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Abstract—This paper proposes a new coupling matrix synthesis
technique called the coupling matrix compression technique,
which focuses on reducing the dimension of the N + 2 coupling
matrix. The presented coupling matrices can be compressed,
and this technique can be used to design dual-mode resonators
for high-isolation dual-band filters. One dual-mode resonator is
represented as two closely coupled resonators when using this
technique. The formulae for resonant frequencies and ωm in
dual-mode theory are also derived in this paper. A dual-mode
embedded hairpin resonator is designed and analyzed using this
technique, and a dual-band filter using the proposed resonators
is designed and fabricated to validate the proposed technique.

Index Terms—Coupling matrix for filter synthesis, dimension,
dual-mode, dual-band, microwave filters.

I. INTRODUCTION

THE coupling matrix theory is a powerful mathemat-
ical tool in modern microwave filters design. Many

researchers are interested in this field of study [1]–[6] and
typically use matrix rotation and optimization [7] during
coupling matrix transformations. However, these synthesis
methods are confined to use with matrix transformations of
matrices with dimensions of n + 2 to n + 2. Thus, these
methods are inconvenient to reduce the dimension of large-
order matrices.

Some papers use coupling matrix synthesis to design dual-
band filters [8]–[10]. A single-band can be split into two bands
using transmission zeros, which can be produced by cross
couplings. To obtain a feasible coupling topology, synthesis is
used to optimize and reconfigure the coupling structure. How-
ever, conventional methods cannot eliminate cross-couplings,
and a special topology is still needed when using these meth-
ods. Thus, it is difficult to implement a synthesized topology,
especially with planar microstrip technology.

In this paper, a new coupling matrix synthesis method is
presented to reduce the dimension of the coupling matrix. And
it would not change the S-parameter responses of the matrix.
When two single-mode resonators are closely coupled, they
can be considered to be a dual-mode resonator, which reduces
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the number of resonators and effectively compresses the cou-
pling matrix. Following dual-mode cascading theory [11], this
paper focuses on the characteristics of dual-mode resonators.
Using the coupling matrix compression technique, dual-mode
resonators can be analyzed theoretically. The formulae of the
resonant frequencies and ωm in dual-mode theory are derived
in this paper.

Notably, not all the coupling matrices can be compressed.
This paper finds that the matrices with special topologies
can be compressed, such as peninsula topology, discussed in
Section II-B and proportional topology, discussed in Section
II-C. Using the topology proposed in this paper, the ωm in the
dual-mode theory is shown to be between the two resonant
frequencies, indicating that these dual-mode resonators can be
used for high-isolation dual-mode dual-band filters.
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Fig. 1. (a) Circuit model for the n-node filter. (b) Ωi(ω) is replaced by an
LC circuit. (c) Topology model for the n-resonators filter.



II. MATRIX COMPRESSION TECHNIQUE

This section discusses a few matrix transformation tech-
niques and derives the matrix compression technique. To sim-
plify the derivation process, all impedances or admittances in
the circuit models are normalized by input/output impedances.

A. Basic Coupling Matrix Theory

Considering a fully coupled filter with n resonators, the
general circuit model is shown in Fig. 1(a), where mij is the
admittance inverter between node i and j; and jΩi(ω) is the
admittance in node i. For a single-mode resonator, jΩi(ω) is
typically replaced by an LC circuit, shown in Fig. 1(b). Then,

jΩi(ω) = jCiω +
1

jLiω
= j

√
Ci
Li

ω2 − 1
LiCi

ω
√

1
LiCi

= jγi
ω2 − ω2

i

ωiω

(1)
where γi =

√
Ci/Li and ωi =

√
1/LiCi.

The conventional way to form a single-band response is
making

ωi = ω0, γi =
1

FBW
(2)

for i = 1, 2, 3, . . . , n, where ω0 is the central frequency of this
pass-band and FBW is the fractional bandwidth.

Fig. 1(c) shows the topology of the circuit in Fig. 1(a). The
[A]-matrix defined in [12, p.229] is shown in (3). The rows
and columns of the [A]-matrix start counting from zero.

A =

0(S) 1 · · · i · · · n+ 1(L)



−j mS1 · · · mSi · · · mSL S
mS1 Ω1(ω) · · · m1i · · · mL1 1

...
...

