
Journal of Artificial Intelligence Research 61 (2018) ??-?? Submitted 04/17; published ??/18

KABouM: Knowledge-Level Action and
Bounding Geometry Motion Planner

Andre Gaschler gaschlera@gmail.com
fortiss An-Institut Technische Universität München
Munich, Germany

Ronald P. A. Petrick r.petrick@hw.ac.uk
Department of Computer Science, Heriot-Watt University
Edinburgh, United Kingdom

Oussama Khatib khatib@stanford.edu
Artificial Intelligence Laboratory, Stanford University
Stanford, USA

Alois Knoll knoll@in.tum.de

Institut für Informatik, Technische Universität München

Garching b. München, Germany

Abstract

For robots to solve real world tasks, they often require the ability to reason about
both symbolic and geometric knowledge. We present a framework, called KABouM, for
integrating knowledge-level task planning and motion planning in a bounding geometry.
By representing symbolic information at the knowledge level, we can model incomplete
information, sensing actions and information gain; by representing all geometric entities—
objects, robots and swept volumes of motions—by sets of convex polyhedra, we can effi-
ciently plan manipulation actions and raise reasoning about geometric predicates, such as
collisions, to the symbolic level. At the geometric level, we take advantage of our bounded
convex decomposition and swept volume computation with quadratic convergence, and fast
collision detection of convex bodies. We evaluate our approach on a wide set of problems
using real robots, including tasks with multiple manipulators, sensing and branched plans,
and mobile manipulation.

1. Introduction

The ability to reason about action and geometry is a key capability for building intelligent
robots that can operate in service, manufacturing, construction, or teleoperation capaci-
ties. While modern robot technology has lead to reliable platforms and novel sensors, and
enormous progress has been made in providing the necessary set of algorithmic components
for path planning, navigation, and perception, many tasks that require complex reasoning
about actions and geometry remain problematic, especially in real-world settings.

For humans, the process of reasoning about action and geometry is a central, high-level
cognitive function that is required to solve many types of complex, but common, tasks.
It is therefore useful, and often necessary, for intelligent robots to reason at similar levels
of abstraction, using similar geometric concepts. For instance, many tasks in service and
industrial robotics include communication with humans, making it necessary for the robot
to understand some human concepts of geometry and action. Second, almost all robot tasks

Gaschler, Petrick, Khatib, & Knoll

Figure 1: Robot tasks are modelled by symbolic actions and geometric volumes, represent-
ing both swept volumes of robot motions (red), and object boundaries as sets of convex
polyhedra (blue for movable objects, grey for static obstacles).

take place in a world designed by humans, so robots need to interact and solve tasks with
objects and agents using actions that are also similar to those of humans.

Our approach for solving complex robotic task problems involves combining general-
purpose AI planning techniques with a problem specification described using a concise
symbolic and geometric domain definition. This domain definition is written from a generic
task perspective, not anticipating a specific solution. Instead, we utilise our planning frame-
work to generate solutions based on specific task formulations.

However, the problem of combining task planning and motion planning in a robot sys-
tem presents significant representational difficulties that must be overcome: high-level task
planners typically rely on symbolic representations of objects and actions, while motion
planning systems need to reason about physical bodies and robot motion in a continuous
space. Integrating symbolic and geometric reasoning in a common framework is therefore
both a challenging and essential task.

For instance, Figure 1 (top) shows an example of a service robot that can serve drinks,
ask customers for their orders, move so it can reach objects, and transfer those objects
to customers (Foster, Gaschler, Giuliani, Isard, Pateraki, & Petrick, 2012). For even this
simple scenario, the task planner already needs to generate information-gathering actions,
evaluate geometric preconditions, and fulfil geometric constraints such as holding a drink
upright while moving.

2

KABouM: Knowledge-Level Action and Bounding Geometry Motion Planner

In this paper, we propose a task planning framework called KABouM (Knowledge-level
Action and Bounding geometry Motion planner) that addresses many of these challenges.
Key to this approach is a series of geometric calculations that operate on single-sided ap-
proximations of the geometry. Since robotic tasks have asymmetric tolerances, collisions
must be strictly avoided for they can cause damage or other unforeseen effects. We must
therefore detect all types of collisions, quickly and reliably. Single-sided approximations
enable us to do so with increased efficiency. Contrary to overly coarse bounding boxes or
convex hull approximations, which severely limit the search space, we design our approx-
imation as ε-precise, meaning we may only overlook passages thinner than a parameter
ε, which has a controllable effect on the search space. We realise this approach by in-
troducing the bounding mesh algorithm, which approximates world geometry by coarser
triangle meshes that fully enclose the given shapes. Compared to regular, two-sided ap-
proximation in computer graphics (Mamou & Ghorbel, 2009) and robotics (Schulman, Lee,
Awwal, Bradlow, & Abbeel, 2013), we develop a single-sided solution (Gaschler, Fischer,
& Knoll, 2015; Gaschler, 2016) that guarantees collision avoidance. Formally, we define a
class of bounded ε-precise geometric predicates for collision and inclusion, which operate on
bounding convex decompositions.

High-level symbolic planning in this framework is performed by using an off-the-shelf,
general-purpose planner which is integrated with the geometric representation. In partic-
ular, we use the existing Planning with Knowledge and Sensing (PKS) planner (Petrick &
Bacchus, 2002, 2004) that is able to reason with incomplete information (discrete uncer-
tainty), which is common in real-world robotics problems, and that supports contingent
planning and sensing actions. PKS has been previously used to connect high-level planning
with robot systems (Kraft, Baseski, Popović, Batog, Kjær-Nielsen, Krüger, Petrick, Geib,
Pugeault, Steedman, Asfour, Dillmann, Kalkan, Wörgötter, Hommel, Detry, & Piater, 2008;
Petrick, Kraft, Krüger, & Steedman, 2009; Petrick & Foster, 2013), and has a comprehensive
application programming interface (API) supporting easy integration (Petrick, 2015).

The remainder of the paper is organised as follows. In Section 2, we situate our work with
respect to related approaches. In Section 3, we introduce our robot task planning problem.
In Section 4, we propose a set of algorithms for evaluating bounded geometric predicates,
namely convex decomposition and quadratically converging swept volume approximation.
In Section 5, we outline our approach from the symbolic perspective. Finally, we describe
the system architecture in Section 6, and evaluate our approach with several illustrative
scenarios in Section 7. We discuss our approach and results in Section 8 and conclude in
Section 9.

2. Related Work

We are motivated by the problem of applying automated planning techniques to robot sys-
tems to enable them to solve more complex problems in industrial and service robotics.
Although automated planning has already been applied to robot problems in the early sem-
inal works (Fikes & Nilsson, 1971), and it has been used for robot manipulation since the
days of early robotic systems like Shakey (Nilsson, 1984), more recently the field has gained
substantial attention, both in the automated planning and robotic motion planning com-
munities. Today’s approaches to robot task planning include a diverse range of techniques

3

Gaschler, Petrick, Khatib, & Knoll

which could be categorised with respect to their search strategy, their field of application,
or related properties such as execution and monitoring.

2.1 General Approaches to Robot Task Planning

Planning algorithms include a diverse range of different search strategies from closed-world
symbolic planning guiding motion planning (Cambon, Alami, & Gravot, 2009; Dornhege,
Gissler, Teschner, & Nebel, 2009b; Karlsson, Bidot, Lagriffoul, Saffiotti, Hillenbrand, &
Schmidt, 2012), multi-modal motion planning (Hauser & Ng-Thow-Hing, 2011; Barry,
2013), probabilistic back-chaining (Kaelbling & Lozano-Pérez, 2013), and formal synthe-
sis (Kress-Gazit & Pappas, 2008; Cheng, Geisinger, Ruess, Buckl, & Knoll, 2012).

One underlying challenge of robot task planning is the hybrid search space of both
continuous-space geometry about robot motion and perception, as well as the discrete sym-
bolic constraints needed to represent knowledge about actions and objects. Approaches for
addressing the problem of hybrid search vary greatly in the literature, with some strate-
gies clearly guided by symbolic reasoning (Karlsson et al., 2012; Dornhege et al., 2009b;
Cheng et al., 2012), and others by motion planning (Hauser & Ng-Thow-Hing, 2011; Barry,
2013). The direction of the search itself may be a forward search starting from an initial
state (Plaku & Hager, 2010; Srivastava, Riano, Russell, & Abbeel, 2013; Gaschler, Pet-
rick, Giuliani, Rickert, & Knoll, 2013a), a backward search directed from a goal (Kaelbling
& Lozano-Pérez, 2013), or both (Barry, 2013; Garrett, Lozano-Perez, & Kaelbling, 2015).
Another notable property of a hybrid planner is whether backtracking passes geometric
knowledge to the symbolic level (Srivastava et al., 2013; Kaelbling & Lozano-Pérez, 2013;
Cambon et al., 2009) or high-level symbolic actions are mostly refined by motion planning
(Erdem, Haspalamutgil, Palaz, Patoglu, & Uras, 2011; Dearden & Burbridge, 2013). Fi-
nally, some approaches interleave planning with direct execution after each planned step
(Haigh & Veloso, 1998; Kaelbling & Lozano-Pérez, 2012), which greatly reduces the search
space, especially when actions are reversible, while others focus their geometric search using
structures like semantic maps (Galindo, Fernández-Madrigal, González, & Saffiotti, 2008).

Applications have also provided a driving force for the integration of automated planning
and robotics, including scenarios for controlling autonomous robots in remote environments
out of the reach of human operators (Bellingham & Rajan, 2007), situations requiring prov-
ably correct behaviour (Cheng et al., 2012), and the need to control the complex kinematics
of humanoids (Hauser & Ng-Thow-Hing, 2011). However, most of the recent work in robot
task planning is motivated by examples in mobile manipulation (Kaelbling & Lozano-Pérez,
2012; Cambon et al., 2009; Wolfe, Marthi, & Russell, 2010; Srivastava et al., 2013), some of
which involve service tasks and interaction with humans (de Silva, Pandey, & Alami, 2013).

2.2 Symbolic Planners with Geometric Queries

Dornhege et al. (2009b) integrate geometric reasoning into a symbolic planner using the
idea of semantic attachments, which they develop as an extension to the planning domain
definition language (Dornhege et al., 2009a). Their interface includes condition-checking
semantic attachments, which call a binary robotics-specific function as part of a symbolic
precondition, and effect applicators, which pass domain-specific return values to the sym-
bolic planner. Using a probabilistic roadmap motion planner, they apply their approach

4

KABouM: Knowledge-Level Action and Bounding Geometry Motion Planner

in pick-and-place scenarios. Dornhege et al’s (2009b, 2009a) external function, or semantic
attachment, mechanism is kept generic enabling it to be interfaced to a range of robotics-
specific components.

A related approach by Gregory, Long, Fox, and Beck (2012) describes Planning Modulo
Theories (PMT) which propose a new planning definition language that introduces abstract
data types and subroutines similar to semantic attachments to resolve fluent values. Her-
tle, Dornhege, Keller, and Nebel (2012) describe the Object-oriented Planning Language
(OPL) as an object-oriented way to define planning domains with external modules, also
building on Dornhege et al’s (2009b) approach. Bajada (2016) proposes an approach called
PDDLx where module predicates, functions, and methods provide the semantic attachment
necessary to perform computation by an external class module.

Cambon et al. (2009) perform an interleaved search with backtracking in both the sym-
bolic and geometric layers, with the symbolic planner acting as a heuristic for a probabilistic
roadmap motion planner. Their integrated approach is similar to Dornhege et al’s (2009b),
with a generic interface between the symbolic and robotics-specific planners.

Erdem et al. (2011) consider another similar approach that combines high-level rea-
soning with geometric reasoning and motion planning, in this case using a causality-based
formalism. In particular, a causal reasoner guides the motion planner by finding an appro-
priate task plan, whose generation may include reasoning about external predicates linked
to geometric models and kinematic relations. The interface between causal reasoning and
geometric reasoning is flexible, and can be used to transfer feasibility checks to external
predicates or make domain-level modifications to planning problems as a result of motion
planning failures.

Within the GeRT project,1 which focuses on manipulation tasks, Karlsson et al. (2012)
apply a hierarchical task network (HTN) planner and geometric suggester functions to
generate geometric states, demonstrated on a humanoid manipulator, while Dearden and
Burbridge (2013) map symbolic predicates to geometric probability distributions. Hierar-
chical task networks have been formalized by Erol, Hendler, and Nau (1994) and have also
been previously used to solve non-deterministic problems (Kuter et al., 2009).

The state-abstracted hierarchical task network (SAHTN) planner by Wolfe et al. (2010)
uses an integration of symbolic planning with sampling-based kinematic optimisation. No-
tably, their planner builds a global, state-abstracted cache that is keyed by actions and all
state variable values relevant to that action. Later queries can then merge these cached
results with irrelevant variables and become more efficient without sacrificing optimality.

Srivastava et al. (2013) propose a generic transformation of continuous-valued parame-
ters into discrete symbols. Their symbolic planner initially passes a solution of the purely
discrete problem to a robotics-specific motion planner, which then returns a parameter
assignment that violates geometric preconditions, allowing more refined discrete planning,
until the entire problem is solved. In comparison to Cambon et al.’s (2009) earlier work,
where backtracking is performed in both the discrete and continuous layers, Srivastava et al.
(2013) appear to provide a more generic translation applicable to different types of action
preconditions and parameters. Srivastava, Fang, Lorenzo, Chitnis, Russell, and Abbeel
(2014) extend their approach to hybrid planning with symbolic explanations for geometric

1. http://www.gert-project.eu/

5

http://www.gert-project.eu/

Gaschler, Petrick, Khatib, & Knoll

failures. They can prove that their search is complete for pick-and-place and related do-
mains. For domains that are restricted to rigid manipulation, Garrett et al. (2015) provide
a more efficient backward-forward search.

