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Extending a Gray Lattice 
Boltzmann Model for Simulating 
Fluid Flow in Multi-Scale Porous 
Media
Jiujiang Zhu  1 & Jingsheng Ma2

A gray lattice Boltzmann model has previously been developed by the authors of this article to 
simulate fluid flow in porous media that contain both resolved pores and grains as well as aggregates 
of unresolved smaller pores and grains. In this model, a single parameter is introduced to prescribe the 
amount of fluid to be bounced back at each aggregate cell. This model has been shown to recover Darcy-
Brinkman flow but with effective viscosity and permeability correlated through the model parameter. 
In this paper, we prove that the model parameter relates to the fraction of the solid phase of a sub-pore 
system for a specific set of bounce-back conditions. We introduce an additional parameter to the model, 
and this enables flow simulation in which cases with variable effective viscosity and permeability can be 
specified by selecting the two parameters independently. We verify and validate the model for layered 
channel cases and mathematically analyze fluid momentum and energy losses for the single- and two-
parameter models to explain the roles of the parameters in their conservation. We introduce a strategy 
to upgrade our model to an isotropic version. We discuss the fundamental differences between our 
model and the Brinkman body-force LBM scheme.

The pore systems of natural porous media, such as rocks and soils, are multi-scaled, containing pores and grains 
of variable sizes. Since not all pores and grains can be fully resolved in a grid-based model, grid cells need to 
represent resolved and unresolved pores and grains simultaneously. For each cell that contains an aggregate of 
unresolved pores and grains, the subscale effect of that aggregate on the fluid flow needs to be accounted for. In 
our previous work1, we reviewed several gray lattice Boltzmann models (GLBMs)2–5 of a BGK6 lattice type that 
have been developed for this purpose and proposed an improved single-parameter model. In this model, the 
parameter, denoted as ns, prescribes the amount of fluid particle to be bounced back at each cell. This model has 
been shown to recover Darcy-Brinkman flow and to possess better properties than its counterpart models in 
terms of the physical interpretability of the parameter as well as numerical accuracy and stability.

For convenience of the discussion to follow, we recap key steps of this model as follows.
Let f(ξ, r, t) denote the particle distribution function (PDF), meaning the probability of finding a fluid particle 

with a velocity ξ at location r at time t. Then, the Boltzmann equation reads
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where ρ is the mass density of the fluid, F is a body force applied per unit volume, τ is the relaxation time, and f eq 
is the equilibrium PDF. On a standard lattice of a DdQb stencil with directions eα(α = 1, 2, …, b), assume that the 
mass of each particle is m, the length of the space lattice is Δx, the time step is Δt, and the velocity ξα = Δxeα. 
Then, define the following discrete variables:

f f t mf tr r( , ) ( , , ) (2)ξ= ≡α α α
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Then, our previous GLBM is defined for dimensionless quantities of the dimensional counterparts above (see 
Table 1 and related explanations) and consists of the following steps:

Collision step:
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Repartitioning step:
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Streaming step:
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Particularly for a D2Q9 lattice stencil, the equilibrium distribution takes the following form:
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where eα and wα can be found in the literature1.
In the reference paper1 and this paper, we use α to represent the direction opposite to α and “~” on the top of 

a variable to denote its dimensionless counterpart. Table 1 shows the definitions of the dimensionless variables 
used in the above equations. For any other dimensionless variable that appears in this article but not in the table, 
an implicit dimensionless-scaling rule is applied with respect to the corresponding base, which takes either Δt, 
Δx or ρc. For example, the dimensionless channel width can be defined as =

Δ
h H

x
, where H is the physical width 

of a channel.
In Eqs (3) and (6), t̃ , t̃ ⁎ and t̃ ⁎⁎ signify the cyclic transition of the operations, from prior-collision to collision, 

repartition, and streaming.
In our previous GLBM, there is a repartitioning step that accomplishes partial bouncing back as specified by 

ns. This model has been proved to recover the Darcy-Brinkman flow defined in Eq. (7)
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where νeff and κeff are the effective viscosity and effective permeability, respectively, and νf is the viscosity of fluid
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By analyzing our GLBM1 and one of the counterpart models5, we show mathematically that the relationship 
ns 1

s

s
= λ

λ+
 must hold, where λs is the model parameter of the counterpart GLBM. ns and λs are valid for 

0 ≤ ns ≤ 0.5 and 0 ≤ λs ≤ 1, respectively. λs is regarded by those authors5 as the local fraction of the solid phase. 
They acknowledged that, in reality, λs alone cannot determine how much fluid would be bounced back or repar-
titioned by the solid phase. At present, there is no proof of the existence of reasonable fluid and solid interaction 
conditions for this relationship to hold. This implies that even if the details of the local distribution of a pore 
structure are known, one would not know how to estimate ns at each cell.