. . .
...

. . .
...

...
mSi m1i · · · Ωi(ω) · · · mLi i

...
...

. . .
...

. . .
...

...
mSn m1n · · · mni · · · (ω) mLn n
mSL mL1 · · · mLi · · · −j L

(3)

Then, from [12, p.229], the following can be derived:

S21(A) = −2j[A]−1
n+1,0

S11(A) = 1 + 2j[A]−1
0,0

(4)

Different [A]-matrices may lead to the same response. If
[A′] has the same response with [A], which means

S21(A′) = S21(A), S12(A′) = S12(A)

S11(A′) = S11(A), S22(A′) = S22(A)
(5)

[A′] and [A] are equivalent, described by:

[A] ≡ [A′] (6)

Equivalent transforms are useful to create an equivalent [A]-
matrix.

One equivalent transform is the similarity transform pro-
posed in [3]:

[A′] = [Rθi,j ][A][Rθi,j ]
T (7)

where [Rθi,j ] is the rotation matrix, defined in (8), and [Rθi,j ]
T

is its transpose. It has a pivot, [i, j] (i 6= j, i, j 6= 0 and n+1)
and an angle of rotation, θ.

Rθi,j =



1 0 · · · 0 · · · 0 · · · 0 S
0 1 · · · 0 · · · 0 · · · 0 1
...

...
. . .

...
. . .

...
. . .

...
...

0 0 · · · cos(θ) · · · − sin(θ) · · · 0 i
...

...
. . .

...
. . .

...
. . .

...
...

0 0 · · · sin(θ) · · · cos(θ) · · · 0 j
...

...
. . .

...
. . .

...
. . .

...
...

0 0 · · · 0 · · · 0 · · · 1 L
S 1 · · · i · · · j · · · L

(8)

After rotation, the elements in rows i and j, and columns i
and j of [A] are changed. The values in [A′] are changed as
follows:

A′ki =A′ik = cos(θ)Aik − sin(θ)Ajk

A′kj =A′jk = sin(θ)Aik + cos(θ)Ajk

A′ii = cos2(θ)Aii − 2 sin(θ) cos(θ)Aij + sin2(θ)Ajj

A′jj = sin2(θ)Aii + 2 sin(θ) cos(θ)Aij + cos2(θ)Ajj

A′ij =(cos2(θ)− sin2(θ))Aij + sin(θ) cos(θ)(Aii −Ajj)
A′ji =A′ij

(9)

where k(6= i, j) = 0, 1, . . . , n+ 1.
This paper proposes another equivalent transform called the

scaling transform, which is defined as follows:

[A′] = [Sαi ][A][Sαi ]T (10)

where [Sαi ] is the scaling matrix defined in (11), and [Sαi ]T is
its transpose. It is a diagonal matrix with all diagonal entries
equal to 1, except for the entry at [i, i], (i 6= 0 and n+ 1):

Sαi =

S 1 · · · i · · · n L



1 S

1 0 1
. . .

...
α i

. . .
...

0 1 n
1 L

(11)

After this transform, the elements in row i and column i of
[A] are changed. The values in [A′] are changed as follows:

A′ki =A′ik = αAik

A′ii =α2Aii
(12)

where k(6= i) = 0, 1, . . . , n+ 1.
The proof of this transform is shown in Appendix A.
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Fig. 2. (a) Peninsula topology. (b) The circuit in the dashed frame and its
equivalent circuit.

B. Compression Theory for Peninsula Topology

As shown in Fig. 2(a), the peninsula topology is compress-
ible. The resonators, p and p + 1, form a peninsula, which
means that:

mp+1,k = 0 (13)

for k( 6= p, p+ 1) = 0, 1, . . . , n+ 1.
The [A]-matrix of this topology can be written as:

A =



−j mS1 · · · mSp 0 · · · mSL

mS1 Ω1 · · · m1p 0 · · · mL1

...
...

. . .
...

...
. . .

...
mSp m1p · · · Ωp mp,p+1 · · · mLp

0 0 · · · mp,p+1 Ωp+1 · · · 0
...

...
. . .

...
...

