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Abstract—Radio-interferometric imaging aims to estimate a
sky intensity image from degraded undersampled Fourier mea-
surements. At the dynamic range of interest to modern radio
telescopes, the image reconstruction quality will be limited by
the unknown time-dependent calibration kernels. Hence the need
of performing joint image reconstruction and calibration, and
consequently of solving a non-convex blind deconvolution problem.
Extending our recent work where the calibration kernels are
assumed to be smooth in space, we further assume in this work
that the calibration kernels are smooth in time. In addition, an
average sparsity prior is used for the estimation of the image of
interest. The resulting high dimensional non-convex non-smooth
minimization problem is then solved by leveraging an alternating
forward-backward algorithm which benefits from well-established
convergence guarantees. Our results show that time-regularization
is effective in enhancing imaging quality.

Index Terms—Radio-interferometric imaging, calibration, alter-
nating forward-backward approach

I. INTRODUCTION

Radio interferometry is a technique allowing for probing
the radio sky at high sensitivity and angular resolution via a
collection of antennas. Each antenna pair gives access to a
radio-interferometric (RI) measurement. Assuming a co-planar
and perfectly calibrated instrument, RI data reduce to noisy
Fourier components of the sky intensity [1]. However, each RI
measurement corresponds in practice to a noisy Fourier compo-
nent of the sky intensity modulated with unknown time-variable
complex antenna gains. These encompass time-variations of the
antenna beam, ionospheric phase shifts, antenna pointing errors.
When it comes to the traditional instruments, the effects of
these modulations are buried within the thermal noise, thus no
calibration is required. In this context, recovering the unknown
image of the radio sky is an inverse problem which has been
extensively studied in the literature. State-of-the-art approaches
leverage compressive sensing and optimization theories [2]–
[12]. This is not the case of the next-generation instruments, e.g.
the upgraded VLA [13] and the upcoming SKA [14], which are
characterized by an extreme sensitivity and sub-arcsec angular
resolution. Hence, calibration of the antenna gains is necessary
to obtain maps of the radio sky meeting these instruments’
capabilities.

Antenna gains are typically classified into two categories. (i)
Direction dependent effects (DDEs); these are spatially-variable
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complex-valued modulations in the image domain, equivalently
convolutional kernels in the Fourier space. (ii) Direction inde-
pendent effects (DIEs); these are constant complex modulations
in the image domain, equivalently complex scalar multipliers
in the Fourier domain. Traditionally, the calibration process
is limited to the estimation of DIEs. The general approach
consists in alternating between a DIEs calibration step and an
imaging step [15], [16]. However, DIEs modeling errors and
lack of DDEs models result in sub-optimal image recovery in
terms of dynamic range. Novel calibration approaches aiming
to estimate DDEs have been recently devised. [17] proposes a
parametric model for the ionospheric phase errors, whereas [18]
proposes the use of non-linear Kalman filters. More recently,
a faceting-based framework has been adopted in [19]–[21],
that is based on the assumption of piece-wise constant DDEs
across the field of view. All these methods consist of alternating
calibration and imaging severally. In our recent works, we
have proposed a new framework for RI, where we estimate
jointly the unknown DDEs and the image of interest [22]–
[25]. The approach leverages compressive sensing and non-
convex optimization theories and is shipped with convergence
guarantees. Data fidelity is imposed by minimizing a regularized
non-linear least squares (LS) criterion with respect to both the
image and the DDEs. Furthermore, a spatial smoothness prior is
adopted for the DDEs, on the one hand. Positivity and sparsity
of the unknown image in a given dictionary are promoted, on the
other hand. In this work, we extend our approach to incorporate
a time prior on the unknown DDEs.

In the remainder of the article, we present the RI imaging
problem in Section II. In Section III, we first describe our
proposed minimization task for joint calibration and imaging.
Then, we explain the alternating forward-backward algorithmic
structure to solve it. A description of the realistic simulations
setting and a discussion of the results are provided in Sec-
tion IV. Conclusions are finally reported in Section V.