The second limitation is that our single-parameter GLBM does not recover independent νeff and κeff. For a 
channel model filled with a homogenous and isotropic porous material, we show that νeff and κeff are related 
through ns for any given fluid whose viscosity must be prescribed by choosing an appropriate ⁎τ

 . Therefore, this 
single-parameter GLBM is inflexible and incapable of simulating fluid flow in porous media with independent νeff 
and κeff.

This paper aims to show how these two limitations can be overcome. We first prove that = λ
λ+

ns 1
s

s
 holds for a 

set of partial bounce-back conditions. Then, we introduce an additional parameter, η, to define a fraction of 
post-partition particles that are subject to streaming. We derive mathematic formulae for νeff and κeff with respect 
to ns, η and ⁎τ . For a channel model filled with a homogenous and isotropic porous material, we show that this 
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 ρc is reference mass density

Table 1. Definitions of dimensionless variables of GLBM.



www.nature.com/scientificreports/

3SCIEntIfIC REPORtS |  (2018) 8:5826  | DOI:10.1038/s41598-018-24151-2

two-parameter model allows one to adjust the two parameters independently to simulate the Darcy-Brinkman 
flow with realistic effective viscosity and permeability. We also derive mathematic formulae for fluid momentum 
and energy losses for our single- and two-parameter models to explain the roles of the parameters in their 
conservation.

In addition to validating our model numerically for layered channel cases, we examine the model accu-
racy and applicability with respect to the lattice orientation alignment relative to the channel direction. For the 
Brinkman body-force (BF) LBM scheme7,8, it is already known that the resultant Darcy-Brinkman flow has an 
angular-dependent effective viscosity coefficient9. We show that our model can be adopted further to eliminate 
this anisotropic effect.

The remainder of the paper is organized as follows. Section 2 proves the existence of a set of conditions for 
= λ

λ+
ns 1

s

s
 to hold. Section 3 introduces a two-parameter model and derives and examines the relationships of νeff 

and κeff with respect to ns, η and τ⁎. Section 4 presents numerical experiments for three cases. Section 5 examines 
the accuracy and applicability of the model on lattices whose cardinal directions are at 0° and 45° to the channel 
direction with respect to analytic solutions for a number of cases. As reported in9, there is a discrepancy between 
the numerical simulation of a BF scheme and its macroscopic equation recovered by Chapman Enskog expansion; 
even if the macroscopic parameter was kept as a constant, a different relaxation time resulted in a different veloc-
ity profile. In Section 5.3, we demonstrate that the GLBM proposed in this paper is consistent with the macro-
scopic equation recovered by this model. As long as the macroscopic parameters were kept constant, different 
model parameters exactly predicted the same velocity profile. In Section 5.4, we introduce a strategy to upgrade 
our model to recover isotropic flow on a non-channel-aligned lattice. This is then followed by a discussion 
(Section 6) in which the differences between our model and a body-forced LBM are revealed. The final section 
(Section 7) offers our conclusion.

Link between the fraction of fluid particles to be bounced back and the fraction of the 
solid phase
In our previous model1, ns was introduced as the sole model parameter to capture the effect of subscale porous 
media on fluid flow; its physical meaning is clearly defined as the fraction of fluid particles to be bounced back by 
the solid phase. This parameter needs to be estimated in order to use the model. In another single-parameter 
model5, λs was introduced as the model parameter, and it was interpreted by those authors as the fraction of the 
solid phase. In our work1, we proved that ns and λs are related via = λ

λ+
ns 1

s

s
 for any porous model with a homog-

enous and isotropic pore structure1. However, because λs alone cannot determine how much fluid would be 
bounced back or repartitioned by the solid phase without considering the structures of the pores, it is not clear 
under what conditions that relationship can be used to derive a reasonable estimate of ns.

For a homogenous and isotropic porous material, we show below that the relationship above holds for ns and 
λs under the following assumptions: (1) the fraction of fluid particles to be bounced back is a constant and equal 
to the volume fraction of the solid phase, and (2) the fluid particles that have already been bounced back may be 
repeatedly bounced back. Note that inside the local porous medium, the fluid particles are subject to repeated 
bouncing back such that the total number of fluid particles in an LB direction is the summation of all fluid parti-
cles that come out from that direction.

To prove this, let li denote the fraction of fluid particles that are valid for further bouncing back after the first i times 
of bouncing back; let si and bi denote the fraction of accumulated fluid particles that go forward and backward, respec-
tively. Based on the assumptions above, we have λ=b s1 , s 1 s1 λ= −  and λ=l s1  at i = 1. At i = 2, the fraction of fluid 
particles that have been bounced back, i.e., l1, will be bounced back again, and therefore, we have b b s2 1

2λ= − , 
λ= +s s s2 1
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Therefore, based on our previous results and Eq. (9), we can determine ns from the fraction of the solid phase 
as a reasonable estimate for a local homogenous and isotropic porous medium. This is important for the proposed 
application10.