While most of the above planners (Wolfe et al., 2010; Karlsson et al., 2012) generate
complete low-level plans, the hierarchical planner “in the now” (HPN) by Kaelbling and
Lozano-Pérez (2011) builds only an abstract plan, and then recursively executes and refines
this plan. They show that this interleaved planning and real-world execution strategy is
very efficient in non-deterministic domains, under a weak constraint that plan steps are
serialisable. At the same time, HPN operates in continuous geometry, with geometric
predicates and suggesters that do not rely on discretisation.

Other approaches like the one by Ferrer-Mestres, Frances, and Geffner (2015) have also
explored the use of Functional STRIPS combined with compilation approaches to convert
geometric task planning problems into standard classical planning problems, solvable with
existing off-the-shelf planners.

2.3 Planning in Belief Space

In more recent work, Kaelbling and Lozano-Pérez (2013) describe their belief-space hi-
erarchical planner “in the now” (BHPN), which integrates several interesting approaches
for modelling probability distributions over states and reasoning about probability-based
uncertainties. In contrast to their belief space approach, the Planning with Knowledge
and Sensing (PKS) planner (Petrick & Bacchus, 2002, 2004) builds plans by reasoning di-
rectly about the knowledge-level effects of actions of plans with discrete uncertainties (i.e.,
without probabilities), and has previously been used to connect robot vision and grasping
with symbolic action (Petrick et al., 2009). Both the belief space and knowledge-level ap-
proaches allow sensing and information-gathering actions to be modelled, arising from the
preconditions of manipulation actions, without the need to be hard-coded as tasks them-
selves. However, rather than attempting to model arbitrary belief states, PKS provides a
restricted representation of knowledge with limited reasoning. This gives rise to a compact
state representation with an efficient plan generation procedure. Moreover, unlike BHPN,
which appears to be tailored to problems in the robotics domain, PKS is a general-purpose
planner which is domain independent. Thus, like other automated planners, the same plan-
ning approach can be used in a variety of contexts outside or tangential to the robotics
domain. The search schemes used by the two approaches are also fundamentally different,
as BHPN takes a strongly hierarchical goal regression approach and interleaves planning
and execution, while PKS uses forward search in a “flat” action model with simple heuris-
tics to plan over large horizons in a purely offline mode. PKS is an early example of an
epistemic planner (Bolander, 2017), a class of planners which attempt to reason and plan
with models of knowledge and belief.

When only observations are uncertain and actions are deterministic, Hadfield-Menell,
Groshev, Chitnis, and Abbeel (2015) can apply maximum-likelihood estimation to transform
problems to purely deterministic representations, which can then be solved by off-the-shelf
planners.

6

KABouM: Knowledge-Level Action and Bounding Geometry Motion Planner

2.4 Motion Planning Approaches to Task Planning

Among the approaches that use sampling methods in robot configuration spaces, Hauser and
Ng-Thow-Hing’s (2011) randomised multimodal motion planning (Random-MMP) strategy
combines discrete contact states and continuous configuration of robots and objects in
a hybrid state space, and solves a wide range of manipulation and locomotion problems.
Random-MMP samples discrete mode switches, such as contact state changes of robots with
objects and the environment, and allows manipulation planning with complex kinematic and
dynamic constraints.

Barry (2013) presents the diverse action manipulation rapidly-exploring random tree
(DARRT) planner. It samples in a Cartesian space of robot and object poses, and performs
a bidirectional search, using projection functions to cross lower-dimensional subspaces be-
tween states. With this, complex mobile manipulation tasks can be solved, including di-
verse, non-prehensile actions, and some use of tools. Barry (2013) states that, while DARRT
builds on the multi-modal motion planning idea (Hauser & Ng-Thow-Hing, 2011), the mode
samplers implemented in DARRT are less problem-specific than those in Random-MMP.

Plaku and Hager (2010) present the sampling-based motion and symbolic action planner
(SMAP), which allows differential motion constraints. Their search dynamically samples
feasible robot motions and explores regions suggested by a symbolic planner, which accepts
task definitions in a STRIPS format. The interaction of continuous and symbolic layers is
guided by a utility function heuristic.

3. Robot Task Planning

Integrated robot task planning is a multidisciplinary problem, requiring solutions ranging
from formal methods to robot motion planning. KABouM (Knowledge-level Action and
Bounding geometry Motion planner) combines several such techniques which we discuss
below. To help situate our work, we begin by introducing the general task planning prob-
lem, which brings together the two main influences on this work: automated planning and
geometric reasoning. We follow this with an overview of our motivating examples, and a
comprehensive discussion of the central components that make up KABouM.

3.1 The Robot Task Planning Problem

We begin by defining the underlying problem that our work aims to solve, namely the robot
task planning problem. Formally, a robot task planning problem instance is defined as a 3-
tuple (Σ, R,M), where Σ is a symbolic planning domain defining a set of planning actions,
an initial state, and a set of goals; R is the set of kinematics definitions for all robots;
and M is the set of geometric models for all robots and objects in the domain. Each of
these components can also be decomposed into a number of more basic structures, which
we outline below.

The symbolic domain Σ is a tuple (S,A, I, G), where S is a set of symbols defining the
vocabulary for the discrete domain, A is a set of actions, I is a description of the initial
discrete state, and G is a set of goal conditions. Actions in a robot task planning domain
may contain several kinematic and geometric predicates—such as reachability, collision,
and inclusion—which may be included when specifying preconditions, effects, and goal

7

Gaschler, Petrick, Khatib, & Knoll

conditions. Each action α ∈ A is itself a 3-tuple of the form (~x, pre(α), eff (α)), where ~x
are α’s parameters, pre(α) are α’s preconditions, and eff (α) are α’s effects. The complete
formal definition of A will be given in Section 5.

The set of kinematic chains R contains one element for each robot in the domain, and
each kinematic chain is given as a tuple (s,FK, q0), with the associated discrete symbol s ∈
S, the forward kinematic function FK and the initial configuration q0. q0 is an n-dimensional
vector, with its components representing initial angles of revolute joints and lengths of
prismatic joints. The forward kinematic function FK is a mapping Rn × {0, 1, . . . , n} 7→
R3×SO(3) from the configuration and rigid body index to the spatial position of that rigid
body of the robot; if no rigid body is specified, the tool centre of the robot is assumed. FK
is typically only defined for a configuration space part of Rn, depending on the physical
joint boundaries.

Finally, the geometric world is given by a set of geometric models M . Each geometric
model is a tuple (s,B, x0), with the associated discrete symbol s ∈ S, the initial spatial pose
x0 and a set of geometric meshes B for its rigid bodies. Each geometric mesh in B may be
given as a set of triangle tuples (p1, p2, p3) of 3D vertex positions, defining the boundary of
a rigid body, with (p2 − p1)× (p3 − p1) pointing outside. (Most objects have only a single
rigid body, while for serial kinematic chains, |B| = n+1.) More details about the geometric
algorithms are given in Section 4.

Thus, given a problem instance (Σ, R,M), the general robot task planning problem
is to generate a sequence or tree of actions whose execution in the initial state (I, q0, x0)
brings about a state in which the goal conditions G are satisfied. All actions in this plan
must (under ideal conditions) satisfy their respective preconditions and produce their ex-
pected effects, with many of these preconditions and effects depending on the kinematic
and geometric structures R and M .

3.2 Example KABouM Domains

In order to motivate our work and illustrate our KABouM approach, we will refer to a series
of example domains, some of which are used as running examples throughout the paper.
In the main discussion, we present the Bartender domain, where a robot with two arms
must clean up all empty bottles from a table and move them to a certain “dishwasher” area
(Gaschler et al., 2013a). The robot can visually detect whether a bottle is empty, and pick up
and put down this type of object. To solve this scenario, the robot needs to hand-over objects
by placing them in reach of the second arm. In order to show an example of interdependent
manipulation and sensing actions, we also include the Force Sensing domain, where a
single robot arm is supposed to remove objects from a table depending on their weight
(Gaschler, Petrick, Kröger, Knoll, & Khatib, 2013c). The examples that accompany our
discussion are kept intentionally simple and are chosen to highlight and evaluate specific
features of KABouM. In Section 7, we will additionally define and evaluate more integrated
scenarios to discuss performance and scalability of our approach on a quantitative level.

Using our notion of a robot task planning problem and our motivating examples, in
the following sections we provide a description of our algorithms for bounded geometric
predicates (Section 4), an overview of the knowledge-level PKS planner (Section 5), and the
integrated KABouM software architecture (Section 6).

8

KABouM: Knowledge-Level Action and Bounding Geometry Motion Planner

4. Geometric Algorithms

An important aspect of our KABouM approach is to provide efficient geometric predicates.
In particular, we represent all geometric entities—boundaries of objects, robots and swept
volumes of motions—as sets of convex polyhedra, yielding a representation to bridge the gap
between discrete symbols and continuous-valued objects and motions in the world. For this,
we derive and implement a completely new class of bounded geometric predicates. We begin
by introducing a set of robotics-specific predicates from the symbolic planner’s perspective,
for which we provide the following primitive queries:

Definition 1 (Bounded Geometric Predicates) The following geometric predicates are
provided to the symbolic planner as external procedures:

1. m0 ∩m1 6= ∅, whether two geometric models collide.

2. SV(r0, Q0 = {q0, q1, . . .}) ∩ m1 6= ∅, whether the swept volume of a robot motion
collides with an object.

3. SV(r0, Q0) ∩ SV(r1, Q1) 6= ∅, whether two robot motions collide.

4. m0 ⊂ m1, whether a geometric model includes another.

These collision and inclusion predicates are said to be single-sided ε-precise: their answer
is arbitrary when the signed Hausdorff distance between the bodies is within [0, ε], and ex-
act otherwise. We refer to these single-sided approximate queries as bounded geometric
predicates.

We define this novel, bounded and one-sided approximation as follows: a collision query is
bounded ε-precise if it reports true when a collision occurs, and false when the Hausdorff
distance between the two models is greater than ε. Likewise, an inclusion query “m0 ⊂ m1”
is bounded ε-precise if it reports false when m0 6⊂ m1, and true when m0 is further than ε
inside m1. For distances between 0 and ε, these queries may answer arbitrarily. Intuitively,
the Hausdorff distance between two meshes is the maximum of the shortest distances to
the other mesh over all points of both meshes. The signed Hausdorff distance is defined
negative if the bodies intersect. It is a suitable metric for mesh approximation (Garland
& Heckbert, 1997) and gives a limit on the size of narrow passages that can potentially be
overlooked in motion planning.

We will later see that this definition of predicates facilitates a very efficient implemen-
tation with our novel bounding mesh algorithm, bounded convex decomposition, and swept
volume generation. In general, we can always achieve a bounded approximate convex de-
composition of all objects, robot models, and swept volumes of robot motions, and only use
efficient convex-convex checks in the underlying implementation. From the planning side,
it is worth noting that all geometric approximation is controlled by a parameter ε, and our
geometric predicates affect the geometric search space by a meaningful distance ε, which
may be chosen to be arbitrarily small. ε essentially controls the compromise between more
precise or more efficient (but always one-sided approximate) geometric predicates.

We now outline the algorithms necessary to implement the above predicates. In our
discussion, we first introduce our new bounding mesh algorithm, which is necessary for

9

Gaschler, Petrick, Khatib, & Knoll

computing bounded convex decompositions. With this, bounded convex decompositions of
all robot and object models B reduce most of the above queries to simple convex-convex
collision or inclusion checks, which can be solved efficiently. For swept volumes of robot
motions, we furthermore describe a new swept volume generation scheme that exploits
a curvature limit of robot paths to keep the number of those convex-convex checks to a
minimum. In our implementation of the new bounded ε-precise class of geometric predicates,
we can only partly rely on available algorithms (Garland & Heckbert, 1997; Mamou &
Ghorbel, 2009; Xavier, 2002), and adapt some of these to ensure the boundary constraint.

4.1 Bounding Convex Decomposition of Volumes

In our KABouM approach, it is a central strategy to represent the surfaces of arbitrary
objects and robot manipulators by bounding sets of convex polyhedra. A bounding set
of convex polyhedra is a union of convex polyhedra that completely includes the original
model. In the general case, however, decomposing a non-convex polyhedron into a small
(or even minimal) set of convex polyhedra is a challenging problem: exact decomposition
produces far too many polyhedra (see Figure 2b), and it is known to be NP-hard (Chazelle
et al., 1997). Despite these difficulties, Mamou and Ghorbel (2009) recently proposed an
approximate algorithm that is sufficiently efficient and precise for practical instances, with
respect to approximation errors as well as the number of decomposed convex polyhedra.
Their algorithm shows better approximation results than the first algorithm by Lien and
Amato (2007) and other existing solutions. However, we are concerned with bounded geo-
metric queries, where all approximations are one-sided (i.e., they include the original model)
and limited by a certain ε. Mamou and Ghorbel’s approximate convex decomposition, being
designed for computer graphics applications, fulfils neither of these goals; it cannot generate
bounding approximations, and it does not guarantee a maximum geometric error.

Obviously, exact convex decomposition alone does not reduce the number of vertices at
all (as shown in Figure 2b), and even Mamou and Ghorbel’s segmentation will never reduce
vertices in convex surface areas, which are prevalent in most objects. Because of this, it
is crucial for our approach to combine their decomposition with a surface simplification
technique that ensures a bounded approximation, namely our bounding meshes. (Their
approach is to discard all but a constant number of vertices from each convex polyhedron in
order to handle this issue; however, this decimation will not generate bounded approxima-
tions and is not applicable to our geometric predicates.) We therefore adapt their underlying
vertex set segmentation such that it constructs a full decomposition into convexes, and re-
duce the resulting convex polyhedra with our bounding mesh surface simplification, which
we derive below.

