the Model

The processes of calibration and validation of the monthly streamflow were based on the general
guidelines for the calibration protocol of the distributed models, as proposed by Abbaspour et al. [23],
and discussed by Rouholahnejad et al. [24], Arnold et al. [25], Abbaspour [26], and Abbaspour et al. [27].
The warm-up period of the model was two years (1998–1999), whereas, at least a year was required for
the variables under study to be free of the initial conditions, as the uncertainties related to moisture [25].
The calibration period was from 2000 to 2010 and the validation period 2011–2013.

Based on the relevant literature, the main parameters relating to hydrological processes to
be included in the analysis of sensitivity, as well as the initial limits of these parameters [25,28],
were identified. Some parameters, such as those relating to snow and temperature variation
(SFTMP—Snowfall temperature, SMFMN—Minimum melt rate for snow during the year,
SMFMX—Maximum melt rate for snow during, SMTMP—Snow melt base temperature, TIMP—Snow
pack temperature lag factor, and TLAPS—Temperature laps rate), were not included, as they do not
apply to the basin under study.

In the analysis of sensitivity and uncertainty, the SWAT-CUP software and the SUFI-2 algorithm
were used. Through iterative processes, the algorithm performs the mapping of all uncertainties
such as conceptual model, inputs the data and hydrologic parameters [23]. The goodness-of-fit of the
model was obtained by analysis of two indices: P-factor and R-factor. The P-factor is the percentage
of the measured data bracketed by the 95% prediction of uncertainty (95PPU). The P-factor varies
from 0 to 1. The R-factor indicates the thickness of the 95PPU and assesses the quality of calibration.
The R-factor is the ratio of the average width of the 95PPU band and the standard deviation of the
measured variable. In hydrological modelling, more specifically for streamflow, a P-factor greater than
0.7 and an R-factor less than 1.5 are desirable. The range of hydrological parameters was taken as
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calibrated when satisfactory values of the two factors were found, or when the objective function did
not show improvement [23,24,27].

In this study, the Nash-Sutcliffe coefficient was adopted as the objective function [29,30], as it’s one
of the most widely used tests for calibration and validation of hydrological models [12,31,32].
The application of the guidelines for evaluating the model performance varies according to the
model calibration procedure, the quantity and quality of the measured data, and the evaluation time
(monthly or daily) [33]. Thus the Nash-Sutcliffe coefficient (Equation (1)) was adopted as the objective
function as it fits the model for monthly streamflow, minimising the magnitude of the residual variance.

NS = 1−
[

∑n
i = 1 (yi − ŷi)

2

∑n
i = 1 (yi − yi)

2

]
(1)

where yi is streamflow observed; ŷi is streamflow simulated; yi is mean streamflow observed; and n is
the total number of observations.

NS values can vary between −∞ and 1.0, in which NS = 1 is considered a great value.
Moriasi et al. [33] presented the following classification for monthly assessments: NS > 0.75,
model considered very good; 0.65 < NS ≤ 0.75, model considered good; 0.50 < NS ≤ 0.65, satisfactory
model; NS ≤ 0.50, unsatisfactory model.

3. Results and Discussion

3.1. Statistical Analysis of Affluent Flow

In the period from 2000 to 2015, the minimum recorded streamflow was 101 m3 s−1 (in 2014),
and the maximum recorded streamflow was 3282 m3 s−1 (in 2007). The average recorded streamflow
during this period was 772.20 m3·s−1, with a standard deviation of 561.27m3 s−1 and a variation
coefficient of 72.69%; indicating a high variability in streamflow.

Streamflow variability was higher in January, February, March, and December (Figure 3). The least
amount of variability occurred between April and November; corresponding to the months of the
year with smaller streamflow. In these months, the flow of the river is maintained by water reserves
of groundwater, especially from aquifers, as is the case in Guarani, where the study area is located.
A few outliers were observed in April, September, and October.