A two-parameter GLBM
For any single-parameter GLBM, it is difficult to capture the full flow behaviors characterized by both the perme-
ability and effective viscosity11. Here, we introduce a two-parameter GLBM with an additional parameter to our 
single-parameter model to overcome this limitation. In the single-parameter model, recall that the post-collision 
fluid particles in each direction are divided into two proportions, defined by ns and 1 − ns; the former defines the 
amount to be bounced back, whereas the latter defines the amount to be allowed to pass through. Then, we define 
the extra parameter, η, to be the amount of post-partition particles for streaming. The precise role of η is explained 
as follows.

In our single-parameter model, 
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component, i.e., α = 0, with an increment of 


 f f(1 ) (1 )( )
c c

0 0η η ρ− ∑ = − −α α≠ . Therefore, the two-parameter 
model has a new repartitioning step defined in Eq. (10) below.
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Following the same procedure1, we can prove that the two-parameter model recovers the Darcy–Brinkman 
equation in the finite difference form as follows:
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When Eq. (11) converges to the Darcy–Brinkman equation, we prove that the effective viscosity and the effec-
tive permeability are given by Eqs (14) and (15), respectively. For a complete derivation, the reader is referred to 
Appendix A.
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Using Eqs (14) and (15) and (11) can be rewritten as
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Figure 1. Model domain and flow configuration.
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Numerical experiments
In this section, we perform three numerical experiments on a horizontal channel filled with a homogeneous and 
isotropic porous material, as shown in Figure 1. A D2Q9 implementation of the two-parameter model is used to 
simulate the fluid flow driven by a constant horizontal body force F( , 0) (0 0001 , 0)x 

 ρ= . ×  from zero velocity 
until it becomes steady. The channel is discretized into 101 nodes in the vertical direction and 20 nodes in the 
horizontal direction. A periodical boundary condition is applied in the −x~ direction, while solid wall boundaries 
at the left and right columns of the nodes are prescribed with the non-slip boundary condition12. The relaxation 
time is chosen to be 2τ =⁎

 .
We investigate the vertical profiles of the terminal velocity at the midpoint on the x-axis for three cases. In 

each case, we calculate the vertical profiles for two different media. Table 2 lists the parameters n( , )s η  for media A 
and B and calculates κeff  and νeff  using Eqs (14) and (15), respectively.

Figure 2 shows the velocity profiles for media A and B of Cases 1 to 3 in Table 2 on Rows 1 to 3, respectively. 
The left column shows an overall view of the profile; the details of the two velocity profiles near the left wall are 
shown in the right column. Note that the two plateau velocities are quite different because the two configurations 
lead to different permeability values.

Row 2 in Figure 2 shows the velocity profiles for media A and B in Case 2 on the left. Unlike Case 1, on Row 1, 
they are very close to each other at their plateaus and differ only near the boundary of the channel, as highlighted 
on the right. This is because the two configurations lead to similar permeability but different effective viscosity 
values.

Row 3 in Figure  2 shows the velocity profiles for media A and B in Case 3 on the left. Similar to Case 2, they 
are very close to each other and actually much closer in this case at their plateaus, but they still differ near the 
boundary of the channel, as highlighted on the right. Again, this is because the two configurations lead to identi-
cal permeability but two different effective viscosity values.

Case Medium ns η effκ effν

1
A 0.3333 0.3000 0.0556 1.2330

B 0.3333 0.8000 0.1819 1.6344

2
A 0.4444 0.8000 0.0488 4.1733

B 0.0909 0.1087 0.0488 0.6574

3
A 0.2500 0.4000 0.1250 0.9722

B 0.3750 0.8000 0.1250 2.0679

Table 2. Input parameters and calculated quantities for the three cases.

Figure 2. Left column: velocity profiles for Case 1 (Row 1), Case 2 (Row 2), and Case 3 (Row 3); Right column: 
zoom-in views of the velocity profiles at the left boundary for each case.
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It is of interest to note the relative differences of the velocity profiles close to the boundary in the right column 
on Row 2 and Row 3. In Case 2, the velocity for medium A is greater than that for B, but the opposite is true in 
Case 3. These differences reflect precisely the behaviors of the Darcy-Brinkmen flow close to a wall; according 
to Eq. (16), the velocity is related to the product of the effective viscosity and the curvature of the velocity. In 
either case, the permeability of both media is similar or identical, and thus, a smaller effective viscosity results in 
a greater velocity.