4.1.1 Bounding Mesh Surface Simplification

Almost all geometric computations can be performed more efficiently when approximations
or level-of-detail models are available. While bounding volumes such as bounding boxes,
bounding spheres, or convex hulls have long been used for that purpose, we generalise
this concept to the generation of bounding meshes, triangular meshes that enclose more
detailed meshes. The only previous works in this direction are by Sander et al. (2000), who
compute inner and outer bounding meshes within their silhouette clipping algorithm, and

10

KABouM: Knowledge-Level Action and Bounding Geometry Motion Planner

Algorithm 1 Bounded edge contraction point optimisation

Input: Neighbouring planes P of an edge
Output: Edge contraction point v′ and its cost

cost ←∞
for all {0, 1, 2, 3}-subset P ′ = [NT −dT] of neighbouring planes P do
A← nullspace(N)
b← −N−Td
x← −

(
ATP ′TP ′A

)−1
ATP ′TP ′ b

v ← Ax+ b
if P T v ≥ 0 and vTP TP v < cost then
v′ ← v
cost ← vTP TP v

end if
end for

Algorithm 2 Bounding mesh generation with iterative edge contraction

Input: Mesh m, tolerance ε
Output: Bounding mesh m′ ⊇ m

for all edge e ∈ m do
Evaluate edge contraction cost(e, v′) from Algorithm 1
Add cost(e, v′) to priority queue

end for
while cost(e, v′) < ε2 do

Pop best edge e from priority queue
Remove edge e and adjacent triangles
Insert new vertex v′ and triangles
Re-calculate costs of changed edges

end while

by Platis and Theoharis (2003), who internally use progressive bounding meshes for efficient
line–mesh intersection queries. Our algorithm is novel in that it uses a new, geometrically
reasonable distance metric that allows ε-precise approximations, and we are the first to
apply bounding meshes to more generic problems.

In order to derive our bounding mesh generation, we choose an iterative mesh simpli-
fication approach—similar to the well-known, two-sided mesh approximation by Garland
and Heckbert (1997)—and search for iterative edge contractions guided by a quadric error
measure. In other words, we simplify a given mesh by replacing two adjacent vertices v1

and v2 by a single vertex v′ in each iteration, with v′ chosen outside of the local mesh, and
by that generate a simpler mesh that encloses the original. Let P (v) be the set of planes
adjacent to a vertex v, each given as a normal vector. For our simplified mesh to be a
bounding mesh, i.e. a superset volume, v′ obviously has to be “outside”, or mathematically,
pT v′ ≥ 0 for all p ∈ P (v1)∪P (v2). Besides this constraint, we try to minimise the geometric
distance ε to the input mesh—this allows us to choose the best edge to contract, and to
compute which 3D point v′ that edge is contracted to. An efficient way to define the cost

11

Gaschler, Petrick, Khatib, & Knoll

of an edge contraction is the sum of squared distances of v′ to all adjacent planes p, which
is
∑

p v
′Tp pT v′. Combining minimisation and constraints, our bounded edge contraction

solves the optimisation problem

argmin
v′

∑
p∈P (v1)∪P (v2)

v′T p pT v′ s. t. ∀p : pTv′ ≥ 0 . (1)

As proposed by Garland and Heckbert (1997), we can simply sum and propagate the
quadratic matrix p pT through edge contraction steps. This approximates the cost function
in Eq. 1 by simple matrix sums of 4-by-4 matrices, and only slightly affects optimality—
costs per plane may be counted twice or three times instead of just once—but not the
constraints.

In order to find the minimiser v′, we discriminate four cases of Eq. 1: The minimiser
is constrained by either zero, one, two, or at least three linear equality constraints. For
each case m ∈ {0, 1, 2, 3}, we can enumerate all m-subsets of neighbouring planes P (v1) ∪
P (v2) and exhaustively search the global minimum. The cases m ∈ {0, 1, 2} are solved by
substitution into the (3 − m)-dimensional constraint subspace and simple unconstrained
quadratic optimisation. Case m = 3 corresponds to the intersection of three planes, so
all four cases reduce to linear systems with up to three dimensions. For each m-subset,
we compute the relaxed minimiser v; of those v that fulfil all inequality constraints, we
compute the cost function and finally obtain the global minimiser v′. Algorithm 1 shows
an implementation of this procedure for solving Eq. 1.

Because the number of neighbouring planes is very limited, our exhaustive search is
sufficiently fast, with 105 edge decimations per second on our testing system (see Section 7
below). The complete bounding mesh generation is given by Algorithm 2. While the itera-
tion in Algorithm 2 is identical to Garland and Heckbert’s (1997) mesh simplification, their
contraction point optimisation is unconstrained and therefore much simpler than our Algo-
rithm 1—it could be compared to solving only case m = 0 without checking the constraint
P T v ≥ 0.

4.1.2 Bounding Convex Decomposition

Now that we can generate bounding meshes and reduce the complexity of arbitrary meshes,
we can combine our method with Mamou and Ghorbel’s (2009) segmentation into convex
polyhedra. With the combination of both algorithms, we can generate bounding sets of
convex polyhedra of arbitrary geometric models, which is a powerful representation to im-
plement efficient geometric predicates. Mamou and Ghorbel’s convex segmentation searches
on the dual graph of triangles in order to contract edges, guided by a mixed concavity and
aspect ratio cost function. Aspect ratio is defined as the squared perimeter divided by the
area of a given mesh, adjusted by a constant factor to yield one in the case of a disk. The
cost function is weighted such that the aspect ratio guides the first few iterations of the
algorithm, quickly simplifying the mesh. After that, their segmentation is mostly lead by
a concavity measure, which they define as the maximum distance of mesh points projected
onto the convex hull of that mesh, measured in surface normal direction. When all approx-
imation is disabled, this segmentation step will generate a bounding decomposition into
convex polyhedra, however, convex areas (which are very common) are not simplified at all

12

KABouM: Knowledge-Level Action and Bounding Geometry Motion Planner

(a) Original
CAD Model

(b) Exact Convex
Decomposition

(c) Bounding
Mesh

(d) Bounding
Convex Decom-
position

(e) Overlay on
Original Model

Figure 2: Novel bounding mesh and convex decomposition algorithms can handle a typical,
non-convex robot mesh with 106 vertices (a). Exact decomposition would generate overly
high numbers of polyhedra (b), which are inefficient. Our new bounding mesh approxi-
mation reduces the number of vertices to 103 with an error ε < 0.03 m (c). Then, convex
decomposition can simplify this mesh to ≈20 convex polyhedra with 50 vertices each (d, e).

and may contain arbitrary numbers of vertices. As a combination of both algorithms, we
first simplify a given model to a bounding mesh for preprocessing (see Figure 2c). After
that, we perform the above convex segmentation with all approximations disabled. Finally,
we compute the bounding meshes of the convex polyhedra, drastically reducing the number
of vertices, and obtain a bounding convex decomposition, as shown in Figure 2e.

Figure 2 shows the compression quality of our bounding convex decomposition through
an example: typical robot manipulators can be approximated by 10 to 30 convex polyhedra,
totalling no more than 1,000 vertices (Figure 2d). With this, the bounding swept volume
of a typical motion of such a robot will simplify to no more than 30–200 convex polyhedra.
For instance, in the Bartender scenario, the robot CAD models (86,746 vertices) are first
simplified to bounding meshes of 9,030 vertices, and then decomposed into only 22 convex
bodies with a total of 963 vertices, all at a bounded geometric error ε < 0.03 m. In contrast
to earlier work, we can generate these geometric simplification at a bounded geometric error
ε and purely with one-sided (conservative) approximations.

4.2 Bounding Swept Volume Generation

Now that we can represent a static robot’s volume by a small bounding set of convex
polyhedra, we can also generalise this concept to efficiently compute a bounding swept
volume of a robot motion, applying our previous work on non-bounding swept volume
generation from (Gaschler, Petrick, Kröger, Khatib, & Knoll, 2013b). In the static case,

13

Gaschler, Petrick, Khatib, & Knoll

(a) A bounding set of convex polyhedra tightly
encloses a swept volume of a robot motion.

(b) Overlay on start and end poses of the path.

Figure 3: The swept volume computation can approximate typical robot motions with less
than 50 convex polyhedra that enclose the exact swept motion with an error ε < 0.05 m.
This representation as a set of convex polyhedra allows very efficient geometric queries,
using only one-sided (conservative) approximations.

the volume of a rigid body B of a kinematic chain is given by the union of n convex hulls of
vertices ∪n conv(Vn). In our generalisation, we approximate the swept volume SV of a rigid
body B ∈ B along a configuration space path Q. In the following, we would like to show
the quadratic convergence of our swept volume approximation for motions of serial revolute
joints. For that, we first consider the motion of a single convex polyhedron, which is given
by a set of vertices V . Let rmax be the maximum distance of a vertex to the first axis,
summing up all link lengths and the distance to the last axis. For a single link of length r,
a rotation by an angle ∆q < π/2 will let a point deviate from the chord (the straight line
from start to end) by ε = r(1− cos (∆q/2)) (Xavier, 2002). For general serial kinematics of
multiple revolute joints, Baginski (1997) describes an upper bound for the deviation of the
path of a point from the chord of that path:

ε ≤ rmax

(
1− cos

(∑
i
|∆qi|

/
2
))

. (2)

Intuitively, this bound is tight when all link lengths but the last one tend to zero and
all joints rotate in the same direction around the same axis. (In our implementation, we
calculate the bound for each link individually and obtain tighter bounds especially for the
first few joints.)

Using the second order series expansion cos(∆q) ≥ 1 −
(
∆q2

/
2
)
, we can approximate

Eq. 2 as a quadratic function of the angular step size ∆q for our swept volume approximation
with

ε ≤ rmax

(∑
i
|∆qi|

)2
/ 8. (3)

This shows that we may choose an angular discretisation step ∆q =
√

8ε/rmax to generate
swept volumes at a desired precision ε, and at a quadratic convergence rate. Contrary to
earlier works such as Schulman et al’s (2013), we do not suppose a boundary for the screw

14

KABouM: Knowledge-Level Action and Bounding Geometry Motion Planner

motion in each path segment, but rather rely on a more general property of revolute joints
given by Baginski (1997).

For swept volume generation, we first discretise the path Q as q(i) at angular steps ∆q.
Then, as described by Xavier (2002), we generate the swept volume from subsequent convex
hulls: for each sweeping convex polyhedron Vn, we compute its convex hull at subsequent
path segments q(i) and q(i+ 1), applying the forward kinematics function FK:

SV(B,Q) =
⋃
n

⋃
i

conv (FK(q(i+ 1))Vn ∪ FK(q(i))Vn) . (4)

Denoting |Q| as the length of the path in joint space, it follows that we need O(n |Q| /
√
ε)

convex polyhedra to represent the swept volume of a robot motion at a precision of ε, with
each one having at most 2 |V | vertices. This result implies that doubling the number of
sampling points of the path Q will quadruple the precision of the approximation. Up to
now, SV is an approximation with an error bounded by ε. In order to generate a bounding
(superset) swept volume and allow our bounded geometric predicates, we can compute ε-
enlarged models of B offline and—provided that B is a bounding mesh of the real robot
geometry—all computed swept volumes are bounding volumes. This property ensures that
our geometric predicates use one-sided, ε-precise approximations as defined at the beginning
of this section. As a practical example, the collision query on a robot motion with an object
will never return a false negative, and will always confirm a free path when the geometric
distance between both is larger than ε. Equivalently, we prepare models of B that are
trimmed by length ε to allow inclusion (subset) predicates that never report false positives.
Figure 3 shows an example of a typical motion of the Bartender robot, which is simplified
to a bounding set of 44 convex polyhedra with an error within ε < 0.05 m.

4.3 Bounded Geometric Predicate Evaluation

Considering the definition of our bounded geometric predicates at the beginning of this
section, we can now evaluate all collision and inclusion queries using only convex-convex
checks, and at a chosen precision. Since all robot and object models in B are simplified
to bounding sets of convex polyhedra, we can rely on efficient algorithms optimised for
pure convex-convex queries for both collision and inclusion predicates. An efficient collision
checking (and distance query) algorithm for this problem is described by Gilbert, Johnson,
and Keerthi (GJK, 1988), which has been shown to detect collisions between two convex
polyhedra at a computational complexity linear in the total number of involved vertices. For
an environment M of m convex polyhedra, a collision check with a swept robot volume can
be performed in at most O(nm |Q| /

√
ε) time. However, for most practical instances, the

computation is leveraged by fast broad-phase algorithms and may be considerably quicker.
For example, the geometric world M in the Bartender scenario is rather detailed with
a total of 179,092 vertices. The algorithms described in this section simplify this world to
30 convex bodies with a total of ≈600 vertices with an error ε < 0.05 m; in this world, we
can evaluate a swept volume collision check in less than 0.01 milliseconds on our testing
machine (see Section 7 below). Note that the swept volume collision predicate is by far the
most expensive; all other geometric predicates can be evaluated in less than a microsecond.

15

Gaschler, Petrick, Khatib, & Knoll

In addition to the collision and inclusion predicates, there are two predicates available
that depend on the forward kinematic function FK of a robot: whether a robot r is at
a certain location x, FK(r, q) = x, and whether a robot can reach that location at all,
x ∈ =(FK(r)). The first query is implemented by evaluation of the forward kinematic
function, the second query relies on an algebraic inverse kinematics solution. For both
functions, we use the implementation in the Robotics Library (RL)2 by Rickert (2011).

5. Knowledge-Level Planning with PKS

High-level planning capabilities in KABouM are provided by the Planning with Knowledge
and Sensing system (PKS, Petrick & Bacchus, 2002, 2004), an existing general-purpose
planner which builds plans in the presence of incomplete information and sensing actions.
PKS is an example of an epistemic planner (Bolander, 2017) which works at the knowledge
level (Newell, 1982) by reasoning about how the planner’s knowledge state changes due
to action. In particular, knowledge is described symbolically in a logic-like language and
actions are defined in terms of the changes they make to the planner’s knowledge state.
PKS attempts to avoid the computational explosion that can arise from such methods by
limiting the types of knowledge that can be represented, and working directly with the
syntactic formulae that model the planner’s knowledge, which differs from planners that
use representations that enumerate sets of possible worlds or belief states to capture the
incompleteness of the planner’s knowledge (e.g., Hoffmann & Brafman, 2005). Even though
PKS trades expressiveness for tractability, it still supports a rich set of features that are
useful in robot environments, including the ability to work with sensing actions, numerical
expressions, and uncertain information.