. . .
...

mSL mL1 · · · mLp 0 · · · −j

(14)

The circuit of this peninsula shown in Fig. 2(b) is used to
compress this [A]-matrix. From [13], this peninsula circuit can
be replaced by a new frequency variable, Ω′p, which can be
expressed as follows:

Ω′p = Ωp −
m2
p,p+1

Ωp+1
(15)

After replacement, the number of nodes has been reduced
in the topology. The (n + 2) × (n + 2) [A]-matrix has also
transformed into (n+ 1)× (n+ 1) [A′]:

A′ =





−j mS1 · · · mSp · · · mSL

mS1 Ω1 · · · m1p · · · mL1

...
...

. . .
...

. . .
...

mSp m1p · · · Ω′p · · · mLp

...
...

. . .
...

. . .
...

mSL mL1 · · · mLp · · · −j

(16)
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Then, the rows p and p + 1 are compressed into one row,
and the columns p and p+1 are compressed into one column.
This replacement does not change the response, so

[A] ≡ [A′] (17)

A useful dual-band topology composed by the peninsulas
is shown in Fig. 3. In this topology, we can iterate the above
steps and compress the [A]-matrix from (n + 2) × (n + 2)
finally into dimension (n/2 + 2)× (n/2 + 2). Some examples
using this topology to design dual-band resonators are shown
in [13]–[15].

C. Compression Theory for Proportional Topology

A more general condition can be described by:

mp+1,k = λmp,k (18)

for k( 6= p, p+ 1) = 0, 1, . . . , n+ 1.
Equation (13) is a special case of (18) when λ = 0.
Two closely coupled single resonators can be considered to

be one dual-mode resonator, as shown in Fig. 4. This type
of dual-mode resonator matches the above mentioned propor-
tional condition. In Fig. 4, resonator i is an arbitrary resonator
in the filter, p and p + 1 are the closely coupled resonators
when d << D. The coupling coefficient for two resonators
is determined by the distance and current distribution at the
resonant frequencies. They can be roughly described in the
following form, when the distance, D, is sufficiently large
[16]–[19].

mi,p = Ci,pD
−α
i,p ≈ Ci,pD

−α

mi,p+1 = Ci,p+1D
−α
i,p+1 ≈ Ci,p+1D

−α (19)

where Ci,p, Ci,p+1 and α are the coefficients determined by
the current distribution of the coupled resonators, and for
parallel-coupled line, α = 1; Di,p is the distance between
the resonator i and p, and Di,p+1 is the distance between the
resonator i and p+ 1.



So,

λ =
mi,p+1

mi,p
=
Ci,p+1

Ci,p
(20)

Then, the λ is not affected by the distance. And if we use
similar resonators, λ does not change with i.

To compress this type of topology, the [A]-matrix can be
rewritten as [A0]:

A0 =



−j mS1 · · · mSp λmSp · · · mSL

mS1 Ω1 · · · m1p λm1p · · · mL1

...
...

. . .
...

...
. . .

...
mSp m1p · · · Ωp mp,p+1 · · · mLp

λmSp λm1p · · · mp,p+1 Ωp+1 · · · λmLp

...
...

. . .
...

...
. . .

...
mSL mL1 · · · mLp λmLp · · · −j

(21)

Then, a similarity transform, [Rθ0p,p+1] is performed on [A0],
where θ0 = −arctan(λ). From (7):

[A1] = [Rθ0p,p+1][A0][Rθ0p,p+1]T (22)

From (9), the following can be derived:

A1
kp = A1

pk =
mpk

cos(θ0)

A1
k,p+1 = A1

p+1,k = 0

A1
p,p =

Ωp + 2λmp,p+1 + λ2Ωp+1

1 + λ2

A1
p+1,p+1 =

λ2Ωp − 2λmp,p+1 + Ωp+1

1 + λ2

A1
p,p+1 = A1

p+1,p =
1− λ2

1 + λ2
mp,p+1 −

λ

1 + λ2
(Ωp − Ωp+1)

(23)

for k( 6= p, p+ 1) = 0, 1, . . . , n+ 1.
Thus,

A1 =



−j mS1 · · · mSp

cos(θ0) 0 · · · mSL

mS1 Ω1 · · · m1p

cos(θ0) 0 · · · mL1

...
...

. . .
...

...
. . .