Numerical assessment of model accuracy and applicability
In this section, we assess the accuracy and applicability of our GLBM for modeling the Darcy-Brinkman flow 
in stratified channel models. In terms of the model accuracy, we compare the simulated velocity profiles of our 
model with analytical solutions of the Darcy-Brinkman flow. In terms of the model applicability, we consider one 
specific but critical aspect—the dependence of the simulated flow on the lattice cardinal orientation.

We combine the assessment of the accuracy and applicability for two three-layer stratified channel models 
with the same geometrical configuration shown in Figure 3 but different n( , )s η  values in Sections 5.1 and 5.2. 
Note that the middle unshaded layer is media1, defined by ηn( , )s1 1 , while the shaded layers at both sides are 
media2, defined by n( , )s2 2η . The widths of the three layers are h2  for the middle layer and h for both side layers. 
The two models differ in their ns in media1 and media2 with their values switched. Section 5.3 demonstrates that 
with different combinations of model parameters, the resultant velocity profiles are identical as long as the mac-
roscopic parameters are kept as constants. We provide a strategy to upgrade our model to an exact isotropic ver-
sion in Section 5.4.

In Sections 5.1 and 5.2, these two models are discretized using 45° diagonal lattices with different lattice den-
sities. Figure 4 shows a 45° diagonal lattice unit in the lattice coordinate system, where the distance from the local 
node of 0 to that of 1 is unity, the distance from the local node of 0 to that of 5 is 2 , and the same 9 particle 
streaming directions are defined in the local coordinate system ( , )ξ η



 . One model is discretized at a low lattice 
density so that there are 33 diagonal lattice units across, i.e., =ny 33, and 20 along the channel, i.e., nx 20= , as 
shown in Figure  5; the other model is discretized at a high lattice density so that there are 401 or 201 diagonal 

Figure 3. Sketch of a channel filled with two porous media.

Figure 4. 45° diagonal coordinate system.
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lattice units across, i.e., =ny 401 (or 201), and again nx 20= . Note that each lattice consists of two types of nodes, 
even and odd, at






= ∗ ≤ ≤
= ∗ ≤ ≤





x i i nx
y j j ny

2 0
2 0 (17)

and










= ∗ + ≤ <
= ∗ + ≤ <

x i i nx
y j j ny

2 1 0
2 1 0 (18)

Note that this setup is convenient for implementing boundary conditions on boundary nodes for the global 
coordination system  x y( , ), although the fluid is streamed following the local coordination system ξ η



( , ).
In Figure  5, the two green lines mark two respective implicit interfaces between the two porous media, and 

they are located halfway between the two boundary nodes of media1 and media2 at one side each. The joint nodes 
were assumed to be located within media2. To achieve a symmetrical velocity profile, media1 contains one more 
diagonal lattice unit than media2 so that media1 and media2 cover the same channel width h2 .

In terms of 


( , )ξ η  in Figure 4, the particles stream along 9 directions in the local coordinate system.

ξ
η

− − −
− − −

αe 0 1 2 3 4 5 6 7 8
0 1 0 1 0 1 1 1 1
0 0 1 0 1 1 1 1 1 (19)



In each model, both periodical flow boundary conditions (PBC) and non-slip no-flux conditions (NSNF) are 
applied at the channel sides in simulations. Note that along the channel, a periodical boundary condition is always 
applied. In 5.1 and 5.2, we derive the analytical solutions of velocity and simulated velocities for both models 
under periodical and non-slip no-flux flow boundary conditions. Table 3 lists all four simulation cases in Sections 
5.1 and 5.2. Note that we applied the same body force as in Section 4 in all simulations.

To derive the analytical solution, the Darcy-Brinkman flow is assumed to have been fully developed in every 
layer of media1 and media2 so that the following equations hold in the respective media:

Figure 5. Diagonal lattice setup for a periodical flow boundary channel with the specified channel geometry 
and discretization (nx = 20, ny = 33).

Case ns1 η1 ns2 η2 nx ny BC

1 0.4 0.9 0.2 0.6 20 33 PBC

2 0.2 0.9 0.4 0.6 20 401 PBC

3 0.4 0.9 0.2 0.6 20 33 NSNF

4 0.2 0.9 0.4 0.6 20 201 NSNF

Table 3. Simulation cases for stratified channel models.
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Figure 6 and Figure 7 show the simulated velocity profiles and corresponding analytical solutions for the two 
models for Cases 1 and 2, respectively. The left of Figure 7 shows the velocity profile for the whole channel, while 
the right shows the profile details at an interface.