5.1 Knowledge Representation and Reasoning

PKS is based on a generalisation of STRIPS (Fikes & Nilsson, 1971), which describes plan-
ning domains using a database mechanism as the underlying state model. Unlike STRIPS,
which describes the evolving world state using a single database, PKS uses a collection of
five databases, each of which models a different type of knowledge. These databases also
have a fixed interpretation in a first-order modal logic of knowledge that formally defines
the planner’s underlying knowledge state (Petrick, 2006). To ensure efficient inference, PKS
restricts the type of knowledge (especially disjunctions) that it can represent in each of its
databases.

In this work, we primarily use the following three PKS databases:

Kf : This database is like a standard STRIPS database that stores the values of regular
fluents that are known to the planner. Kf is primarily used for modelling the effects
of actions that change the world. Unlike ordinary STRIPS, PKS does not make a
closed world assumption (Reiter, 1978) and Kf instead uses an open world model that
explicitly represents both positive and negative facts about the world, and captures
the idea that a fact could be unknown to the planner. In particular, Kf can include any
ground literal (i.e., a ground predicate or its negation) or ground function (in)equality
mapping `, where ` ∈ Kf means “the planner knows `.”

2. http://roboticslibrary.org/

16

http://roboticslibrary.org/

KABouM: Knowledge-Level Action and Bounding Geometry Motion Planner

Kw : This database stores information about the effects of sensing actions that return one of
two possible outcomes, providing support for modelling information-gathering actions
that observe the world but do not necessarily change it. A formula φ ∈ Kw means
that at plan time the planner either “knows φ or knows ¬φ.” This disjunction will
not be resolved until run time when the action is actually executed in the world, and
the planner will receive definite information about φ.

Kv : This database stores information about function values that will become known at
execution time. In particular, Kv can model the effects of sensing actions that return
one of many possible values. Kv can contain any function term f , where f ∈ Kv

means the planner “knows the value of f .” As with Kw, the definite value of f will
not become known until after the action is actually executed.

PKS also includes two additional databases for modelling a restricted type of disjunctive
knowledge (Kx), and localised form of closed world information (LCW) (Etzioni et al.,
1994), which are not used in this paper.

Reasoning within PKS is restricted to a set of primitive queries that ask simple questions
about the planner’s knowledge state. If φ is a ground atomic formula and t is a variable-free
term then the following primitive queries are permitted: (1) K(φ): is φ known to be true?
(2) K(¬φ): is φ known to be false? (3) Kw(φ): is φ known to be true or known to be false?
(Does PKS know whether φ?) (4) Kv(t): is the value of t known? (The negation of these
queries is also allowed.) Primitive queries are evaluated using an inference procedure that
checks the contents of the databases and the relationship between knowledge in different
databases. Inference in PKS has been shown to be sound, but incomplete (i.e., there are
situations where the implemented inference procedure is unable to determine the truth of a
query, while an answer would be theoretically possible). Additional details of the reasoning
procedure are described by Petrick and Bacchus (2002, 2004, 2006).

5.2 Planning Problems and Plan Generation

A PKS planning problem Σ is a tuple (S,A, I, G), where S is a set of symbols defining the
vocabulary for the planning domain, A is a set of actions, I is a description of the planner’s
initial knowledge state, and G is a set of goal conditions. PKS attempts to build a plan (a
sequence or tree of actions) whose execution in the initial state I brings about a state (or
set of states) in which the goal conditions G are satisfied.

S is a specification of the available objects, predicates, and functions used to define
actions and states in PKS. Actions A are described in terms of their knowledge prerequisites
and the changes they make to the planner’s knowledge state. Each action α ∈ A is a 3-
tuple of the form (~x, pre(α), eff (α)). ~x are α’s parameters, a set of variables that are
bound to produce an action instance. pre(α) are α’s preconditions, typically described by a
conjunctive set of primitive queries about the planner’s knowledge state, each of which must
evaluate as true before an action can be applied. More complex combinations of primitive
queries, including quantified queries and numerical expressions, can also be included in
an action’s preconditions. eff (α) are α’s effects, describing updates to PKS’s databases.
In particular, effects are specified as a list of statements of the form add(D, φ) (add φ to
database D) or del(D, φ) (delete φ from database D). Conditional effects are also permitted.

17

Gaschler, Petrick, Khatib, & Knoll

Finally, the initial knowledge state I is a specification of the initial contents of each PKS
database, and the goal G is an expression consisting of primitive queries, which may include
quantified queries.

Given a planning problem Σ, PKS attempts to build a plan to satisfy the goal G by rea-
soning about the actions A in a forward-chaining manner. Starting in the initial knowledge
state I, if pre(α) of an action α are satisfied by the planner’s knowledge state, then eff (α)
are applied to produce a new knowledge state. Alternatively, information from PKS’s Kw

and Kv databases (resulting from sensing actions) can also be used to extend an existing
plan, by reasoning about the possible outcomes of such information during plan generation.
If a formula φ is in the Kw database, denoting the fact that φ or ¬φ will become known at
run time, then a contingent plan can be built by introducing a pair of conditional branches
into the existing plan: along one branch, the planner assumes that φ is true, while along
the other branch ¬φ is assumed to be true. (The construction of contingent plans using Kv

is similar.) Planning continues until G is satisfied along every branch.

5.3 Externally-Linked Reasoning

To support PKS’s internal reasoning processes, the planner also has a mechanism for invok-
ing externally-defined procedures (e.g., special-purpose libraries) during plan generation
(Petrick & Gaschler, 2014). This idea is similar to other semantic attachment-like ap-
proaches (Eiter et al., 2006; Dornhege et al., 2009a; Erdem et al., 2011), and provides a
purely programmatic solution to integrating external reasoning with the planner.

PKS’s external evaluation mechanism has the form:

extern(proc(~x)),

where proc is the name of an external procedure and ~x is the set of parameters that are
passed to proc. Syntactically, proc is a unique identifier to a particular externally-defined
procedure; the procedure itself is implemented apart from PKS, for instance in a sepa-
rate library. A software-level interface function extending PKS’s application programming
interface (API) (Petrick, 2015) allows the software developer to link proc to the actual
externally-defined procedure. Intuitively, when an extern call is encountered by PKS, con-
trol is transferred to proc by executing the externally-defined procedure linked to this iden-
tifier, with control returning to PKS when the procedure has terminated. A variant of this
mechanism,

extern*(proc(~x)),

provides some control over the nature of the external reasoning process, by directing PKS
to save the results of the call for the given input parameters ~x. Subsequent calls to extern*
using the same set of parameters are therefore guaranteed to produce the same output, and
the planner is directed to simply used the previous result, which is cached. Such a facility is
particularly useful in cases where the external process may be computationally expensive.

An extern call can appear as part of a primitive query or a database update, where
the result of the extern call, defined within the external procedure, is passed back to PKS
and interpreted in the context where it occurs. In general, references to symbols in PKS’s
knowledge state can be directly passed to the external procedure through the argument
list ~x of proc, providing a connection between the planner’s internal knowledge state and

18

KABouM: Knowledge-Level Action and Bounding Geometry Motion Planner

action senseWeight(?o : object)
preconds:
K(isGrasped(?o))

effects:
add(Kw, isSpillable(?o))

action transferUpright(?o : object)
preconds:
K(isGrasped(?o)) &
K(¬isRemoved(?o)) &
K(isSpillable(?o))

effects:
add(Kf , isRemoved(?o))

action grasp(?o : object)
preconds:
K(emptyGripper) &
K(¬isRemoved(?o))

effects:
add(Kf , isGrasped(?o)),
add(Kf , ¬emptyGripper)

(a) Example PKS actions.

(b) Implementation with a 7-DoF torque-sensing
manipulator and a force-controlled parallel grip-
per.

Figure 4: In the Force Sensing scenario, a compliant robot manipulator can sense if
beverage containers are filled by weighing them. To prevent spilling, the robot can hold a
container upright while moving, unless it is known to be completely empty or not opened
(Gaschler et al., 2013c).

the external reasoning procedure. The execution of extern calls can also be conditioned by
including primitive queries as guards, so that external procedures can be context dependent.

In practice, extern calls are most beneficial when used for complex reasoning that can-
not easily be modelled in PKS’s representation language, or where more efficient reasoning
engines already exist. However, unlike PKS’s primitive query reasoning mechanism, the
planner does not have an internal model of the externally-defined procedures. As a result,
it simply assumes that the outcome of an external procedure is sound. Similarly, there is no
guarantee that the extern mechanism is complete, since completeness depends on the imple-
mentation of individual procedures outside the context of the planner itself. Moreover, in
the case of poorly implemented external modules, or difficult problem instances arising from
certain input parameters, termination itself may not be guaranteed (or at least guaranteed
within a reasonable amount of time). Thus, the onus is strongly placed on the programmer
of external procedures to ensure their operation is correct in the planning context.

5.4 Definitions of the Example Domains

Using PKS’s representation language, we can now describe how the example domains
from Section 3.2 are modelled. Both the Force Sensing and Bartender scenarios are
pick-and-place domains where a number of bottles are to be removed from a table, but rely

19

Gaschler, Petrick, Khatib, & Knoll

action pickUp(?r : robot, ?o : object, ?l : location)
preconds:
K(?l = getObjectLocation(?o)) &
K(handEmpty(?r)) &
K(extern(isReachable(?l, ?r))) &
forallK(?other:object)
¬K(extern(graspMotionCollides(?l, ?r, ?other)))

effects:
del(Kf , ?l = getObjectLocation(?o)),
del(Kf , handEmpty(?r)),
add(Kf , inHand(?o, ?r))

goal forallK(?o:object) (
K(extern(includes(dishwasher, getObjectLocation(?o)))) |
K(¬isEmptyBottle(?o)))

Figure 5: Example PKS action and goal for the Bartender scenario.

on different types of sensing, force sensing and visual sensing.

Figure 4 shows three PKS actions in the Force Sensing scenario, along with an image
of the operating environment. The first action, senseWeight, is an example of a sensing
action that checks the weight of an object ?o to determine whether it is spillable or not. As
a precondition for applying this action, the object must first be grasped by the robot (i.e.,
isGrasped(?o) must be known to the planner). After execution, the planner comes to know
whether the object is spillable or not (i.e., isSpillable(?o) is added to the Kw database)—
information which the planner can use to build contingent branches into a plan and reason
individually about the two possible outcomes of the sensing action.

The second action, transferUpright, is a manipulation action which removes a spillable
object ?o from a surface. In order to apply this action, the robot must first be holding the
object, the object must not have been previously removed, and it must be spillable (i.e.,
isGrasped(?o), ¬isRemoved(?o), and isSpillable(?o) must be known). As an effect, the action
removes the object from the surface (i.e., isRemoved(?o) is added to the Kf database),
following a trajectory which keeps the object upright.

Figure 5 shows a manipulation action, pickUp, from the Bartender scenario, which
uses a specific robot hand ?r to pick up an object ?o from a location ?l. This action is
modelled by a set of preconditions that verify that the planner knows the location of the
object, that the robot hand is empty, that the location is reachable with the robot hand,
and that the swept volume of the motion does not collide with any other objects. In par-
ticular, determining that a location is reachable, and that no collisions will occur, involves
invoking the external path planner, represented in the action description by two extern calls
(to the procedures isReachable and graspMotionCollides, respectively) which are evaluated
immediately at planning time. For instance, K(extern(isReachable(?l, ?r))) represents an
external call that invokes the path planner to determine whether location ?l is reachable
using robot hand ?r; this call would evaluate as true provided the path planner evaluates
isReachable(?l, ?r) as true. After applying this action, the planner comes to know that the
object is no longer at its former location, the robot hand is no longer empty, and that the

20

KABouM: Knowledge-Level Action and Bounding Geometry Motion Planner

Geometric

Predicate

Evaluation

Sampling with

Geometric

Constraints

Bounding Mesh

Simplification

Bounding Convex

Decomposition

Plan

Execution

SensingDomain

Definition

Symbolic

Planner

Symbolic–Geometric

Mapping

Collision

Checking
Kinematics

Trajectory

Generation

Robot

Control

Planning time Run-timePre-processing

Figure 6: Overview of the implemented KABouM software architecture.

robot is holding the object.
Finally, Figure 5 also gives an example of a goal in the Bartender scenario. In this

case, PKS is tasked with constructing a plan to ensure that all empty bottles are located in
the “dishwasher” area. In particular, reasoning about whether an object is in the dishwasher
or not is transferred to an externally-defined procedure, again represented in PKS by an
extern call (to the procedure includes).

The above action and goal definitions will be used below in Section 7 to evaluate our
framework. We note that the domain descriptions we present here are not complete,3 but
demonstrate important features of our approach, such as how sensing actions are used, and
how geometric functions for collision checking and motion planning are integrated into our
scenarios at the planning level. We also note that since PKS is a general-purpose planner
which has not been specifically optimised for robot domains, these domain descriptions may
easily be generalised to other robot tasks, since they involve common object transfers and
collision-avoiding robot motions.

6. KABouM System Architecture

The components described above—the symbolic planner, the domain definition, and the ge-
ometric volume computation and predicates—account for only part of the KABouM frame-
work. In order to test the effectiveness of our approach, we have implemented and evaluated
our framework both in simulation and on several real robot systems. Figure 6 shows an
overview of the implemented software system architecture.

From an abstract perspective, the underlying design goals of KABouM involve: (i) keep-
ing the domain definition and domain-specific software separate from generic task planning,
(ii) providing a consistent framework from task definition to physical execution, and (iii)

3. The Force Sensing scenario also includes an action transfer for moving objects that aren’t spillable, as
well as the necessary ungrasp action that follows all transfer actions. The full definition of the Bartender
scenario also includes an action senseIfEmpty which senses whether a bottle is empty or not, and an action
putDown which allows the robot to place an object at a specific location using a particular robot hand.

21

Gaschler, Petrick, Khatib, & Knoll

allowing efficient evaluation of geometric and kinematic predicates. For these reasons, we
did not rely on a large-scale robotics framework such as the Robot Operating System, but
rather cherry-picked individual kinematics and geometry functions from existing libraries,
and implemented a consistent task planning framework.