II. PROBLEM DESCRIPTION

The imaging problem for RI can be formulated as an inverse
problem, where the objective consists in finding an estimate
x? ∈ RN of an unknown radio-sky image x ∈ RN from
complex observations, namely the visibilities y ∈ CM . The
visibilities are determined by the relative position between each
antenna pair indexed by (α, β) ∈ {1, . . . , na}2, with α < β, for
different time instants t ∈ {1, . . . , T}. In total, an interferometer
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Fig. 1: Illustration of the proposed smoothness prior: the DDEs
are represented by compact-support kernels in both the spatial
and the temporal Fourier domains (F denotes a 2D Fourier
transform along the spatial dimensions, whereas FT represents
a 1D Fourier transform along the temporal dimension).

acquires M = Tna(na − 1)/2 different measurements in
the Fourier domain of the image of interest. Formally, each
visibility yt,α,β ∈ C measured by the antenna pair (α, β) at
instant t at the spatial frequency kt,α,β can be written as

yt,α,β =

N/2−1∑
n=−N/2

dt,α(n)dt,β(n)∗x(n)e−2iπkt,α,β
n
N , (1)

where dt,α = (dt,α(n))−N/2≤n≤N/2−1 ∈ CN represents the
DDEs related to antenna α at instant t. Note that, using
these notations, the DIEs can be seen as a special case of
the DDEs where dt,α = δt,α1N , with δt,α ∈ C and 1N
being the unitary vector of dimension N . The objective of
this work is to estimate simultaneously the unknown image of
the sky and the DDE images. To this aim, we assume that
calibration transfer has been performed, hence that the zero
spatial frequency coefficients of the DDEs (i.e. the DIEs) in (1)
are normalized to 1. As described in [24], this prior information
can be used to obtain a first estimate of x, denoted by x?0,
using any RI imaging method. In this context, the original
unknown image x can be expressed as the sum of two images,
i.e. x = x0 + ε, where x0 contains the brightest coefficients of
x?0 and ε represents the remaining low-amplitude sources that
must be estimated simultaneously with the DDEs.

Problem (1) can be reformulated as follows

y = Φ̌
(

(dt,α)1≤t≤T, 1≤α≤na , ε
)

+w, (2)

where w ∈ CM is a realization of an additive i.i.d. random
Gaussian noise, and Φ: (CN )naT × RN → CM is the mea-
surement operator described in (1). Note that this measurement
operator is linear in ε, but is not linear with respect to the DDEs.
In [25], we have proposed to incorporate an auxiliary variable
to obtain a tri-linear inverse problem. In this context, (2) can
be rewritten as follows

y = Φ̃
(

(d1,t,α,d2,t,α)1≤t≤T, 1≤α≤na , ε
)

+w, (3)

where, for every t ∈ {1, . . . , T} and α ∈ {1, . . . , na}, d1,t,α =
d2,t,α = dt,α.

III. PROPOSED APPROACH

A. Minimization problem

In this work, we assume that the DDEs are smooth functions
of both sky and time. In this context, for every α ∈ {1, . . . , na}
and i ∈ {1, 2}, we propose to represent the DDEs (di,t,α)1≤t≤T
as compact-support kernels ui,α ∈ CS2×P in both the spatial
and temporal Fourier domains, where S is the size of the
square kernels in the spatial frequency domain, and P represents
their size in the temporal frequency domain. An illustration is
provided in Fig. 1. Let Z : CS2×P → CN×T be the linear
operator defined such that Z(ui,α) = (di,t,α)1≤t≤T , and let
Φ = Φ̃

(
Z(.),Z(.), .

)
. Then we have

y = Φ(U1,U2, ε) +w, (4)

with, for every i ∈ {1, 2}, Ui = (ui,α)1≤α≤na ∈ CS2×P×na .
Using this formulation, we propose to define the estimate of the
sky image and the DDEs as a solution to

minimize
ε,U1,U2

h(ε,U1,U2) + r(ε) + p(U1,U2), (5)

where h is the data fidelity term associated with model (4),
whereas r and p are regularization terms incorporating prior
information on the target objects. Assuming the noise is white
and Gaussian, we choose to use a least squares data criterion
for the data fidelity term, given by

h(ε,U1,U2) =
1

2
‖Φ(U1,U2, ε)− y‖22. (6)

Concerning the regularization term for the image, we propose
to use a hybrid function, expressed as follows:

r(ε) = λ‖Ψ†(x0 + ε)‖1 + ιE(ε) (7)

where λ > 0 is a regularization parameter, ‖.‖1 denotes the `1
norm, Ψ ∈ RN×L is the sparsity average basis introduced in
[6], and ιE is the indicator function of the set E defined as

E =
{
ε ∈ RN |(∀n ∈ S0) − ϑx0(n) ≤ ε(n) ≤ ϑx0(n),

(∀n ∈ Sc0) 0 ≤ ε(n)
}
,

(8)

S0 being the support of x0 and ϑ ∈ [0, 1] representing the
percentage of error assumed on x0. For every ε ∈ RN , the
indicator function ιR(ε) is equal to 0 if ε ∈ E, and to +∞
otherwise. For the DDE regularization, we define the function
p as

p(U1,U2) =
η

2
‖U1 −U2‖22 + ιD(U1) + ιD(U2), (9)

where η > 0 is a regularization parameter, the `2-norm term
controls the distance between U1 and U2, and the set D defines
a subset of CS2×P×na . More precisely, D is defined such that
the DIEs belong to an `∞ complex ball centered in 1 with radius
ν > 0, whereas the other DDE coefficients are contained in an
`∞ complex ball centered in 0 with radius ν.