With a Nonslip Boundary Condition. Assuming the channel flow satisfies the nonslip boundary 
conditions,

 

 − = =u h u h( 2 ) (2 ) 0 (31)2 2
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the analytical solution reads as
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Figure 6. Velocity profile for a periodical boundary channel discretized to have nx = 20 and ny = 33 on a 45° 
diagonal lattice.

Figure 7. Left: velocity profile for a periodical boundary channel discretized to have nx = 20 and ny = 401 on a 
45° diagonal lattice; Right: zoom-in view of the velocity profile about the left interface.
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To implement non-slip no-flux boundaries at both sides of the channel, as shown in Figure 8, two more solid 
diagonal nodes were added to each side of the boundaries. The velocity profiles for Case 3 are shown in Figure 9, 
while the velocity profiles for Case 4 are shown in Figure 10. The left of Figure 10 shows the velocity profile for the 
whole channel, while the right shows profile details about the left interface.

Our results above show that the simulated velocity is in good agreement with the analytical solution. This sug-
gests that the anisotropic effect that arises from the rotation of the coordination system is not significant for all the 
cases we examine here. Note that we do not tune the magnitude of our homogenous body force in any simulation.

Single Porous Media with a Nonslip Boundary Condition. Nie and Martys9 demonstrated that in a 
Brinkman-Force-Based (BF) LBM scheme, Chapman Enskog expansion does not give an effective viscosity to 
recover a correct Darcy-Brinkman equation. Note that the effective permeability was prescribed as an input 
parameter in the BF scheme. However, our model differs from the BF in that, in our model, both the effective 
viscosity and permeability are not prescribed or imposed but evolved. In what follows, we show that our model 
indeed produces velocity profiles in very good agreement with analytical profiles. As long as the macroscopic 
parameters, i.e., α and r, are kept constant (see Eq. (38) below), different combinations of the model parameters, 
as seen in Table 4, lead to exactly the same simulated velocity profile. In this section, we first derive an analytical 
velocity solution for a channel filled by a single porous media only and then compare that analytical velocity pro-
file with three simulated profiles in which the simulations take different model parameters but constant macro-
scopic parameters (see Table 4).

In the case of k 0eff
2 → , we have ≡ =u u 02 2

0
  . Eq. (32) reduces to

Figure 8. Diagonal lattice setup for a non-slip no-flow boundary condition channel with the specified channel 
geometry and discretization.
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For fluid flow in a single porous media channel with a nonslip boundary condition, define the macroscopic 
model parameters as follows:

Figure 9. Velocity profile for a non-slip no-flow boundary channel discretized to have nx = 20 and ny = 33 on a 
45° diagonal lattice.

Figure 10. (Left) Velocity profile for a nonslip no-flow boundary channel discretized to have nx = 20 and 
ny = 201 on a 45° diagonal lattice. (Right) A zoom-in view of the velocity profile around the left interface.
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Eq. (37) can be rewritten in terms of the macroscopic model parameters as
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In Table 4, α1 and r1 are fixed with variable model parameters and relaxation time ⁎τ  as

α
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1 1 1

1
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Then, the analytic solutions are identical for these three cases, i.e., Eq. (39). The simulation results compared 
with the corresponding analytic solutions are shown in Figure 11.

We also tested for two porous media channel flows with both periodical and nonslip boundary conditions, 
using different sets of model parameter combinations as listed in Table 4; all simulations result in the same veloc-
ity profile.

Upgrade to an Isotopic Gray Lattice Boltzmann Model. In previous studies9, He’s13 derivation method 
was used to derive the steady-state Darcy-Brinkman equation from the lattice Boltzmann simulation of a gener-
alized Naiver-Stokes equation8 with a force term that accounts for the Darcy flow effect of a homogenous porous 
medium, with fixed porosity and permeability, in a channel. Those authors showed that the effective viscosity 
coefficient in the steady-state Darcy-Brinkman equation depends on the orientation of the lattice with respect to 
the channel direction; it takes different values on a lattice that is orientated along a channel direction, referred to 

Figure 11. Velocity profile of a single porous media channel for Cases 1 to 3 in Table 4.

Case 

⁎τ ns η

1 2.0 0.4 0.6

2 3.0 0.3612 0.4323

3 10.0 0.3008 0.3012

Table 4. Simulation cases for single porous media channel models.
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as a regular lattice, and on another lattice at 45° clockwise to the channel direction, referred to as diagonal lattice. 
This anisotropic effect raises a concern regarding the potential impacts on the simulated velocity field when a 
model is applied to a realistic porous medium where a channel is unlikely to align with the lattice.