As shown in Figure 6, the system follows a sequence from the problem-dependent domain
definition and pre-processing of the geometry to generic task and motion planning and
execution on physical robots. During planning, the PKS planner can generate motion
plans and check for collisions by calling external predicates from the motion planning and
collision detection components. Both components rely heavily on the Robotics Library
(RL) by Rickert (2011). RL includes wrappers for all state-of-the-art collision checking
libraries and a manually optimised algebraic solution of the inverse kinematics for all six
degrees-of-freedom robots that appear in our evaluation.

For the simpler scenarios, robot motion paths are not searched completely, but gener-
ated by heuristics. In the Remove n Objects scenario, paths are joint-space interpolations
between start and goal. In the Force Sensing, paths are interpolated in the operational
space to achieve the transferUpright action. In the Bartender scenario, paths are con-
structed from a set of collision-free waypoints. Even though path generation is practical in
these scenarios, it is not guaranteed to search all possible paths.

By contrast, the Bimanual Assembly scenario is solved with fully integrated task and
motion planning. To integrate symbolic and geometric planning, the symbolic planner needs
to understand which geometric states are reachable through which actions, but does not need
to understand the meaning of those states. For this, a bidirectional map between geometric
states and corresponding symbols in the planner is sufficient. Inspired by Dornhege (2014),
our symbolic state contains a tuple of symbols S1 × S2 × . . . that uniquely maps to the
geometric state. In the current implementation, each entry of this tuple identifies a robot or
an object configuration. A unique map is achieved by using a lexicographic order on the list
of known geometric states. When the symbolic planner progresses the search and has found
an action whose symbolic preconditions are fulfilled, it calls a robotics-specific function with
(parts of) its current geometric state symbols (and possibly other symbolic arguments) as
parameters. In our implementation, PKS calls robotics-specific functions through its extern
interface, and can pass parameters that map to parts of the geometric state. The robotic-
specific function then progresses the geometric states, evaluates for geometric predicates,
and returns a tuple of symbols for the new geometric state. Translation between geometric
states and their symbols are performed by a symbolic-geometric mapping component. It
only requires that new symbols of a certain type or natural numbers can be saved in the
planner’s state, and can therefore interact with most off-the-shelf planners.

Note that this approach requires an unconditional action that samples new robot and
object states at random for covering the search space, so that the planner can sample
additional geometric choices for the same symbolic action. To accomplish this, we define
a move action that samples random transit and transfer motion. Actions for picking and
placing also need to cover their respective subspaces, which we achieve by sample-project
algorithms (Gaschler, 2016, ch. 5).

At run time, action execution is mediated by a simple plan execution component, which
sequentially processes the symbolic plan, given as a tree of actions, starting from the root.
Binary sensing actions have a choice of a positive and a negative child, which is selected af-

22

KABouM: Knowledge-Level Action and Bounding Geometry Motion Planner

action remove(?o : object)
preconds:
K(¬isRemoved(?o)) &
forallK (?p : object)
(K(isRemoved(?p)) |
¬K(extern*(graspMotionCollides(?o, ?p))))

effects:
add(Kf , isRemoved(?o))

goal: forallK (?o : object)
(K(isRemoved(?o)))

(a) Symbolic domain definition.
(b) Implementation with a Meka H2 manipulator
with n = 3.

Figure 7: Remove n Objects scenario.

ter execution; all other actions have a single child (Petrick & Bacchus, 2002, 2004; Gaschler
et al., 2013c). Sensing components are specifically implemented for each scenario: the
Bartender scenario includes a simple colour segmentation for object recognition, while
the Force Sensing robot reports external forces by computing its inverse dynamic model.
While the current implementation simply executes the plan, future versions may be in-
tegrated with the execution monitoring features of PKS (Petrick & Foster, 2013). For
executing robot actions, the trajectory generation and robot control components again rely
on the RL library to interpolate paths by quintic polynomials. Finally, robot control directly
commands robot joint angles through hardware-specific drivers.

6.1 Solution of the Remove n Objects Scenario

In order to help understand the operation of the KABouM architecture, we discuss another
minimalistic scenario step-by-step, the Remove n Objects scenario, in order to demon-
strate a typical interaction of symbolic planning and geometric predicates. In the Remove
n objects scenario, a single manipulator must remove a number of objects from a table
while avoiding collisions (see Figure 7b). Typically, many grasp poses are obstructed by
neighbouring objects but, at any time, at least one object can be removed safely. Essen-
tially, the task planner has to find a sequence of remove actions where collisions between
objects can be avoided, as defined in Figure 7a.

In the KABouM architecture, almost all components are kept generic and separate from
problem-specific definitions. In the Remove n objects scenario, the domain definition
files contain the symbolic domain (Figure 7a), the kinematics and geometric models of the
robot, the geometry of the objects and the environment, and a grasping pose for the robot
hand and the particular type of object. Only the robot control component was adapted
to this type of robot, a very thin external predicate graspMotionCollides was implemented
that uses several geometric predicates described in Section 4, and the initial positions of
the objects and a list non-colliding target “storage” positions were provided to the planner.

Before actual task planning, KABouM generates bounded convex decompositions of all

23

Gaschler, Petrick, Khatib, & Knoll

geometric models. Then, PKS performs a forward search on the symbolic domain; in this
scenario, it evaluates the preconditions of the remove action using different objects ?o as
an argument. Besides checking the purely symbolic precondition that a previously removed
object may not be removed again, there is a hybrid predicate over all other objects ?p that
they must not collide with the motion of removing object ?o. As an effect, the remove
action sets the symbolic predicate isRemoved as known for that object, getting closer to the
goal criterion that all known objects are known to be removed. In order to evaluate the
external predicate graspMotionCollides, PKS makes a direct call to a simple domain-specific
function which computes the grasping pose to the given object and to a target location
using KABouM’s inverse kinematics predicate, and tests whether the swept volume from
the grasping pose to the target pose would collide with another object ?p, using KABouM’s
swept volume collision predicate defined in Section 4. The extern call specifies that the
return value of this predicate depends purely on its arguments, enabling caching. Besides
this, all interpolated paths, swept volumes, and collision query results are also cached.

At run-time, the plan execution component of KABouM iterates through the solved
plan, retrieves the cached paths of the actions, generates trajectories through a simple
quintic interpolation scheme, and finally executes these trajectories on the physical robot.

7. Evaluation

In order to evaluate our approach, we discuss typical solutions of the Bartender and
Force Sensing scenarios, which illustrate many of the features of KABouM. In addition,
we analyse the performance and scalability of our approach on two scenarios that allow ar-
bitrary numbers of objects, namely the Remove n Objects and the Stacked n Objects
scenarios. Finally, we discuss Bimanual Assembly scenario, which is solved with fully
integrated task and motion planning.4

All plans were generated on desktop computers with a dual-core 2.8 GHz processor and
8 GB of memory. While the planning software was similar in all scenarios, each scenario
included a different type of physical robot. Because of the modular KABouM architecture,
we could encapsulate the different robot and sensing hardware interfaces within the robot
control and sensing components, respectively. On the planning level, these diverse types of
robots also indicate that KABouM is not limited to a single type of task, but can also solve
rather generic tasks, including mobile and multiple-manipulator robots.

7.1 Bartender Scenario

The Bartender scenario was implemented on a two 6-DoF industrial manipulator setup
with a colour camera for object recognition. The problem instance evaluated involved a set-
ting with four bottles on a table (Figure 10), whose positions were automatically measured
by a visual background-subtracting object recognition system before actual task planning.
Offline geometric mesh simplification and convex decomposition took 27.4 seconds, and task
planning took 2.9 seconds (Gaschler et al., 2013a). Figure 10 shows the executed sequence of
actions, which corresponds to a path in the solved plan: first, image recognition is directed

4. The domain definitions of the evaluated scenarios will be made available on the first author’s website
http://www.andre-gaschler.de/ at the time of publication.

24

http://www.andre-gaschler.de/

KABouM: Knowledge-Level Action and Bounding Geometry Motion Planner

Table 1: Evaluation of the Remove n Objects scenario. Geometric queries such as
collisions are made efficient by the swept volume representation as sets of convex bodies.
The overall planning time is on the order of typical execution time and scales acceptably
with the number of objects in this scenario.

N
u

m
b

er
o
f

O
b

je
ct

s
n

T
o
ta

l
T

im
e

[s
]

In
ve

rs
e

K
in

em
at

ic
s

[s
]

P
at

h
P

la
n

n
in

g
[s

]

S
w

ep
t

V
o
lu

m
e

G
en

er
at

io
n

[s
]

N
u

m
b

er
of

T
ri

a
n

g
le

s
G

en
er

at
ed

N
u

m
b

er
of

C
on

ve
x

B
o
d

ie
s

G
en

er
a
te

d

N
u

m
b

er
of

C
ol

li
si

on
C

h
ec

k
in

g
C

al
ls

C
ol

li
si

o
n

C
h

ec
k
in

g
[s

]

N
u

m
b

er
of

G
eo

m
et

ri
c

P
re

co
n

d
it

io
n

Q
u

er
ie

s

N
u

m
b

er
o
f

G
eo

m
et

ri
c

E
ff

ec
t

E
va

lu
a
ti

o
n

s

N
u

m
b

er
o
f

S
y
m

b
o
li

c
A

ct
io

n
s

in
S

o
lu

ti
o
n

Objects at random locations

2 12.41 0.01 12.21 0.19 11500 401 1 .00001 3 2 2
3 40.35 0.01 39.72 0.62 36956 1290 4 .00034 6 3 3
4 39.48 0.01 38.74 0.70 43162 1490 15 .00111 10 4 4
5 102.30 0.03 101.46 0.81 47570 1657 20 .00146 15 5 5

10 143.67 0.04 141.74 1.84 110302 3819 276 .01712 120 15 10
15 284.44 0.07 282.14 2.21 131396 4565 443 .02114 210 20 15
20 356.98 0.10 354.01 2.81 169396 5885 764 .04442 320 64 20

Objects in a line, only 1 of n can be picked up

2 12.43 0.01 12.23 0.19 11500 401 1 .00001 3 2 2
3 39.87 0.01 39.44 0.42 24768 860 3 .00003 6 3 3
4 99.46 0.02 99.01 0.43 24768 860 6 .00004 10 4 4
5 158.70 0.02 158.26 0.42 24768 860 10 .00005 15 5 5

10 351.77 0.02 350.67 1.08 61676 2156 79 .00270 55 10 10
15 354.10 0.05 352.13 1.89 113290 3927 322 .01275 120 15 15
20 355.16 0.12 352.43 2.57 153936 5331 792 .02974 210 20 20

to determine which bottles are empty, which involves four sensing actions. After following
the appropriate branches in the contingent plan generated by the planner, which considers
the possible outcomes of the sensing actions, the rest of the plan is sequential and consists
of six pick-and-place actions. Interestingly, this simple bimanual robot scenario gives rise
to non-trivial behaviour: in order to move bottles from the right side of the bar to the goal
location, one arm must first move them to a location where the second arm can reach them,
as shown in Figure 10. This behaviour is not hard-coded a priori but is generated as a
result of the planning process.

7.2 Force Sensing Scenario

The Force Sensing domain is very similar to the Bartender domain, with the visual
recognition of empty bottles replaced by internal torque sensing of a single, compliant robot
manipulator. This is an example of interdependent sensing and manipulation actions, as
the manipulator needs to grasp the object in order to weigh it (Gaschler et al., 2013c). In
contrast to the Bartender scenario, which includes a visual sensing action, force sensing

25

Gaschler, Petrick, Khatib, & Knoll

grasp(can1)
senseWeight(can1)
branch(isSpillable(can1))
K+:
transferUpright(can1)
ungrasp(can1)
grasp(can2)
senseWeight(can2)
branch(isSpillable(can2))
K+:
transferUpright(can2)
ungrasp(can2)

K-:
transfer(can2)
ungrasp(can2)

K-:
transfer(can1)
ungrasp(can1)
(truncated for brevity)

(a) Example solution

A

grasp(can1)
senseWeight(can1)
branch(isSpillable(can1))

B

transferUpright(can1)

C

ungrasp(can1)

D

grasp(can2)
senseWeight(can2)
branch(¬isSpillable(can2))

E

transfer(can2)

F

ungrasp(can2)

(b) Action and branch resolution sequence

Figure 8: Force Sensing scenario: example solution for two objects. Depending on
the weight measurements of the grasped objects at run time (images A and D), different
branches in the generated plan are taken. Only when a container is known to be empty, can
it be transferred using a fast, arbitrary path (image E). A video of this scenario is available
at http://youtu.be/7l2NP3l9_lY.

can only be applied to objects that are grasped. Therefore, sensing actions and binary
branches are moved from the start of the plan to several actions later, when the isGrasped
precondition is fulfilled. Figure 8 shows an example contingent plan for two objects to be
transferred. The KABouM execution component follows the actions in the solved plan and
chooses appropriate branches by assessing the results of sensed information. This scenario
was physically implemented on a joint-impedance controlled light-weight 7-DoF robot with
a force-controlled parallel gripper (Figure 8b). The positions of objects were not recognised
automatically, but included into the domain definition. The external gravity force of objects
was measured by internal torque sensing and calculating inverse dynamics.

While the Force Sensing and Bartender scenarios serve as examples that highlight
various features of KABouM, we also analyse the scalability of our approach below. To do
this, we quantitatively evaluate two scenarios that can easily be defined with an arbitrary
number of objects: the Remove n Objects and the Stacked n Objects scenarios. While
both scenarios are pick-and-place problems with few types of actions, their underlying search
spaces are substantially different, providing insights into which problem types scale well in
KABouM, and which are potentially problematic.

26

http://youtu.be/7l2NP3l9_lY

KABouM: Knowledge-Level Action and Bounding Geometry Motion Planner

Table 2: Evaluation of the Stacked n Objects scenario, where n objects are to be stacked
in a certain order. This seemingly simple scenario is a hard problem, as only a global search
can find a correct plan, and plans are sparse in the search space because of the ordering
constraint.

