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Abstract 

Hydrate Based Gas Separation (HBGS) process is gaining interest globally as a greener 

solution for separation of CO2 from gaseous streams.  In this paper, recently published 

articles on the development of HBGS process as a technique for separation of CO2 from flue 

gas, feed gas and high CO2 natural gas streams are briefly reviewed.  

 

Keywords: Hydrate Based Gas Separation; Gas or Clathrate Hydrate; CO2 capture; Pre-

combustion; Post-combustion  

 

Introduction 

Energy intensity of growing economy and carbon intensity associated with the energy 

system are two main factors that lead to excessive emission of CO2 [1,2] Conversely, CO2 

sinks are very limited [3]. Carbon Capture and Sequestration (CCS) initiatives are taken 

globally to dampen the impacts of CO2 on the global climate. One of the strategies in CCS is 

to separate CO2 from feed and flue gases. There are commercially available CO2 capture 

technologies that are being used in various industrial applications absorption, adsorption, 

membrane separation and cryogenic distillation [4]. However, capturing vast amount of CO2 

by conventional technologies requires great amount of CAPEX and OPEX. For example, it 

was calculated that the deployment of absorption process to eliminate 16 mol% of CO2 in flue 

gas, reduces 10% of thermal efficiency of a modern power plant. [4]. Therefore, 

minimization of energy requirements is one of the highest priorities for the future CCS 

technology development [5]. There are active and ongoing initiatives targeted to increase the 

energy efficiency and reduce the costs for the aforementioned technologies [6-14]. In 

addition, there are also rooms to develop novel and innovative technologies for CCS. 

Electrochemical pumps, chemical looping and hydrate-based gas separation (HBGS) are few 

examples of recent technologies being developed for separation of CO2 [6, 10, 15]. 

Gas or clathrate hydrates are ice-like crystalline solids, in which small gas/liquid 

molecules are trapped inside cavities of hydrogen bonded water molecules. These solids are 

normally stable at moderate to high pressures from few kPa [16] to GPa [17] and low 
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temperatures from 140 K  to 330 K [16]. Formation of gas hydrate is a thermodynamic-driven 

process. Recently, gas hydrate has been identified as a suitable medium for CO2 capture, 

mostly from flue gas streams. [18-20]. Hydrate-based gas separation (HBGS) process is 

gaining popularity as a carbon capture technology due to its lower energy requirement and it 

is “greener”. [21]. In addition, the selectivity of CO2 in this process is considerably high [16]. 

In this work, we attempt to present a brief review of recent studies on CO2 capture via 

hydrate-base process.  

Background 

The separation of gases by hydrate formation was first introduced in 1940s when it was 

suggested for separation of argon from neon by utilization of SO2 hydrates [22]. Only 60 

years later, in 2000, the concept of separation of CO2 from flue gas through hydrate 

formation was suggested through the analysis of CO2 + N2 hydrate  phase diagram hydrate 

[23]. However, the operating pressure for such process is unfavorable as it could be as high as 

83.5 bar at 275 K for a flue gas containing 17 mol% CO2. To overcome the shortcoming, the 

inclusion of THF as a thermodynamic promoter to reduce the required pressure to 4.75 bar at 

275K is suggested. It is shown that a two-step hydrate based separation process is feasible to 

recover 95 mol% of CO2 from the studied flue gas [23]. In addition, Seo et al. measured 

phase boundaries of CO2+N2 and CO2+CH4 hydrate systems at various pressure and 

composition and their results indicated that separation of CO2 from these mixtures is 

thermodynamically feasible. Moreover,  they observed CO2 uptake in the hydrate phase 

increased with the decrease in the system pressure, suggesting the operating pressure for such 

separation process should be set as low as possible [24]. Since then, a significant number of 

work on phase behavior measurement on CO2+N2 and CO2+H2 systems with or without 

promoters are published. Comprehensive reviews of these work until 2015 are available in 

Babu et al. [25], Dashti et al.[26], and Ma et al. [27]. In the following sections, the recent 

investigations on the development of HBGS process for CO2 capture in the last 3 years are 

discussed.  