We assess this anisotropic effect for the model proposed in this work. Note that in our model, both the effec-
tive viscosity and effective permeability are evolved rather than imposed, as in the BF scheme. By performing 
the same analysis above on our new GLBM, we show that it recovers an isotropic effective permeability but an 
anisotropic effective viscosity. In what follows, we first analyze the degree of anisotropy with respect to the model 
parameters and show that the anisotropy has a negligible impact on the velocity fields for practical purposes. 
Furthermore, we show that we can introduce a strategy to upgrade our new GLBM to an exactly isotropic version, 
an Isotropic Gray Lattice Boltzmann Model (IGLBM).

Let us define the effective viscosity ratio as

=R
Dv
v (41)

eff

eff

in which Dveff  is the effective viscosity obtained by GLBM on the diagonal lattice. Dveff  is determined from Eqs 
(47) and (49), which are derived in Appendix B in detail. Note that the effective viscosity on a diagonal lattice is 
always lower than that on a regular lattice, and the effective viscosity ratio satisfies 0.5 ≤ R ≤ 1. Figure 12 shows 
the variation of R vs. η and sλ , where λs is linked to ns through Eq. (9). At the upper-left corner of both figures, 
where R approaches its maximum value of = =R R 1max , the effective viscosity becomes isotropic on both lat-
tices. If the porosity approaches zero, i.e., λ → .1 0s , R approaches its minimum value of → = .R R 0 5min , the 
maximum anisotropy.

The numerical simulation results presented in the previous sections demonstrated that the velocity profile of 
GLBM is dominated by the effective permeability, whereas the effective viscosity only affects a very narrow region 
near a boundary or interface. To illustrate this, we solve Case 4 in Section 5.2 analytically using two effective 
viscosity values, as determined on the regular lattice and the diagonal lattice. Figure 13 shows that the differences 
in the velocity are miniscule and only occur at boundares or  the interfaces between the two media. This suggests 
that if the purpose of the simulation is to determine the velocity profile to perform a volumetric calculation of 
effective permeability, the anisotropic effect of the effective viscosity may be negligible.

To completely eliminate the anisotropic effect, we can introduce a strategy to upgrade our new GLBM to an 
exactly isotropic version, an Isotropic Gray Lattice Boltzmann Model (IGLBM). The idea is to relax the assump-
tions we made in developing GLBM to allow an additional parameter to be introduced to address the anisotropic 
effect in the effective viscosity. As recalled in Section 2, we have made a very strong assumption that the fraction 
of fluid particles to be bounced back is equal to the volume fraction of the solid phase. Under this assumption, the 
model parameter ns is linked to the volume fraction of the solid phase λs. This assumption could be relaxed, as the 
fraction of fluid particles to be bounced back in each direction α is a function of the solid phase volume, in which 
the fluid particles may interact during the streaming process along the α direction, αf V( )s ; in general, this func-
tion is not only related to the volume of solid phase Vs but also to the pore geometrical structure gs, i.e., αf V g( , )s s . 
Then, Eq. (9) can be rewritten as

n
f V g

f V g
( , )

1 ( , ) (42)
s

s s

s s

=
+α

α

α

In Section 3, we have made another strong assumption that the fraction of fluid particles to be bounced back 
is equal in all 4 pairs of opposite directions. Note that the length of the streaming path in diagonal directions is 2

Figure 12. Effective viscosity ratio of GLBM at τ = .2 0⁎ .
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times the length in right angle directions of 0° and 90°. Therefore, in principle, the fraction of fluid particles to be 
bounced back in a diagonal direction should be more than that in the orthogonal directions, as the volume of 
solid phase met by streaming fluid particles in the diagonal directions is greater than that in the rectangular direc-
tions. It is understood that this factor is what induces the anisotropic effective viscosity. To achieve isotropic 
effective viscosity, we upgrade our model to the following version:

˜
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In Appendix B, we prove that the upgraded model recovers a similar macroscopic Darcy-Brinkman equation 
as Eq. (11) but with a slightly different coefficient:
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If He’s derivation method was carried out on a diagonal lattice for IGLBM at the low Mach number limitation 
��u 1x , the model would also recover a similar macroscopic Darcy-Brinkman equation as Eq. (11); the coeffi-

cients are

Figure 13. The analytical velocity profiles calculated using effective viscosity veff determined on a regular lattice 
and Dveff on a diagonal lattice. Left: overall view; Middle: zoom-in view near the left boundary; Right: zoom-in 
view about the left interface.
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One can define the effective permeability and viscosity on the diagonal lattice as

Dv DA
DC2 (49)eff =

ν=Dk DC
DB (50)eff f

It can be proved that ≡Dk keff eff , i.e., the upgraded model always recovers isotropic effective permeability for 
any n1 and n2 that satisfy Eq. (44). By denoting n2 as ns to achieve isotropic effective viscosity, we solve the follow-
ing equation symbolically:

η η− =Dv n n v n n( , , ) ( , , ) 0 (51)eff s eff s1 1

which gives

    

   

n n n n
n

(2 3 )( 1) [4 3( 1) 6 ]
3( ) ( 1)[2 3 (2 3)] (52)

s s s

s
1 2

η τ τ τ τ τ
τ τ η τ τ

=
− − + + − −

− + − + −

⁎ ⁎ ⁎ ⁎ ⁎
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By deliberately choosing n1 according to Eq. (52), IGLBM yields an isotropic effective viscosity. Figure 14 
shows a velocity profile of IGLBM with non-slip and no-flux boundary conditions in a channel with two stratified 
porous media. The model parameters are

τ η η= = . . = . .n n2, ( , ) (0 8, 0 45), ( , ) (0 6, 0 2) (53)s s
1 1 1 2



⁎

Figure 14. Left: velocity profile of IGLBM in a regular channel; Right: zoom-in view of the velocity profile 
about the left interface.
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The corresponding n1
1 and n1

2 values can be calculated through Eq. (52); here, the superscripts stand for porous 
media 1 and 2.

Note that Eq. (52) is a complex formulation and needs to be evaluated accurately to ensure the accuracy of the 
numerical simulation. Our test shows that if the equation is evaluated with a long double-precision floating point, 
the simulation result will be sufficiently accurate.

Discussion
In the two-parameter model given above, we assume that a post-collision PDF in a direction is first repartitioned 
into two parts with respect to n(1 )s− , along that direction, and ns, along the opposite direction. Before being 
streamed, each part is further divided into two subparts with respect to η and (1 )η− . The subpart associated with 
η undergoes streaming, while the other subpart sticks to the null-velocity PDF component.

In classical LB, a model is built to represent fluid particle movements at a single length scale, and at each loop 
(collision and streaming steps), the model has to satisfy mass, momentum and energy conservation. For a GLBM 
that contains extra repartition steps, it conserves only the mass and not the momentum and kinetic energy. A 
fraction is lost or dissipated from the grid scale to individual aggregate cells due to the collision of fluid particles 
with solids at those cells. At each aggregate cell, the collision induces a resistance force that is exerted on fluid 
particles by the solid and within-cell movements of fluid particles constrained by the local pore structure. At the 
grid scale, the lost fluid momentum and energy are accounted for in our models by reassigning part of the 
ready-to-stream fluid particles at each nonzero PDF component (by a factor 1-η, as defined in Eq. (10)) to the 
null-velocity PDF component at each aggregate cell.

The momentum and energy losses can be determined for both the single- and two- parameter GLBMs. For the 
two-parameter model presented above, we can derive Eq. (54) from Eq. (10):

η+ = +α α α α   

   f t f t f t f tr r r r( , ) ( , ) [ ( , ) ( , )] (54)
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Thus, the momentum loss is equal to
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For our single-parameter model, as a special case of the two-parameter model at η = 1, its momentum and 
energy losses are defined by Eqs (57) and (58), respectively.
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To accurately compare the velocity profiles of media A and B, we define the coefficient of momentum loss in 
Eq. (55) as follows:

β η η= − + n(1 ) 2 (59)m s

Figure 15 shows the contours of the coefficient of the momentum loss with respect to ns and η. To make a pre-
cise analysis of simulated velocity across different model configurations with respect to the effective viscosity and 
permeability, one may select ns and η so that βm falls on the same contour.

In fact, Case 3 in Section 4 is purposely designed by selecting η and ns pairs so that βm is equal to 0.8. Therefore, 
we can conclude unambiguously that the differences in the effective viscosity are solely responsible for the 
observed velocity differences, rather than different momentum losses.

It should be emphasized that in both the two-parameter GLBM and our single-parameter GLBM1, a reparti-
tion step is added between the LBM collision and streaming steps. The iterations are as follows: (1) update the 
state variables, density and velocity using f t( )q

in
 ˜  from the post-streaming step; (2) calculate ˜f t( )q

eq
  using the state 

variables; (3) calculate f t( )q
c
 ˜⁎  based on f t( )q

eq ˜  and f t( )q
in  in the collision step; (4) calculate f t( )q

out ˜⁎⁎  in the repar-
tition step; (5) calculate ˜ +f t( 1)q

in  from ˜⁎⁎
f t( )q

out  on all neighbor nodes; and then go back to step (1). The order 
of the iteration steps is crucially important, as the velocity defined by the incoming PDF is only physically mean-
ingful and is required to calculate ˜f t( )q