Objects Total
Time

Symbolic
Planning

Inverse Kinematics Path Planning

n [s] [s] [s] Calls [s] Calls

2 4.5080 0.0137 0.14031 20 4.3315 18
4 8.4666 0.0730 0.14138 16 8.2029 42
6 15.0111 2.0692 0.14471 24 12.7248 66
8 80.7198 64.1298 0.33280 30 16.8952 91
9 > 300 (timeout)

7.3 Remove n Objects Scenario

As discussed in the previous section, the task in the Remove n Objects scenario is simple:
a single robot should remove objects from a table while avoiding collisions. Typically, many
grasp poses are obstructed by neighbouring objects but, at any time, at least one object can
be removed safely. Thus, the task planner has to find a sequence of remove actions where
collisions between objects can be avoided. We implemented this scenario in a humanoid
robot setup with a 2-DoF Meka Robotics H2 torso, a 7-DoF arm and a tendon-driven
humanoid hand, as shown in Figure 7. In our demonstration, the robot removes three
objects from previously known locations.

Besides this simple demonstration, we perform a more quantitative evaluation in a sim-
ulated environment, measuring the performance of the planner with respect to the number
of objects n. Contrary to the scenarios studied earlier, problem instances were generated
systematically: random locations were evenly distributed over a rectangular table area until
a non-colliding set was found, locations in a line were generated with a defined starting po-
sition and increment. As shown in the results in Table 1, the planning time is almost linear
in the number of objects. In general, planning time is on the same order of magnitude as
the typical execution time on the robot. Even though the number of collision tests may be
higher than quadratic in the worst case, it must be noted that collisions of convex polyhedra
can be checked very efficiently, and collision checking only amounts to a negligible fraction
of the total planning time for the numbers observed. Swept volume generation time mostly
depends on the number of objects grasped, and only slightly on the location of those grasps.
In the extreme case of all objects standing in a straight line, only one of the objects can
be picked up at a time. Even though placement of the objects has some effect on path
planning and collision testing, influence on the total planning time is minor. As a result,
our planning approach scales well for this simple scenario, where only one type of action is
allowed that is not reversible, and a geometric predicate needs to be checked only once for
each pair of objects.

27

Gaschler, Petrick, Khatib, & Knoll

7.4 Stacked n Objects Scenario

In the Stacked n Objects scenario, a single mobile manipulator must move a new block
under an existing stack of n− 1 blocks, keeping the original order. As shown in Figure 9, a
single, grey block is located at the centre location, while all other n−1 blocks are stacked at
the left location. The robot can move a block from the top of a stack to the top of another,
and is supposed to move the blocks such that the grey block is under the original stack in
the final configuration. While this simple pick-and-place domain involves only n objects
and a fixed number of 3 locations, it is rather hard to solve. The results of this example are
shown in Table 2. Since the number of objects and locations is limited, geometric predicates
can be evaluated within reasonable time. However, the number of possible symbolic states
grows super-polynomial, and states that fulfil part of the goal criterion are many actions
away from the single goal state. (When only a single block is wrongly placed at the bottom
of the stack, this state is as far from the goal state as the initial state in terms of numbers
of actions.) For this reason, the symbolic planner essentially has to search to entire search
space, and for n > 8, the domain becomes infeasible on our testing system due to memory
constraints.

In principle, this scenario is a classical example of Sussman’s Anomaly (Sussman, 1973),
in that a global search is needed to achieve a correct solution. The underlying challenges are
that choices early in the plan may render the goal infeasible, correct plans are very sparse
in the search space, and states fulfilling part of the goal criterion are possibly far away from
the single goal state. We voluntarily included this example to show current limitations of
our implementation, and to motivate future work.

7.5 Bimanual Assembly Scenario

While the previous scenarios highlight individual aspects of our framework, we finally dis-
cuss an integrated scenario with two kinematics and multiple types of actions and objects,
the Bimanual Assembly scenario. In this scenario, two industrial manipulators are to
assemble a gearbox component from four objects (Figure 11). Besides the usual pick-and-
place actions, four complex actions for assembly and object handover are available, two
of them requiring coordinated dual-arm motion. The definition of predicates and actions
are given in Tables 4 and 5 in the Appendix A; implementation details are discussed by
Gaschler (2016, ch. 6).

To assemble the gearbox component, four objects of three different types are needed,
two bearings, a pipe object, and a mechanical tree (Figure 11 a–c). Two subcomponents

Figure 9: The Stacked n Objects scenario was implemented on a mobile manipulator
with n = 3.

28

KABouM: Knowledge-Level Action and Bounding Geometry Motion Planner

A

senseIfEmpty(bottle0)
. . .
senseIfEmpty(bottle3)

B

pickUp(robotleft, bot-
tle0, loc0)

C D

putDown(robotleft,
bottle0, loc5)

E

pickUp(robotright, bot-
tle2, loc2)

F

putDown(robotright,
bottle2, dishwasher)

G

pickUp(robotright, bot-
tle0, loc5)

H

putDown(robotright,
bottle0, dishwasher)

Figure 10: Action sequence of a solution in the Bartender scenario. In this example, the
left arm is the only one to reach bottle0 (image B). However, only the right arm can reach
the desired dishwasher location. Therefore, the robot’s left arm moves the first bottle to a
location where the other arm can reach it (image D), and the right arm passes it on to its
final location (images G and H). We note that this behaviour has not been preprogrammed
but instead arises purely from symbolic planning (Gaschler et al., 2013a). A video of this
scenario is available at http://youtu.be/yMmZkhHr8ss.

need to be created from two objects each, and these subcomponents can be assembled to
form a gearbox. The two robots have different gripper fingers: one can grasp all objects
from the outside, the other one can grasp a bearing object from the inside. The latter
grasp is necessary to insert a bearing into a pipe, and additionally allows the two robots
to hand over a bearing from one to another. Because of low tolerances, some assembly
actions require both objects to be grasped. In total, seven different actions are available
(Figure 12 c–h), two of which involve bimanual manipulation. While the move action does
not have preconditions and can always sample new poses at random, all other actions sample
poses that are generated by iterative projection starting from the current pose. With this
set of actions and sampling routines, the full space of robot and object configurations is
covered, including the rotational degree-of-freedom for grasping and assembling cylindrical
objects.

To evaluate this scenario, we compare our bounded geometric predicates with traditional
collision checking, vary between three search schemes, and measure computation time of
our planning system and its components. The measurement results are listed in Table 3.

As a first observation, all search schemes succeed at solving the Bimanual Assembly
scenario with and without using a bounding convex decomposition of the geometry. Bound-
ing geometric predicates allow the planning system to solve this scenario in one tenth of the
time compared to conventional collision checking, irrespective of the search scheme. As a
result, bounding geometric predicates are more efficient than normal collision checks, using

29

http://youtu.be/yMmZkhHr8ss

Gaschler, Petrick, Khatib, & Knoll

Table 3: Evaluation of the Bimanual Assembly scenario (Gaschler, 2016). Computation
time and procedure calls are measured with respect to the search strategy of the symbolic
planner and the type of geometry. Averages are taken over 12 trials, standard deviation is
shown in gray.

Depth-first
Search

Breadth-first
Search

Iterative Deep-
ening Search

Bounded geometric predicates ε < 0.02 m on a bounding convex decomposition of the
scene geometry

Total Time [s] 0.737 ±0.429 13.532 ±0.933 11.730 ±0.413

Symbolic Planning [s] 0.009 ±0.005 0.154 ±0.015 0.130 ±0.005
Geometric Search [s] 0.728 ±0.424 13.378 ±0.918 11.600 ±0.408

Inverse Kinematics Calls 191.75 ±97.68 3621.50 ±359.78 3194.25 ±150.89
Inverse Kinematics [s] 0.001 ±0.001 0.018 ±0.001 0.015 ±0.001
Collision Checks 2845 ±1600 56770 ±4547 49169 ±1826
Collision Checking [s] 0.713 ±0.416 13.132 ±0.893 11.382 ±0.396
Positive Collision Checks [%] 10.71 ±2.88 6.31 ±0.60 6.84 ±0.43
Geometric States 48.50 ±32.15 322.00 ±174.51 133.25 ±30.45

Actions in Plan 26.75 ±7.04 6.00 ±0.00 7.00 ±0.00
Waypoints in Plan 53.50 ±11.84 21.00 ±0.00 22.00 ±0.00

Variant: Exact geometric predicates on the original scene geometry

Total Time [s] 11.898 ±7.212 322.049 ±23.507 249.637 ±20.253

Symbolic Planning [s] 0.008 ±0.005 0.277 ±0.017 0.209 ±0.019
Geometric Search [s] 11.889 ±7.207 321.772 ±23.494 249.427 ±20.235

Inverse Kinematics Calls 140.00 ±86.98 3791.00 ±258.85 3096.00 ±318.01
Inverse Kinematics [s] 0.001 ±0.001 0.037 ±0.002 0.028 ±0.003
Collision Checks 1899 ±1248 59293 ±4136 47699 ±3919
Collision Checking [s] 11.874 ±7.199 321.403 ±23.475 249.135 ±20.205
Positive Collision Checks [%] 8.07 ±1.33 6.55 ±0.21 7.95 ±2.05
Geometric States 35.00 ±20.31 362.75 ±149.95 108.75 ±69.56

Actions in Plan 25.25 ±2.50 6.00 ±0.00 7.00 ±0.00
Waypoints in Plan 48.75 ±3.50 21.00 ±0.00 22.00 ±0.00

30

KABouM: Knowledge-Level Action and Bounding Geometry Motion Planner

(a) Bearing (b) Pipe (c) Mechanical tree

(d) Subassembly of pipe and
bearing

(e) Subassembly of mechanical
tree and bearing

(f) Gearbox component assem-
bled from both subassemblies

Figure 11: Objects in the Bimanual Assembly scenario. The final gearbox is assembled
from two bearing objects, a pipe object, and a mechanical tree object.

the state-of-the-art collision checking library Bullet.

Considering the different search schemes, a depth-first search is fastest in this scenario,
which could be explained by the fact it never revisits states before an assembly action.
However, depth-first solutions contain many unnecessary pick-and-place actions, while the
breadth-first search scheme always finds a plan with the minimum length of six actions.

Overall, the Bimanual Assembly scenario shows how integrated task and motion
planning provides a complete search for domains defined on a task level. Solutions include
automatic re-grasping, sequences of grasps, and even coordinated bimanual assembly ac-
tions. Preconditions such as reachability and collision-free motion allow abstract action
definitions, and ultimately ensure the correctness of multi-robot behavior more complex
than what can be programmed by hand.

8. Discussion

This work makes two main contributions: the introduction of single-sided ε-precise geomet-
ric collision checks, and an alternative approach to integrating task and motion planning
with discrete uncertainty.

In contrast to earlier approaches, our collision checks operate on a bounding convex de-
composition of the geometry. This single-sided approximation allows better motion planning
performance than standard triangle meshes (which are not as fast), convex hulls (which are
not as precise and overlook thin passages), and approximate convex decompositions (which
are often incorrect and ignore certain collisions). Few approaches deal with single-sided
approximation of meshes (Sander et al., 2000; Platis & Theoharis, 2003), and none of these
apply to the problem of efficient and strict collision avoidance. By segmenting the geometry
into convex bodies and simplifying these with our bounding mesh algorithm, we generate
a single-sided ε-precise approximation that allows fast, safe, and accurate collision checks.

31

Gaschler, Petrick, Khatib, & Knoll

(a) Initial state (b) Goal state in an example solution

(c) Action move (d) Actions pickUp and put-
Down

(e) Action assemblePipeBearing

(f) Action handoverBearing (g) Action assembleBearingTree (h) Action assemblePipeTree

Figure 12: Examples of initial state, goal state, and actions in the Bimanual Assembly
scenario. Transparent colours indicate waypoints before the resulting state of an action.

Compared to the conventional approach of using state-of-the-art collision checking libraries
on triangle meshes, we achieved a speed-up of a factor of ten. On the predicate level, colli-
sions between continuously moving robots and objects can be formulated in terms of swept
volumes; this representation is inspired by Kaelbling and Lozano-Pérez’s work.

In terms of combined task and motion planning, our work adds to the small (but grow-
ing) number of robotics-specific approaches that use general-purpose automated planning
under (discrete) uncertainty (Kaelbling & Lozano-Pérez, 2013): new domains and actions
can be specified in a standardised language, with integrated support for common, robotics-
specific functions and predicates. While many of the planning approaches described in

32

KABouM: Knowledge-Level Action and Bounding Geometry Motion Planner

Section 2 apply heuristics tailored towards specific domains (Barry, 2013; Plaku & Hager,
2010; Hauser & Ng-Thow-Hing, 2011; Karlsson et al., 2012), where it is cumbersome to
define new types of actions, our planning approach has not been specifically optimised for
robotics tasks. In addition, almost all of the planning approaches mentioned in Section 2 ap-
ply the closed-world assumption (an exception is Kaelbling & Lozano-Pérez, 2013), where
all unknown predicates are assumed to be false. Our approach is instead able to reason
about incomplete knowledge, where certain facts may be unknown to the planner, and
model situations where actions produce information gain and loss. Furthermore, while our
geometric preconditions may be similar to those by Kaelbling and Lozano-Pérez (2011),
their underlying hierarchical, back-chaining planning strategy substantially differs from our
knowledge-based approach. Its hierarchical search can potentially solve larger scenarios, but
relies on the assumption that efficient implementations are given for all preconditions of ab-
stract operations. By contrast, our approach is more modular and only checks preconditions
of actions, which are straightforward to implement for a larger range of scenarios.

Considering limitations, KABouM requires full knowledge of the geometric state, while
a few planners (Kaelbling & Lozano-Pérez, 2013) can search in the belief space. Compared
to more robotics-specific planners (Srivastava et al., 2014), our symbolic planner cannot
understand why a collision happened, but can only retry another motion path for the same
action or retry another action.

If an action depends only on part of the geometric state, KABouM can use this in sym-
bolic planning, which enables us to solve some problem instances where existing sampling-
based planners may run out of time. For instance, it is a general property that sam-
pling-based motion planners fail inconclusively, as the general motion planning problem is
PSPACE-complete (Reif, 1979). While sampling-based planners have to apply heuristics in
their search (Cambon et al., 2009), KABouM searches on the symbolic level.