 

Post-combustion CO2 capture 
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In recent years, most of the research work related to HBGS are focused on separation of 

CO2 from flue gas [28]. This scenario applies to existing conventional power plants or any 

other facilities dealing with production of energy by burning the fossil fuels. Typically, flue 

gas is predominantly N2 with CO2 concentration ranges from 15 to 20% while O2 

concentration ranges from 5– 9%.   Since the flue gas pressure is near atmospheric pressure, a 

compressor system is normally required to pressurize the gas  [29, 30]. In addition, a cooling 

system is also needed to ensure the temperature of the system goes as low as 2 oC [31]. A 

typical schematic diagram for such a process is presented in Figure 1.  The high pressure 

requirement for the system can be significantly reduced by utilization of thermodynamic 

promoters [25].  

 

[INSERT FIGURE 1] 

Figure 1. Simplified schematic diagram for post combustion HBGS technology for CO2 

capture 

Prior to 2014, most of the reported data on HBGS process is related to batch process. 

However, Sun et al. has reported that continuous HBGS operation of CO2-CH4, CH4-N2 and 

CO2-N2 is possible by utilizing a new type of reactor and THF as the thermodynamic 

promoter [32]. They have reported that a recovery of more than 65% of CO2 in CO2-N2 

system is possible. More importantly, Sun et al. has successfully extended the HBGS study 

from elementary and exploratory investigation to a more practical condition.  

Another important recent advancement in HBGS is the utilization of semi-clathrate 

hydrate to replace the conventional hydrate system. Kim et al. investigated CO2 capture from 

flue gas by using the TBAC as the semi-clathrate promoter [33].  Their  results indicated that  

semi-clathrate phase boundary shifted between 13 to 15°C compared to SI hydrate of 

CO2+N2 at the same pressure condition for a 20 mol% of CO2 in gas mixture. In addition, 

they showed that the equilibrium temperature is increasing at constant pressure with the 

increase in CO2 concentration of the mixture. This observation is extremely important and 

should be taken into consideration while designing a continuous HBGS process. During a 

continuous process, the gas phase concentration is changing in the crystallizer due to the 

enclathration of CO2 and this will affect the degree of sub-cooling requirement for the 

system.  
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Apart for the usage of semi-clathrate for the development of HBGS process, a number of 

studies are focused on the utilization of new chemicals as hydrate promoters or mixed 

thermodynamic and kinetic promoters to reduce the pressure requirement for the system. One 

of the important studies is reported by Kumar et al. [34]. They studied the influence of mixed 

thermodynamic and kinetic hydrate promoter on the hydrate formation of a synthetic flue gas, 

consisted of CO2 + N2 + SO2. Their results indicated that combining THF and SDS has 

positive impact on the total gas consumption during the process even though the amount of 

gas uptake is much lower than that of system with only SDS as promoter. Lee et al. 

investigated CO2 separation from N2 by changing the hydrate structure from sI to sH hydrate 

using neohexene as sH hydrate former [35]. Their results showed an improvement can be 

achieved for systems with concentration of CO2 less than 20 mol%. However, increasing the 

CO2 concentration leads to the same equilibrium condition regardless of the presence of 

neohexene due to the formation of sI hydrate as a more stable phase. Methylcyclopentane 

(MCP) is also studied as the structure sH promoter for CO2 capture from flue gas with similar 

trend observed as of the neohexene systems [36]. Moreover, it was reported that the 

separation efficiency and gas uptake is reducing in the presence of MCP [36]. Lee et al. 

extended the idea of using sH hydrate for CO2 sequestration [37]. They demonstrated by 

injecting flue gas into a sH crystalline network of methane + neohexene, CO2 molecules 

replace CH4 molecules in the crystalline structure and sequestrate while CH4 molecules are 

recovered from the system [37]. 

 

Pre-Combustion 

The pre-combustion CO2 capture is mainly focused on integrated gasification combined 

cycle (IGCC). In this process, conventional fuels are converted into a syngas mixture 

consisted of H2 (≈ 60 mol%) and CO2 (≈ 40 mol%) with a small trace of H2O, N2 and CO. 