Figure 3. Boxplot of the average monthly streamflow to the Furnas HPP reservoir (2000–2015).

With a 95% certainty, the Mann–Kendall test shows that the streamflow tends to reduce
(p-value = 0.042). The decomposition in the series is presented to illustrate the seasonality of the
region and its trend (Figure 4). There is no tendency in precipitation (p-value = 0.799). As this same
trend is not presented with respect to precipitation, other factors may be affecting the reduction in
streamflow in recent years, such as changes in land use and land cover, as well as the demand for
irrigation upstream of the area under study [5]. Thus, in the SWAT modelling, the years 2014 and
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2015 were not used, because for model validation and calibration, the streamflow should have the
same behavior [34].

Figure 4. Trend and seasonal decomposition of the historical series (2000–2015): (a) precipitation;
(b) monthly average streamflow observed in the basin outlet (area of direct influence of the Furnas
HPP reservoir).

3.2. Calibration and Uncertainty Analysis

We considered the parameters of greater sensitivity in SWAT for the determination of
streamflow [25,28], nine parameters presented greater sensitivity to the basin under study (Table 3).

Table 3. Parameters used in the sensitivity analysis.

Parameters Description Sensitivity t-Stat p-Value

CN2 SCS Curve-Number 1 10.53769 0.00000

CH_N1 Manning coefficient for channel 2 4.02983 0.00008

ALPHA_BF Baseflow alpha factor 3 −3.86277 0.00016

GW_REVAP Groundwater ‘revap’ coefficient 4 −3.16755 0.00180

GW_DELAY Groundwater delay 5 −2.80554 0.00557

SLSUBBSN Average slope length 6 −2.56703 0.01106

RCHRG-DP Groundwater recharge to deep aquifer 7 2.56228 0.01121

GWQMN Threshold depth of water in the shallow aquifer required for return
flow to occur 8 −2.27961 0.02379

EPCO Plant evaporation compensation factor 9 1.83609 0.06798

CH_K2 Effective hydraulic conductivity in main channel alluvium 10 0.89169 0.37374

ESCO Soil evaporation compensation factor 11 0.66450 0.50721

REVAPMN Threshold depth of water in the shallow aquifer for ‘revap’ to occur 12 0.62086 0.53547

CANMX Maximum canopy index 13 0.59088 0.55533

SOL_K Soil conductivity 14 −0.50031 0.61746

BIOMIX Biological mixing efficiency 15 0.38710 0.69913

SURLAG Surface runoff lag coefficient 16 0.22463 0.82252

SOL_AWC Available water capacity of the soil layer 17 −0.17984 0.85747
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Arnold et al. [25] pointed out that the parameters more frequently used in the calibration of
surface runoff and base flow were CN2, SOL_AWC, ESCO, EPCO, SURLAG, OV_N, GW_ALPHA,
GW_REVAP, GW_DELAY, GW_QMN, REVAPMIN, and RCHARG_DP.

The results of the sensitivity analysis (Table 3) and the calibration (Table 4) showed the importance
of parameters, such as CN2 and ALPHA_BF (groundwater parameter) in the studied flow of the
analysed region. The parameter CN2 is related to the quantity of runoff, and is based on the soil use,
soil type, and the antecedents of humidity.

Table 4. Main hydrological parameters and values used in calibration.

Parameter Minimum Value (Initial) Maximum Value (Initial) Calibrated Value

CN2 35 98 68.41
CH_N 0.01 0.5 0.23

ALPHA_BF 0 1 0.04
GW_REVAP 0.02 0.2 0.14
GW_DELAY 30 300 77.92
SLSUBBSN 10 150 31.87

RCHRG_DP 0 1 0.32
GWQMN 0 5000 62.50

EPCO 0 1 0.88

The analysis of the results (Table 5), show that the positive values of PBIAS indicate a tendency of
the model to underestimate the streamflow by 1.10%. Moreover, a NS value of 0.86, and a R2 value of
0.87, suggest that the model is suitable for the simulation of streamflow, based on the classification
proposed by Moriasi et al. [33].