It is also important to note that our planning approach does not rely on our particular
choice of planner. In addition to PKS’s extern mechanism, the use of PKS was also motivated
by it’s ability to model incomplete information and sensing actions, and the availability of a
comprehensive programmer-level API for software integration (Petrick, 2015). While other
options do exist for satisfying the final criterion, there are relatively few planners that
can reason with knowledge and sensing as PKS does. However, provided another planner
provides the same core features as PKS, there is no reason it cannot be used in its place.
Indeed, with the release of frameworks like ROSPlan (Cashmore et al., 2015) (which did not
exist when we began this work), we have the opportunity to test other domain-independent
planners, which we are exploring as future work.

9. Conclusion

In this paper, we describe an approach to robot task planning that combines single-sided ap-
proximate reasoning about complex geometric shapes with general-purpose knowledge-level
planning techniques. We introduce a set of algorithms for bounded geometric predicates
in this framework, and demonstrate our approach using several scenarios involving sensing
actions, multiple manipulators, mobile manipulation, and assembly. Overall, we believe
that knowledge-level task planning combined with collision checking on a bounding convex
decomposition is applicable to a broad range of robot tasks, and may prove effective in struc-

33

Gaschler, Petrick, Khatib, & Knoll

tured and partially known environments, including automation, robot-aided manufacturing,
and mobile manipulation, involving arbitrary numbers of manipulators.

We also view the use of a general-purpose, domain independent planner that has not been
explicitly optimised for planning robotics tasks as a significant advantage of our approach.
First, our framework profits from future updates to the actively-developed PKS planner
(or other compatible off-the-shelf automated planners) which may provide improvements to
its planning capabilities and new features which could be introduced in KABouM. Second,
by treating planning as a black box we keep our framework sufficiently modular, allowing
us to consider other symbolic planners from the planning community which may be tested
in the KABouM framework with minimal effort. Finally, since we use a general-purpose
planner, we are also exploring applications of our reasoning framework to other robot tasks,
for instance generating natural language dialogue for human-robot interaction (Petrick &
Foster, 2013, 2016).

Acknowledgements

The authors would like to thank Torsten Kröger, Svetlana Nogina, Quirin Fischer, and
Sören Jentzsch for their help with the implementation and evaluation, and Markus Rickert
for his comments on the manuscript. This research was supported in part by the European
Commission’s 7th Framework Programme through grant no. 270435 (JAMES: Joint Action
for Multimodal Embodied Social Systems, http://james-project.eu/).

Appendix A. Definition of the Bimanual Assembly Scenario

Table 4: Symbolic predicates and problem instance definition of the Bimanual Assembly
scenario.

Domain Element Element Definition

Types object, robot
Constants object o1, o2, o3, o4

robot robot1, robot2

Predicates isGrasped, isRobotGrasps, isHandEmpty, isContained, isABearing,
isAPipe, isATree, isAGearbox, containsBearing, isContained

Initial knowledge Kf isABearing(o1), isABearing(o2), isAPipe(o3), isATree(o4),
isHandEmpty(robot1), isHandEmpty(robot2),
¬isContained(o1), ¬isContained(o2), ¬isContained(o3),
¬isContained(o4),
¬isGrasped(o1), ¬isGrasped(o2), ¬isGrasped(o3), ¬isGrasped(o4)

Goal criteria G exists(object o) (K(isAGearbox(o)) ∧ K(¬isGrasped(o)))

34

http://james-project.eu/

KABouM: Knowledge-Level Action and Bounding Geometry Motion Planner

Table 5: Symbolic action definition A of the Bimanual Assembly scenario.

Action Preconditions Effects

move(robot r) true (no symbolic effects)

pickUp(robot r,
object o)

K(isHandEmpty(r)) ∧
K(¬isGrasped(o)) ∧
K(¬isContained(o))

add(Kf , ¬isHandEmpty(r)),
add(Kf , isGrasped(o)),
add(Kf , isRobotGrasps(r, o))

putDown(robot r,
object o)

K(isRobotGrasps(r, o)) ∧
K(isGrasped(o)) ∧
K(¬isContained(o))

add(Kf , isHandEmpty(r)),
add(Kf , ¬isGrasped(o)),
del(Kf , isRobotGrasps(r, o))

assemble
PipeBearing(robot r,
object o, robot r’,
object o’)

K(r 6= r’) ∧
K(isRobotGrasps(r, o)) ∧
K(isRobotGrasps(r’, o’)) ∧
K(isAPipe(o)) ∧
K(isABearing(o’)) ∧
K(¬isContained(o)) ∧
K(¬isContained(o’))

add(Kf , isHandEmpty(r’)),
add(Kf , isContained(o’)),
add(Kf , containsBearing(o)),
del(Kf , isRobotGrasps(r’, o’))

handoverBearing
(robot r, object o,
robot r’)

K(r 6= r’) ∧
K(isRobotGrasps(r, o)) ∧
K(isABearing(o)) ∧
K(¬isContained(o)) ∧
K(isHandEmpty(r’))

del(Kf , isRobotGrasps(r, o)),
add(Kf , isRobotGrasps(r’, o)),
add(Kf , isHandEmpty(r)),
add(Kf , ¬isHandEmpty(r’))

assembleBearingTree
(robot r, object o,
object o’)

K(isRobotGrasps(r, o)) ∧
K(¬isGrasped(o’)) ∧
K(isABearing(o)) ∧
K(isATree(o’)) ∧
K(¬isContained(o)) ∧
K(¬isContained(o’))

del(Kf , isRobotGrasps(r, o)),
add(Kf , ¬isGrasped(o)),
add(Kf , isContained(o)),
add(Kf , isHandEmpty(r)),
add(Kf , containsBearing(o’))

assemblePipeTree
(robot r, object o,
object o’)

K(isRobotGrasps(r, o)) ∧
K(¬isGrasped(o’)) ∧
K(isAPipe(o)) ∧
K(isATree(o’)) ∧
K(containsBearing(o)) ∧
K(containsBearing(o’)) ∧
K(¬isContained(o)) ∧
K(¬isContained(o’))

del(Kf , isRobotGrasps(r, o)),
add(Kf , ¬isGrasped(o)),
add(Kf , isContained(o’)),
add(Kf , isHandEmpty(r)),
add(Kf , isAGearbox(o))

35

Gaschler, Petrick, Khatib, & Knoll

References

Baginski, B. (1997). Efficient dynamic collision detection using expanded geometry models.
In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), Vol. 3, pp. 1714–1720.

Bajada, J. (2016). Temporal Planning for Rich Numeric Contexts. Phd thesis, King’s
College London, London, United Kingdom.

Barry, J. L. (2013). Manipulation with Diverse Actions. Ph.D. Thesis, Massachusetts
Institute of Technology.

Bellingham, J. G., & Rajan, K. (2007). Robotics in remote and hostile environments.
Science, 318 (5853), 1098–1102.

Bolander, T. (2017). A Gentle Introduction to Epistemic Planning: The DEL Approach.
ArXiv e-prints, arXiv:1703.02192.

Cambon, S., Alami, R., & Gravot, F. (2009). A hybrid approach to intricate motion,
manipulation and task planning. International Journal of Robotics Research, 28 (1),
104–126.

Cashmore, M., Fox, M., Long, D., Magazzeni, D., Ridder, B., Carrera, A., Palomeras, N.,
Hurtos, N., & Carreras, M. (2015). ROSPlan: Planning in the Robot Operating
System. In Proceedings of ICAPS 2015.

Chazelle, B., Dobkin, D. P., Shouraboura, N., & Tal, A. (1997). Strategies for polyhedral
surface decomposition: an experimental study. Computational Geometry, 7 (5), 327–
342.

Cheng, C.-H., Geisinger, M., Ruess, H., Buckl, C., & Knoll, A. (2012). Game Solving
for Industrial Automation and Control. In Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), pp. 4367–4372.

de Silva, L., Pandey, A., & Alami, R. (2013). An interface for interleaved symbolic-geometric
planning and backtracking. In Proceedings of the IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pp. 232–239.

Dearden, R., & Burbridge, C. (2013). An Approach for Efficient Planning of Robotic
Manipulation Tasks. In Proceedings of the International Conference on Automated
Planning and Scheduling (ICAPS), pp. 55–63.

Dornhege, C. (2014). Task Planning for High-Level Robot Control. Dissertation, Albert-
Ludwigs-Universität Freiburg.

Dornhege, C., Eyerich, P., Keller, T., Trüg, S., Brenner, M., & Nebel, B. (2009a). Se-
mantic Attachments for Domain-Independent Planning Systems. In Proceedings of
the International Conference on Automated Planning and Scheduling (ICAPS), pp.
114–121.

Dornhege, C., Gissler, M., Teschner, M., & Nebel, B. (2009b). Integrating symbolic and
geometric planning for mobile manipulation. In Proceedings of the IEEE International
Workshop on Safety, Security & Rescue Robotics, pp. 1–6.

36

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=656591
http://hdl.handle.net/1721.1/82342
http://dx.doi.org/10.1126/science.1146230
http://dx.doi.org/10.1177/0278364908097884
http://dx.doi.org/10.1177/0278364908097884
http://dx.doi.org/10.1145/220279.220311
http://dx.doi.org/10.1145/220279.220311
http://dx.doi.org/10.1109/ICRA.2012.6224814
http://dx.doi.org/10.1109/ICRA.2012.6224814
http://dx.doi.org/10.1109/IROS.2013.6696358
http://dx.doi.org/10.1109/IROS.2013.6696358
http://www.cs.bham.ac.uk/~rwd/DISTRIBUTE/dearden-burbridge-icaps13.pdf
http://www.cs.bham.ac.uk/~rwd/DISTRIBUTE/dearden-burbridge-icaps13.pdf
http://dx.doi.org/10.6094/UNIFR/10122
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.150.1206
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.150.1206
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5424160
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5424160

KABouM: Knowledge-Level Action and Bounding Geometry Motion Planner

Eiter, T., Ianni, G., Schindlauer, R., & Tompits, H. (2006). Effective integration of declar-
ative rules with external evaluations for semantic-web reasoning. In The Semantic
Web: Research and Applications, Proceedings of the European Semantic Web Confer-
ence (ESEC), Vol. 4011 of Lecture Notes in Computer Science, pp. 273–287.

Erdem, E., Haspalamutgil, K., Palaz, C., Patoglu, V., & Uras, T. (2011). Combining
high-level causal reasoning with low-level geometric reasoning and motion planning
for robotic manipulation. In Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA), pp. 4575–4581.

Erol, K., Hendler, J. A., & Nau, D. S. (1994). Umcp: A sound and complete procedure for
hierarchical task-network planning.. In AIPS, Vol. 94, pp. 249–254.

Etzioni, O., Golden, K., & Weld, D. S. (1994). Tractable Closed World Reasoning with
Updates. In Proceedings of the International Conference on Knowledge Representation
and Reasoning (KR), pp. 178–189.

Ferrer-Mestres, J., Frances, G., & Geffner, H. (2015). Planning with state constraints and
its application to combined task and motion planning. In Proceedings of the ICAPS
2015 Workshop on Planning and Robotics.

Fikes, R. E., & Nilsson, N. J. (1971). STRIPS: A New Approach to the Application of
Theorem Proving to Problem Solving. Artificial Intelligence, 2, 189–208.

Foster, M. E., Gaschler, A., Giuliani, M., Isard, A., Pateraki, M., & Petrick, R. (2012).
Two People Walk Into a Bar: Dynamic Multi-Party Social Interaction with a Robot
Agent. In Proceedings of the ACM International Conference on Multimodal Interaction
(ICMI).

Galindo, C., Fernández-Madrigal, J.-A., González, J., & Saffiotti, A. (2008). Robot task
planning using semantic maps. Robotics and Autonomous Systems, 56 (11), 955–966.

Garland, M., & Heckbert, P. S. (1997). Surface simplification using quadric error met-
rics. In Proceedings of the Annual Conference on Computer Graphics and Interactive
Techniques (SIGGRAPH), pp. 209–216.

Garrett, C. R., Lozano-Perez, T., & Kaelbling, L. P. (2015). Modular Task and Motion
Planning in Belief Space. In IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pp. 6366–6373.

Gaschler, A. (2016). Efficient Geometric Predicates for Integrated Task and Motion Plan-
ning. Dissertation, Technische Universität München.

Gaschler, A., Fischer, Q., & Knoll, A. (2015). The Bounding Mesh Algorithm. Tech. rep.
TUM-I1522, Technische Universität München, Germany.

Gaschler, A., Petrick, R. P. A., Giuliani, M., Rickert, M., & Knoll, A. (2013a). KVP:
A Knowledge of Volumes Approach to Robot Task Planning. In Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp.
202–208.

Gaschler, A., Petrick, R. P. A., Kröger, T., Khatib, O., & Knoll, A. (2013b). Robot Task
and Motion Planning with Sets of Convex Polyhedra. In RSS Workshop on Combined
Robot Motion Planning and AI Planning for Practical Applications.

37

http://dx.doi.org/10.1007/11762256_22
http://dx.doi.org/10.1007/11762256_22
http://dx.doi.org/10.1109/ICRA.2011.5980160
http://dx.doi.org/10.1109/ICRA.2011.5980160
http://dx.doi.org/10.1109/ICRA.2011.5980160
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.54.4858
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.54.4858
http://www.sciencedirect.com/science/article/pii/0004370271900105
http://www.sciencedirect.com/science/article/pii/0004370271900105
http://dl.acm.org/citation.cfm?id=2388680
http://dl.acm.org/citation.cfm?id=2388680
http://dx.doi.org/10.1016/j.robot.2008.08.007
http://dx.doi.org/10.1016/j.robot.2008.08.007
http://dx.doi.org/10.1145/258734.258849
http://dx.doi.org/10.1145/258734.258849
http://dx.doi.org/10.1109/IROS.2015.7354287
http://dx.doi.org/10.1109/IROS.2015.7354287
http://nbn-resolving.de/urn:nbn:de:bvb:91-diss-20160520-1275941-1-1
http://nbn-resolving.de/urn:nbn:de:bvb:91-diss-20160520-1275941-1-1
http://mediatum.ub.tum.de/node?id=1255722
http://dx.doi.org/10.1109/IROS.2013.6696354
http://dx.doi.org/10.1109/IROS.2013.6696354
http://www6.in.tum.de/Main/Publications/Gaschler2013b.pdf
http://www6.in.tum.de/Main/Publications/Gaschler2013b.pdf

Gaschler, Petrick, Khatib, & Knoll

Gaschler, A., Petrick, R. P. A., Kröger, T., Knoll, A., & Khatib, O. (2013c). Robot Task
Planning with Contingencies for Run-time Sensing. In Proceedings of the IEEE Inter-
national Conference on Robotics and Automation (ICRA) Workshop on Combining
Task and Motion Planning.