eq  before f t( )q
c ˜⁎
  and ˜⁎⁎

f t( )q
out  can be calculated. Therefore, we do not agree 

with the authors of14,15 on their claim that our GLBM1 is a special case of their Brinkman-Body-Force-Based 
(BBF) and Two Relaxation Time (TRT) model14–16 because our iteration is different. Our GLBM has only one 
collision step, the relaxation time τ⁎

  is the same as the BGK model, and its physical meaning is very clear in gas 
kinetic theory. More details about the difference between GLBM and BBF can be found in Appendix C with 
references17–43.
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Another fundamental difference between GLBM and the BBF7,8 model is that both the effective viscosity and 
effective permeability are evolved from model parameters in GLBM (refer to Appendix A for details), while BBF 
imposes cell permeability in order to construct a body force to be added to every collision step. The work reported 
in9 demonstrates that the effective viscosity of the BBF scheme depends on the imposed permeability; refer to Eq. 
(11) and Eq. (12) in their paper for details. If →k 0eff , then ν → ∞eff . The nature of the effective viscosity being 
dependent on the effective permeability in their model is purely caused by imposing a reactive force relating to the 
Darcy flow as a part of the active body force. This effective viscosity is nonphysical for engineering applications. 
The work reported in9 also demonstrates that the BBF scheme recovers an anisotropic macroscopic equation. The 
TRT model16 introduces a second collision time, which is called a magic parameter, and this additional model 
parameter can be used to eliminate the anisotropic effective viscosity of the BBF scheme. We show that our GLBM 
also predicts a weak anisotropic effective viscosity, but it can be upgraded to an exact isotropic version through 
Eq. (52). Setting n n ns1 2≠ =  is equivalent to introducing one more model parameter, while n1 plays a very sim-
ilar role in the isotropic GLBM as the magic parameter in the TRT model16. In section 5, Figure 11 shows that as 
long as the macroscopic parameters on the left-hand side of Eq. (40) are kept as the same, our GLBM predicts the 
same velocity profile with different model parameters. Figure 1 in reference paper9 demonstrates that even if the 
macroscopic parameters are kept the same, the BBF scheme predicts a different velocity profile with different 
relaxation time τ⁎

 .
In our previous work1, we found that the GLBM of Walsh et al.5 creates a velocity “jump” across an interface of 

two permeability-contrasting layers. The “jump” specifically refers to a situation in which the simulated velocities at 
any pair of lattice nodes nearest to the interface are not only discontinues but also magnitude reversing, meaning that 
the velocity at the node in the low-permeability medium is greater than that at the node in the high-permeability 
medium. The author of14 claims that our GLBM showed a large ‘jump’ for a case with a high permeability ratio; 
however, we believe that the author meant that the velocity is discontinuous. The velocities obtained in that work (see 
Fig. 4(c) of that work)14 and in this work (see Figure 7) do not show any magnitude-reversing velocity but only dis-
continuous velocity. An analytical solution of the Darcy-Brinkman equations (Eqs (27) and (28)) provides a bench-
mark solution for model comparison. When substituting model parameters into the corresponding equations, we 
show that 









≈ .+ . − − . 0 5u h u h
u

( 0 5 / 2 ) ( 0 5 / 2 )
max( )

1 2

1
; this means that our model predicts a velocity consistent with the ana-

lytical solution. In Fig. 4(c) of14, there are noticeable discrepancies between the simulated velocity and the analytical 
solution at the interfaces, which we believe are due mainly to too few lattice units being used in the simulation. In 
addition, we noted that the prescribed periodical boundary condition can incur a very strong fluid interaction at 
those interfaces. Therefore, we believe the terminology “velocity jump” should be used with caution, as we suggested 
above, to distinguish fundamental uncharacteristic differences in model behaviors among GLBMs.

Conclusions
In this paper, first, we have proved that = λ

λ+
ns 1

s

s
 can hold under repeated bouncing back at local porous struc-

tures and therefore confirmed that it is reasonable to estimate ns from the local fraction of the solid phase. Second, 
we introduced a two-parameter model and derived mathematic formulae to determine the effective viscosity and 
effective permeability. We have shown that the model works well numerically, and the two parameters can be 
adjusted independently to simulate cases of variable effective viscosity and permeability. The simulated velocity 

Figure 15. Contours of the momentum loss coefficient βm with respect to (ns, η).
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for stratified channel models is shown to be in very good agreement with the analytical solution, even when the 
channel direction is not aligned with the lattice cardinal direction. We have provided a strategy to upgrade our 
GLBM to an isotropic version, IGLBM. We have also demonstrated that the effect of anisotropic effective viscosity 
on the velocity profile is negligible. To avoid the difficulty of model parameter calibration, we believe that it is not 
necessary to carry out upgrading. We argue that only the uncharacteristic magnitude-reversing velocity across a 
media interface should be regarded as a ‘jump’.
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