...
mSp

cos(θ0)
m1p

cos(θ0) · · · Ω′p M · · · mLp

cos(θ0)

0 0 · · · M Ω′p+1 · · · 0
...

...
. . .

...
...

. . .
...

mSL mL1 · · · mLp

cos(θ0) 0 · · · −j

(24)

where

Ω′p = A1
p,p, Ω′p+1 = A1

p+1,p+1, M = A1
p,p+1 (25)

Then, scaling transform, Scos(θ0)
p is performed on [A1].

From (10):

[A2] = [Scos(θ0)
p ][A1][Scos(θ0)

p ]T (26)
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Fig. 5. Topology composed of dual-mode resonators.

From (12),

A2
k,p = A2

p,k = mp,k

A2
p,p = cos2(θ0)Ω′p

A2
p+1,p = A2

p,p+1 = M cos(θ0)

(27)

for k( 6= p, p+ 1) = 0, 1, . . . , n+ 1.
Thus,

A2 =



−j mS1 · · · mSp 0 · · · mSL

mS1 Ω1 · · · m1p 0 · · · mL1

...
...

. . .
...

...
. . .

...
mSp m1p · · · cos2(θ0)Ω′

p cos(θ0)M · · · mLp

0 0 · · · cos(θ0)M Ω′p+1 · · · 0
...

...
. . .

...
...

. . .
...

mSL mL1 · · · mLp 0 · · · −j

(28)

Notably, the [A2] contains a peninsula. Using (17), the (n+
2)× (n+ 2) matrix can thus be compressed into a (n+ 1)×
(n+ 1) matrix as follows:

A3 =





−j mS1 · · · mSp · · · mSL

mS1 Ω1 · · · m1p · · · mL1

...
...

. . .
...

. . .
...

mSp m1p · · · Ω′′p · · · mLp

...
...

. . .
...

. . .
...

mSL mL1 · · · mLp · · · −j

(29)

where

Ω′′p = cos2(θ0)(Ω′p −
M2

Ω′p+1

)

=
ΩpΩp+1 −m2

p,p+1

λ2Ωp + Ωp+1 − 2λmp,p+1

(30)

Another useful dual-band topology composed of dual-mode
resonators is shown in Fig. 5. By iterating through the above
steps, the [A]-matrix is compressed from (n+ 2)× (n+ 2) to
(n/2+2)×(n/2+2). Then, if the two single-mode resonators
have resonant frequencies at ωa and ωb, their transformed
frequencies can be described by the following using a narrow-
range approximation:

Ωa(ω) = γa
ω2 − ω2

a

ωaω
≈ γa

ω2 − ω2
a

ω2

Ωb(ω) = γb
ω2 − ω2

b

ωbω
≈ γb

ω2 − ω2
b

ω2

(31)
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Fig. 6. Layout of the embedded hairpin resonator. (dimensions in mm, line
width=0.04 mm).

When these two resonators are coupled and considered to
be a dual-mode resonator, the transformed frequencies can be
represented by the following using (30),

Ωdual =
ΩaΩb −m2

λ2Ωa + Ωb − 2λm

=
γaγb(ω

2 − ω2
a)(ω2 − ω2

b )−m2ω4

ω2(λ2γa(ω2 − ω2
a) + γb(ω2 − ω2

b )− 2λmω2)

= γ
(ω2 − ω2

1)(ω2 − ω2
2)

ω2(ω2 − ω2
m)

(32)

where m is the coupling coefficient between the two res-
onators; and:

γ =
γaγb −m2

γaλ2 + γb − 2λm

ω2
m =

γaλ
2ω2

a + γbω
2
b

γaλ2 + γb − 2λm

ω2
1 + ω2

2 = γaγb
ω2
a + ω2

b

γaγb −m2

ω2
1ω

2
2 =

γaγbω
2
aω

2
b

γaγb −m2

(33)

Equation (32) is the same as that shown in [11]. For
most cases, γa, γb > 0. Appendix B proves that dual-mode
resonators, which exhibit the topology shown in Fig. 5 have an
ωm between ω1 and ω2 ,when γa, γb > 0, which can produce
high-isolation between these two bands.