Gilbert, E. G., Johnson, D. W., & Keerthi, S. S. (1988). A fast procedure for computing
the distance between complex objects in three-dimensional space. IEEE Journal of
Robotics and Automation, 4 (2), 193–203.

Gregory, P., Long, D., Fox, M., & Beck, J. C. (2012). Planning Modulo Theories: Extending
the Planning Paradigm. In Proceedings of the International Conference on Automated
Planning and Scheduling (ICAPS).

Hadfield-Menell, D., Groshev, E., Chitnis, R., & Abbeel, P. (2015). Modular Task and Mo-
tion Planning in Belief Space. In IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 4991–4998.

Haigh, K. Z., & Veloso, M. M. (1998). Interleaving planning and robot execution for asyn-
chronous user requests. Autonomous Robots, 5 (1), 79–95.

Hauser, K., & Ng-Thow-Hing, V. (2011). Randomized multi-modal motion planning for
a humanoid robot manipulation task. International Journal of Robotics Research,
30 (6), 678–698.

Hertle, A., Dornhege, C., Keller, T., & Nebel, B. (2012). Planning with semantic attach-
ments: An object-oriented view. In Proceedings of the 20th European Conference on
Artificial Intelligence (ECAI 2012), pp. 402–407.

Hoffmann, J., & Brafman, R. (2005). Contingent Planning via Heuristic Forward Search
with Implicit Belief States. In Proceedings of the International Conference on Auto-
mated Planning and Scheduling (ICAPS), pp. 71–80.

Kaelbling, L. P., & Lozano-Pérez, T. (2011). Hierarchical task and motion planning in the
now. In Proceedings of the IEEE International Conference on Robotics and Automa-
tion (ICRA), pp. 1470–1477.

Kaelbling, L. P., & Lozano-Pérez, T. (2012). Unifying Perception, Estimation and Ac-
tion for Mobile Manipulation via Belief Space Planning. In Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA), pp. 2952–2959.

Kaelbling, L. P., & Lozano-Pérez, T. (2013). Integrated Task and Motion Planning in Belief
Space. International Journal of Robotics Research, 32 (9–10), 1194–1227.

Karlsson, L., Bidot, J., Lagriffoul, F., Saffiotti, A., Hillenbrand, U., & Schmidt, F. (2012).
Combining task and path planning for a humanoid two-arm robotic system. In Pro-
ceedings of the ICAPS Workshop on Combining Task and Motion Planning for Real-
World Applications (TAMPRA), pp. 13–20.

Kraft, D., Baseski, E., Popović, M., Batog, A. M., Kjær-Nielsen, A., Krüger, N., Pet-
rick, R., Geib, C., Pugeault, N., Steedman, M., Asfour, T., Dillmann, R., Kalkan, S.,
Wörgötter, F., Hommel, B., Detry, R., & Piater, J. (2008). Exploration and planning
in a three-level cognitive architecture. In Proceedings of the International Conference
on Cognitive Systems (CogSys), pp. 71–78.

38

http://www6.in.tum.de/Main/Publications/Gaschler2013a.pdf
http://www6.in.tum.de/Main/Publications/Gaschler2013a.pdf
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?&arnumber=2083
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?&arnumber=2083
http://www.aaai.org/ocs/index.php/ICAPS/ICAPS12/paper/view/4693/4715
http://www.aaai.org/ocs/index.php/ICAPS/ICAPS12/paper/view/4693/4715
http://dx.doi.org/10.1109/IROS.2015.7354079
http://dx.doi.org/10.1109/IROS.2015.7354079
http://dx.doi.org/10.1007/978-1-4615-5735-7_7
http://dx.doi.org/10.1007/978-1-4615-5735-7_7
http://dx.doi.org/10.1177/0278364910386985
http://dx.doi.org/10.1177/0278364910386985
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.75.8656
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.75.8656
http://dx.doi.org/10.1109/ICRA.2011.5980391
http://dx.doi.org/10.1109/ICRA.2011.5980391
http://dx.doi.org/10.1109/ICRA.2012.6225237
http://dx.doi.org/10.1109/ICRA.2012.6225237
http://dx.doi.org/10.1177/0278364913484072
http://dx.doi.org/10.1177/0278364913484072
http://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-24401

KABouM: Knowledge-Level Action and Bounding Geometry Motion Planner

Kress-Gazit, H., & Pappas, G. J. (2008). Automatically synthesizing a planning and control
subsystem for the DARPA Urban Challenge. In Proceedings of the IEEE International
Conference on Automation Science and Engineering (CASE), pp. 766–771.

Kuter, U., Nau, D., Pistore, M., & Traverso, P. (2009). Task decomposition on abstract
states, for planning under nondeterminism. Artificial Intelligence, 173 (5), 669–695.

Lien, J.-M., & Amato, N. M. (2007). Approximate convex decomposition of polyhedra. In
Proceedings of the 2007 ACM symposium on Solid and physical modeling, pp. 121–131.

Mamou, K., & Ghorbel, F. (2009). A simple and efficient approach for 3D mesh approximate
convex decomposition. In Proceedings of the IEEE International Conference on Image
Processing (ICIP), pp. 3501–3504.

Newell, A. (1982). The Knowledge Level. Artificial Intelligence, 18, 87–127.

Nilsson, N. J. (1984). Shakey The Robot. Technical Report 323, AI Center, SRI Interna-
tional.

Petrick, R., Kraft, D., Krüger, N., & Steedman, M. (2009). Combining Cognitive Vi-
sion, Knowledge-Level Planning with Sensing, and Execution Monitoring for Effec-
tive Robot Control. In Proceedings of the ICAPS Workshop on Planning and Plan
Execution for Real-World Systems, pp. 58–65.

Petrick, R. P. A. (2006). A Knowledge-level approach for effective acting, sensing, and
planning. Ph.D. thesis, Department of Computer Science, University of Toronto,
Toronto, Ontario, Canada.

Petrick, R. P. A. (2015). An Application Programming Interface to High-Level Planning
with PKS. Tech. rep., School of Informatics, University of Edinburgh.

Petrick, R. P. A., & Bacchus, F. (2002). A Knowledge-Based Approach to Planning with
Incomplete Information and Sensing. In Proceedings of the International Conference
on Artificial Intelligence Planning and Scheduling (AIPS), pp. 212–221.

Petrick, R. P. A., & Bacchus, F. (2004). Extending the knowledge-based approach to
planning with incomplete information and sensing. In Proceedings of the International
Conference on Automated Planning and Scheduling (ICAPS), pp. 2–11.

Petrick, R. P. A., & Foster, M. E. (2013). Planning for Social Interaction in a Robot
Bartender Domain. In Proceedings of the International Conference on Automated
Planning and Scheduling (ICAPS), Special Track on Novel Applications, pp. 389–397.

Petrick, R. P. A., & Foster, M. E. (2016). Using general-purpose planning for action selection
in human-robot interaction. In Proceedings of the AAAI 2016 Fall Symposium on
Artificial Intelligence for Human-Robot Interaction (AI-HRI), Arlington, VA, USA.

Petrick, R. P. A., & Gaschler, A. (2014). Extending Knowledge-Level Contingent Planning
to Robot Task Planning. In Proceedings of the ICAPS Workshop on Planning and
Robotics (PlanRob), pp. 157–165.

Plaku, E., & Hager, G. D. (2010). Sampling-based motion planning with symbolic, geo-
metric, and differential constraints. In IEEE Intl Conf on Robotics and Automation
(ICRA), pp. 5002–5008.

39

http://dx.doi.org/10.1109/COASE.2008.4626549
http://dx.doi.org/10.1109/COASE.2008.4626549
http://dx.doi.org/10.1016/j.artint.2008.11.012
http://dx.doi.org/10.1016/j.artint.2008.11.012
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5414068
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5414068
http://dx.doi.org/10.1016/0004-3702(82)90012-1
http://www.ai.sri.com/pubs/files/629.pdf
http://homepages.inf.ed.ac.uk/rpetrick/papers/icaps2009ws-planexec.pdf
http://homepages.inf.ed.ac.uk/rpetrick/papers/icaps2009ws-planexec.pdf
http://homepages.inf.ed.ac.uk/rpetrick/papers/icaps2009ws-planexec.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.16.7462
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.16.7462
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.65.1890
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.65.1890
https://www.aaai.org/ocs/index.php/ICAPS/ICAPS13/paper/download/6039/6208
https://www.aaai.org/ocs/index.php/ICAPS/ICAPS13/paper/download/6039/6208
http://www6.in.tum.de/Main/Publications/Gaschler2014d.pdf
http://www6.in.tum.de/Main/Publications/Gaschler2014d.pdf
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5509563
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5509563

Gaschler, Petrick, Khatib, & Knoll

Platis, N., & Theoharis, T. (2003). Progressive hulls for intersection applications. Computer
Graphics Forum, 22 (2), 107–116.

Reif, J. H. (1979). Complexity of the movers problem and generalizations. In Proceedings
of the Annual IEEE Conference on Foundations of Computer Science, pp. 421–427.

Reiter, R. (1978). On closed world data bases. In Gallaire, H., & Minker, J. (Eds.), Logic
and Data Bases, pp. 55–76. Plenum, NY.

Rickert, M. (2011). Efficient Motion Planning for Intuitive Task Execution in Modular
Manipulation Systems. Dissertation, Technische Universität München.

Sander, P. V., Gu, X., Gortler, S. J., Hoppe, H., & Snyder, J. (2000). Silhouette clip-
ping. In Proceedings of the Annual Conference on Computer Graphics and Interactive
Techniques (SIGGRAPH), pp. 327–334.

Schulman, J., Lee, A., Awwal, I., Bradlow, H., & Abbeel, P. (2013). Finding Locally Opti-
mal, Collision-Free Trajectories with Sequential Convex Optimization. In Proceedings
of Robotics: Science and Systems (RSS).

Srivastava, S., Fang, E., Lorenzo, R., Chitnis, R., Russell, S., & Abbeel, P. (2014). Com-
bined Task and Motion Planning Through an Extensible Planner-Independent Inter-
face Layer. In IEEE International Conference on Robotics and Automation (ICRA),
pp. 639–646.

Srivastava, S., Riano, L., Russell, S., & Abbeel, P. (2013). Using classical planners for tasks
with continuous operators in robotics. In Proceedings of the ICAPS Workshop on
Planning and Robotics (PlanRob), pp. 27–35.

Sussman, G. J. (1973). A computational model of skill acquisition. Ph.D. Thesis, Mas-
sachusetts Institute of Technology.

Wolfe, J., Marthi, B., & Russell, S. J. (2010). Combined task and motion planning for
mobile manipulation. In Proceedings of the International Conference on Automated
Planning and Scheduling (ICAPS), pp. 254–258.

Xavier, P. G. (2002). Implicit convex-hull distance of finite-screw-swept volumes. In Pro-
ceedings of the IEEE International Conference on Robotics and Automation (ICRA),
Vol. 1, pp. 847–854.

40

http://dx.doi.org/10.1111/1467-8659.00653
http://dx.doi.org/10.1109/SFCS.1979.10
http://mediatum.ub.tum.de/node?id=981979
http://mediatum.ub.tum.de/node?id=981979
http://dx.doi.org/10.1145/344779.344935
http://dx.doi.org/10.1145/344779.344935
http://www.roboticsproceedings.org/rss09/p31.pdf
http://www.roboticsproceedings.org/rss09/p31.pdf
http://dx.doi.org/10.1109/ICRA.2014.6906922
http://dx.doi.org/10.1109/ICRA.2014.6906922
http://dx.doi.org/10.1109/ICRA.2014.6906922
http://www.aaai.org/ocs/index.php/WS/AAAIW13/paper/view/7166
http://www.aaai.org/ocs/index.php/WS/AAAIW13/paper/view/7166
http://dspace.mit.edu/bitstream/handle/1721.1/6894/AITR-297.pdf?sequence=2
http://www.aaai.org/ocs/index.php/ICAPS/ICAPS10/paper/view/1456
http://www.aaai.org/ocs/index.php/ICAPS/ICAPS10/paper/view/1456
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1013463

	1 Introduction
	2 Related Work
	2.1 General Approaches to Robot Task Planning
	2.2 Symbolic Planners with Geometric Queries
	2.3 Planning in Belief Space
	2.4 Motion Planning Approaches to Task Planning

	3 Robot Task Planning
	3.1 The Robot Task Planning Problem
	3.2 Example KABouM Domains

	4 Geometric Algorithms
	4.1 Bounding Convex Decomposition of Volumes
	4.1.1 Bounding Mesh Surface Simplification
	4.1.2 Bounding Convex Decomposition

	4.2 Bounding Swept Volume Generation
	4.3 Bounded Geometric Predicate Evaluation

	5 Knowledge-Level Planning with PKS
	5.1 Knowledge Representation and Reasoning
	5.2 Planning Problems and Plan Generation
	5.3 Externally-Linked Reasoning
	5.4 Definitions of the Example Domains

	6 KABouM System Architecture
	6.1 Solution of the Remove n Objects Scenario

	7 Evaluation
	7.1 Bartender Scenario
	7.2 Force Sensing Scenario
	7.3 Remove n Objects Scenario
	7.4 Stacked n Objects Scenario
	7.5 Bimanual Assembly Scenario

	8 Discussion
	9 Conclusion
	A Definition of the Bimanual Assembly Scenario
	References