Table 5. Precision of the monthly streamflow simulation (calibration and validation).

Precision Statistics Calibration Validation

NS—Nash-Sutcliffe efficiency coefficient 0.86 0.64
R2—Coefficient of determination 0.87 0.66

PBIAS (%)—Percent bias 1.10 6.10

The calibration of the model depends on factors such as the model inputs, the analyst’s
assumptions, the model structure, and the calibration algorithm. Therefore, uncertainty analysis
is required to assess the quality of fit that the model calibrated. In SWAT-CUP, the quality of the
measurements is associated with the percentage of the observation points bracketed by the prediction
uncertainty band (95PPU). Thus, high-quality measurements are considered to be those in which more
than 80% of the measured data can be bracketed by the 95PPU. For instance, if only 50% of the data
are bracketed for having uncertainty of prediction, it would indicate the existence of many outliers,
and consequently the measurements would be considered of low quality [23,27].

For the streamflow calibration, 94% of the measured data were included in the bracketed of
uncertainty of prediction (95PPU), with a 6% model error. The model satisfactorily estimated the
streamflow in the Grande River Basin, but had some difficulties obtaining streamflow peaks and
detecting small changes in the minimum streamflow.

It is worth mentioning that the parameters relating to land use were included from the available
values of the SWAT database, which may have interfered with the adjustment of the model, specifically
in relation to the minimum streamflow. In addition, the parameters of the soil types were adopted
based on the relevant literature [16].

In general, the model presents a good correlation between the precipitation and streamflow data,
as shown in the hydrographs (Figure 5). The greatest precipitation events were reflected in the peak
streamflow, and the base streamflow was also well represented when the rainfall volume decreased.
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The calibration assisted the improvement of the adjustment of minimum streamflow in relation
to the initial simulation. The minimum observed streamflow (2000–2010) corresponded to 213 m3

s−1, which occurred in 2001, a period of energy crisis in Brazil. For this same period, the minimum
simulated streamflow corresponded to 15 m3 s−1. Peak adjustment efficiency was not significant,
the peaks were underestimated or overestimated over the years, corresponding to 3282 m3 s−1 for
observed streamflow and 3267 m3·s−1 for simulated streamflow. The difficulties relating to the
adjustment of the streamflow peaks are likely due to the high spatial and temporal variability of
precipitation in the study area [35].

Figure 5. Hydrographs for the monthly average streamflow estimated by the SWAT, and monthly
average streamflow observed for the calibration period (2000–2010) and validation (2011–2013).

3.3. Model Validation

In the model validation step the same hydrological parameters set during calibration were
used, the climatic parameters were changed to function with the new period of data used:
January 2011–December 2013. The hydrographs (Figure 5) represent the simulated streamflow
behaviour, in relation to the observed streamflow and the uncertainties of the model (95PPU).

Overall, the observed streamflow matched well with the simulated streamflow; although
there were difficulties representing some of the streamflow peaks during the validation period;
some variation was also observed during the calibration period. The model failed to satisfactorily
represent in the validation stage; mainly in the streamflow peak observed in 2012.

The values of the statistical coefficients (NS and R2) for the validation period were considerably
smaller than the values found for the calibration (Table 5). However, the model was considered
satisfactory according to the classification proposed by Moriasi et al. [33].

The P-factor ranged from 0.94 (calibration) to 0.69 (validation), and the R-factor ranged from 1.59
(calibration) to 1.53 (validation). Abbaspour et al. [23] recommended the adoption of a value of P-factor
greater than 0.7, and a value of R-factor smaller than 1.5. Nevertheless, the authors highlighted that
these values may vary depending on the suitability of the input data and model calibration.