III. A DUAL-MODE DUAL-BAND EXAMPLE

Two single-mode hairpin resonators are closely coupled
to form a dual-mode resonator, as shown in Fig. 6. One
hairpin resonator is embedded in the other larger one with
a gap of 0.04 mm. Their line width is 0.04 mm and their
bottom lengths are 2.50 mm and 2.26 mm, respectively. The
variables l1 and l2 represent their arm lengths, and d is the

separation between their bottoms, as shown in Fig. 6. This
closely coupled structure matches the proportional topology,
shown in Fig. 4. This kind of dual-mode resonators can be
cascaded to form a filter with the proposed topology, as shown
in Fig. 5. As discussed above, this dual-mode resonator must
have an ωm between its two resonant frequencies, which is
suitable to design high-isolation dual-mode dual-band filters.

From (32), Ωa, Ωb and m should be carefully designed
to obtain a suitable transformation frequency. The variables
l1 and l2 primarily affect Ωa and Ωb, respectively, and the
distance, d affects the coupling coefficient, m in (32).

It is difficult to use l1, l2 and d to calculate Ωdual accurately.
However, the variables, l1, l2 and d are enough to design a
suitable ω1, ω2 and ωm. Fig. 7 shows the variation of ω1, ω2

and ωm with l1, l2 and d for this resonator. Fig. 7(a) shows
that l1 primarily affects ω1; Fig. 7(b) shows that l2 primarily
affects ω2 and ωm; and Fig. 7(c) shows that d primarily affects
ωm. Fig. 7 also shows that regardless of variations in l1, l2 and
d change, the ωm remains between ω1 and ω2, which validates
this technique.

Let us design a dual band filter with two passbands from
4.22 GHz to 4.28 GHz and from 4.69 GHz to 4.82GHz, re-
spectively. From [11], γ = 24, ω1 = 2π·4.25·109 rad/s = 2π·
4.25 Grad/s, ω2 = 2π ·4.75 Grad/s, ωm = 2π ·4.43 Grad/s.
To make our derivation clearly, all the units of the angular
momentum (ω) in the following paper are Grad/s. So

Ωdual = 24 · (ω2 − (2π · 4.25)2)(ω2 − (2π · 4.75)2)

ω2(ω2 − (2π · 4.43)2)
(34)

From (33), one solution for these equations is

Ωa = 339 · ω
2 − (2π · 4.32)2

ω2

Ωb = 18 · ω
2 − (2π · 4.66)2

ω2

λ = 0.85

m = 5.94

(35)

By optimizing l1, l2 and d, we can get

l1 = 4.90 mm, l2 = 4.40 mm, d = 0.24 mm (36)

Four dual-mode coupled hairpin resonators, which contains
eight single mode hairpin resonators, are cascaded in this
example. Fig. 8(a) shows the original single-mode matrix,
which contains four proportional sections. We compress these
proportional sections one by one, as shown in Fig. 8, and
finally obtain the dual-mode matrix, shown in 8(e), which is
the Chebyshev coupling matrix with 20-dB in-band return loss.

From [11], the coupling coefficient, k, for dual-mode res-
onators can be extracted:

|k| = f2
2 f

2
4 − f2

1 f
2
3

f2
2 f

2
4 + f2

1 f
2
3

(37)

where f1, f2, f3, f4 are the peaks of two coupled dual-mode
resonators’ response from small to large.

The external quality factor, Qe can be extracted:

1

Qe
=

4

ω1τS11
(ω1)

+
4

ω2τS11
(ω2)

(38)
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Fig. 7. Variation of ω1, ω2 and ωm with l1, l2 and d. (a) l1 variable, l2=0.5
mm, d=0.25 mm; (b) l2 variable, l1=6 mm, d=0.25 mm; (c) d variable, l1=6
mm, l2=5.5 mm.
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0 0.91 Ωdual 0.70 0.59 0 0 0
0 0 0.70 Ωa 5.94 0.91 0.77 0
0 0 0.59 5.94 Ωb 0.77 0.66 0
0 0 0 0.91 0.77 Ωa 5.94 1.04
0 0 0 0.77 0.66 5.94 Ωb 0.88
0 0 0 0 0 1.04 0.88 −j