The gas stream is typically at pressure between  2.5 to 5.0 MPa and temperature of 

approximately 45 °C [20]. A separation of CO2 from the syngas must be performed before 

the syngas is fed to a gas turbine or a fuel cell [28]. Based on the pressure condition of gas 

stream, a HBGS process can be utilized to capture CO2 directly from the syngas stream 

although a cooling system is still required to reduce the temperature of the stream. 
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Most of earlier studies on the CO2 capture from shifted gas are focused on utilization of 

proper promoter to enhance the separation and moderate the operational condition of HBGS 

process. For pre-combustion applications, utilization of structure sII hydrate former, such as 

THF, propane and cyclopentane, is investigated. In addition, semi-clathrate hydrate formers 

such as TBAB, TBAF and TBANO3 are frequently studied [25].  In  a series of publication, 

Fukumoto et al. extended the semi-clathrate hydrate research by studying the tetra-n-butyl 

ammonium chloride (TBAC) and tetra-n-butyl phosphonium bromide (TBPB) systems for  

CO2 hydrate, H2 hydrate, and modeled the phase boundary of H2 + CO2 hydrate in the 

presence of tetra-n-alkylammonium/alkylphosphonium salt aqueous solutions [38-40]. Their 

findings indicate these salts enhance the separation between CO2 and H2 and their 

performance is concentration dependent.  

 

A number of recent studies on pre-combustion HBGS process are focused on the type 

of reactor coupled with the usage of hydrate promoter. One of the most interesting is reported 

by Babu et al. [41]. Their experimental work showed that the presence of propane in the 

syngas mixture leads to an unusual behavior in the system where water molecules are 

migrating to the surface and form the hydrate on top of the silica sand. Based on this 

behavior, they proposed a semi-batch process for separation of CO2 and H2. In addition, 

Zheng et al. looked into the impact of a silica sand fixed-bed reactor properties on the 

kinetics of hydrate formation [42]. The studied properties are reactor orientation, bed 

temperature, bed volume and saturation. They found out the horizontal bed with higher 

surface area leads to faster hydrate formation. In addition, they reported water saturation is a 

critical parameter where low water saturation is preferred as this will give more space for gas 

to pass through the bed and eventually convert all available water to the hydrate.  In addition, 

the usage of THF, TBAF, TBAB in fixed bed reactors made of silica gels or coal particles are 

reported although the results of those study are similar to previously reported by earlier 

studies [43-45]. 

 

Miscellaneous 

In addition to pre- and post- combustion gas streams, there are few other studies targeting 

CO2 separation from CO2-CH4 gas mixture to simulate shale gas mixture or natural gas with 
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high CO2 concentration.  The separation of CO2 from a simulated shale gas mixture with 40 

mol% of CO2 is investigated with  pure water , THF as hydrate promoter or TBPB as the 

semi-clathrate promoter [46, 47, 48]. Interestingly, the results indicate gas hydrates that are 

produced at lower driving force in pure water could potentially reach to the highest separation 

efficiency. Recently, Zhou et al. investigate the separation of CO2 from CH4 in a large-scale 

stirrer-tank reactor [49]. They mentioned that this process can be utilized for selective 

separation of CO2 from CH4. Unfortunately, when the CO2 concentration increases in the feed 

gas, the separation efficiency decreases [49]. Partoon et al. introduced a new gas hydrate 

crystallizer in their attempt to utilize gas hydrate technology for separation of CO2 from high 

CO2 natural gas streams (60-80mol%) [50]. They studied the separation in a series of semi-

batch process by using distilled water. Their results indicated that the process is not very 

feasible, as both gases are tend to form hydrate at experimental condition. Nonetheless, their 

experimental results showed that the formation rate of gas hydrate can be increased to more 

than 8 times higher than similar spray reactor, more than 10 times higher from stirrer reactors 

with SDS as kinetic promoter and more than 50 times higher than bubble reactors [51]. 

Nonetheless, due to the smaller amount of CH4 in the gas mixture, they believed that 

capturing CH4 can lead to better separation of these gases with the aid of sII hydrate former 

such as THF and acetone [52, 53].  

  

Way forward 

 

The recent studies on the HBGS process for CO2 capture show that there is still long way to 

development of this process. The most challenging part of development is the scaling up of the 

process to continuous/semi-continuous setups. A proper reactor type and design for continuous 

production of gas hydrate is still a challenge. Once that is fixed, an economic evaluation can lead to a 

comprehensive comparison of HBGS process with other existing ones.  
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