Ghobadi et al. [36] simulated the hydrological processes of the Karkheh river basin, Iran, using the
SWAT-CUP for the calibration process and the analysis of uncertainties; the authors obtained values of
the model assessment parameters that were slightly below the recommended values. They correlated
the inaccuracies of the simulated results with the inadequate accounting of water use in the agricultural
and industrial areas of the basin under analysis.

Pereira et al. [35], used trial-and-error processes during the calibration and validation of
hydrological modelling when applied to daily streamflow of the Pomba River Basin, Brazil,
and obtained acceptable results according to the literature: a NS value of 0.76 and a PBIAS value of 4.6%
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during calibration; and a NS value of 0.76 and a PBIAS value of 5.1% during validation. These results
indicate that the values of peak streamflow would be better represented if there were improvements in
the representativeness of the precipitation.

According to Abbaspour et al. [27], a watershed model cannot be fully validated, as there may be
conditions in the watershed that are not taken in consideration during modelling (e.g., changes to the
use of water for irrigation). Concurring with the authors, these uncertainties can lead to unsatisfactory
results and make validation a major challenge to the model analyst.

Faramarzi et al. [37], commented that the uncertainties in hydrological modelling may be related
to factors such as irrigation; wastewater discharges (urban and industrial); interaction between surface
water and groundwater. Abbaspour et al. [24] added to these uncertainties: the quality of input data.
Setegn et al. [38] highlighted the critical aspects of the uncertainties in relation to climatic parameters;
especially precipitation and temperature.

4. Discussions

In this study, the hydrological SWAT model was used to simulate the streamflow of the Furnas
HPP reservoir. The performance of the SWAT model for the simulation of the affluent flow was
statistically satisfactory; indicating that the model is able to represent the hydrological processes of the
basin under study, and can be used in scenario analysis. Thus, its application can help to determine
the policies for use and occupation of the soil surrounding the basin, and for the management of water
resources in the region. This has the potential to directly impact the availability of water for power
generation. Based on that information, managers can conduct hydrological assessments allowing
adaptation strategies.

The model produced more satisfactory results for calibration than for validation, which may be
related to the representativeness of the precipitation data and other conditions that are not modelled,
such as the use of water for irrigation. For a better estimate of the extreme streamflow values, the model
needs to be improved, specifically, the representativeness of the precipitation; the model needs to take
into account data from rainfall stations over larger ranges, in order to be more thoroughly distributed
throughout the basin.

The historical series analysis showed a trend of affluent flow reduction, which was reflected in the
useful volume of the Furnas HPP reservoir for the same years. This trend of reduction was not clearly
identified in the breakdown of the historical series of precipitation. Although rainfall is one of the
main variables that influences streamflow (especially in extreme values), there are other factors that
may interfere in the reduction of the streamflow rate of the studied basin, such as the increase in water
volume used for agricultural irrigation, and the changes in land use and land coverage; justifying the
tendency for the reduction in the affluent flow.

The determination of more sensitive hydrological parameters contributed to a better
understanding of the hydrological regime in the watershed. Thus, the parameters that most
interfered with the streamflow prediction results were identified (e.g., CN2, CH_N1, and ALPHA_BF).
These parameters are related to the contribution of groundwater to runoff, and consequently
to streamflow.

5. Conclusions

One of the limitations to the application of SWAT modelling in the Grande River Basin was the data
availability, primarily of historical series of precipitation and streamflow. This limitation is related to
the limited number of measurement stations, their distribution along the basin, and the size of the time
series. More satisfactory data availability, would allow for better spatial representativeness of rainfall
and better calibration of the different sub-basins, improving predictions and decreasing uncertainties.

The database used in the simulations is robust and unprecedented for Brazil, and the study has
had a considerable contribution to the country. This is because hydroelectric plants are the main
sources of electricity, and one of the main sources of renewable energy. However, few hydroelectric
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plants have this kind of data base to subsidize their maintenance and generation potential. In addition,
this is an important collaboration for areas located in a tropical climate region, such as Brazil.
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