−j 1.04 0 0 0 0 0
1.04 Ωdual 0.91 0 0 0 0

0 0.91 Ωdual 0.70 0 0 0
0 0 0.70 Ωdual 0.91 0.77 0
0 0 0 0.91 Ωa 5.94 1.04
0 0 0 0.77 5.94 Ωb 0.88
0 0 0 0 1.04 0.88 −j




−j 1.04 0 0 0 0

1.04 Ωdual 0.91 0 0 0
0 0.91 Ωdual 0.70 0 0
0 0 0.70 Ωdual 0.91 0
0 0 0 0.91 Ωdual 1.04
0 0 0 0 1.04 −j
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Fig. 8. Matrix compressed from a 10-dimension matrix to a 6-dimension
matrix, where Ωa = 339(ω2 − (2π · 4.32)2)/ω2, Ωb = 18(ω2 − (2π ·
4.66)2)/ω2, Ωdual = 24(ω2−(2π ·4.25)2)(ω2−(2π ·4.75)2)/(ω2(ω2−
(2π · 4.43)2)).

where τS11
(ω1) and τS11

(ω2) are the group delays for S11 at
ω1 and ω2, respectively.

The layout of this filter is shown in Fig. 9(a). It is fabricated
on a 0.51-mm thick MgO substrate with two-side YBCO HTS
films. Fig. 9(b) shows a picture of this filter, and its simulated
and measurement response is show in Fig. 9(c).

IV. CONCLUSION

This paper proposes coupling matrix compression tech-
nique, which can reduce the dimension of the coupling matrix.
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Fig. 9. (a) Layout of the designed dual-band filter (dimensions in mm). (b)
Photograph of the filter. (c) Simulated and measured response.

A type of dual-mode resonators is proposed and analyzed, and
the associated frequency transformation formula is derived. It
is shown that the proposed dual-mode resonators can be used
to design high-isolation dual-band filters. An embedded dual-
mode hairpin resonator is studied. It is used for a dual-band
filter. The measured and simulated results agree well with each
other.

APPENDIX A
PROOF OF THE SCALING TRANSFORM

Consider the cofactor matrices [C] and [C ′] of [A] and [A′],
respectively.

From [20],

S21(A′) = −2j[A′]−1
n+1,0 = −2j

[C ′]0,n+1

det(A′)

= −2j
α2[C]0,n+1

α2det(A)
= −2j

[C]0,n+1

det(A)

= −2j[A]−1
n+1,0 = S21(A)

(39)

Similarly, we can prove that S11(A′) = S11(A), S12(A′) =
S12(A) and S21(A′) = S21(A).

So [A] and [A′] are equivalent.

APPENDIX B
PROOF ωm IS BETWEEN ω1 AND ω2 WHEN γa, γb > 0

From (32), ω1 and ω2 are the roots of ΩaΩb−m2 = 0, and
ωm is the root of λ2Ωa + Ωb − 2λm = 0. Thus,

Ωa(ω1)Ωb(ω1) = Ωa(ω2)Ωb(ω2) = m2

λ2Ωa(ωm) + Ωb(ωm) = 2λm
(40)

Because γa, γb > 0, Ωa(ω) and Ωb(ω) are both increasing
functions. We assume that ω1 < ω2, then,

Ωa(ω1) < 0 < Ωa(ω2), Ωb(ω1) < 0 < Ωb(ω2) (41)

We define a function:

F (ω) = λ2Ωa(ω) + Ωb(ω) (42)

It is obvious that F (ω) is an increasing function. Addition-
ally, from (40),

F (ωm) = λ2Ωa(ωm) + Ωb(ωm) = 2λm (43)

Then

F (ω2) = λ2Ωa(ω2) + Ωb(ω2)

≥ 2
√
λ2Ωa(ω2)Ωb(ω2)

= 2
√
λ2m2

= |F (ωm)|
≥ F (ωm)

(44)

and

−F (ω1) = λ2|Ωa(ω1)|+ |Ωb(ω1)|
≥ 2

√
λ2Ωa(ω1)Ωb(ω1)

= 2
√
λ2m2

= |F (ωm)|
≥ −F (ωm)

(45)

Thus,

F (ω1) ≤ F (ωm) ≤ F (ω2) (46)

Because F (ω) is an increasing function, we have

ω1 ≤ ωm ≤ ω2 (47)
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