B. Alternating forward-backward algorithm

We propose to solve problem (5) using an alternating
forward-backward algorithm [26]–[31] described in Algo-
rithm 1, where · denotes the Hadamard product and, for every
k ∈ N, τ (k) is a positive constant, and Γ

(k)
1 and Γ

(k)
2 are positive

matrices. At each iteration k ∈ N of the algorithm, the user
decides to update either the DDEs (U1,U2) (steps 5 to 16)
or the image ε (steps 17 to 24). In both cases, the updates are
performed by computing a gradient step followed by a proximal
step. The partial gradient of h with respect to U1 (resp. U2 and
ε) is denoted by ∇U1

h (resp. ∇U2
h and ∇εh). The proximal

operator of a convex, proper, l.s.c function f at a point x is
denoted by proxf (x), and is defined as the unique minimizer
of f+ 1

2‖x−.‖
2
2. When f = ιC , where C is a closed, convex non-

empty set, then proxιC reduces to the usual Euclidean projection
onto C, denoted by ΠC .

Let (ε(k),U (k),U (k))k∈N be a sequence generated by Al-
gorithm 1. We assume that the blocks (ε(k),U (k),U (k))k∈N
are updated following an essentially cyclic rule, i.e. that each
variable is updated at least once within a given finite number
of iterations. In addition, for every k ∈ N,

0 < τ (k) < 1/‖Φ(.,U
(k+1)
1 ,U

(k+1)
2 )‖2S , (10)

where ‖.‖S denotes the spectral norm, and

(∀i ∈ {1, 2}) Γ
(k)
i =

[
γ
(k)
i,1,11S | . . . |γ

(k)
i,T,na

1S

]>
, (11)

where, for every α ∈ {1, . . . , na}, 0 < γ
(k)
i,t,α < 1/(η +

ζ
(k)
i,t,α), with ζ

(k)
1,t,α = ‖Φ(ε(k), .,U

(k)
2 )‖2S and ζ

(k)
1,t,α =

‖Φ(ε(k),U
(k+1)
1 , .)‖2S .

Under these assumptions, the sequence of iterates(
ε(k),U

(k)
1 ,U

(k)
2

)
k∈N generated by Algorithm 1 converges

to a critical point
(
ε?,U?

1 ,U
?
2

)
of the objective function

minimized in problem (5). Moreover, the objective function
value is decreasing along the iterations.

IV. EXPERIMENTS ON SYNTHETIC DATA

To assess the performance of the proposed approach, we
adopt two 256 × 256 images of M31 and W28. Their associated
data are simulated using the VLA antenna’s configuration,
where the total number of antennas is na = 27. We consider
T = 200 snapshots. In the non-uniform Fourier transform,
embedded in the measurement operator Φ̃ (see (2)), we consider
the Kaiser-Bessel interpolation kernels [32] of size 5 × 5.
The DDE kernels have been randomly generated in the Fourier
domain, with a spatial Fourier support of size S = 5 and a
temporal Fourier support of size P = 3. Note that both S and
P are assumed to be known in these experiments.

To comparatively appreciate the performance of the proposed
approach, we consider the following methods.

(i) Imaging with the ground truth DDEs: the case where
the DDEs are perfectly known represents the best config-
uration possible to estimate the image of interest, and can
thus be taken as a reference. We consequently define the
image x̃ as the solution to the following imaging problem

Algorithm 1 Alternating forward-backward algorithm

1: Initialization: Let ε(0) ∈ dom r and (U
(0)
1 ,U

(0)
2 ) ∈ D2. Let, for every

k ∈ N, (L(k), J(k)) ∈ N2.

2: Iterations:
3: For k = 0, 1, . . .

4: Choose to update either the DDEs or the image.
5: If the DDEs are updated:
6:

(
U

(k,0)
1 ,U

(k,0)
2

)
=

(
U

(k)
1 ,U

(k)
2

)
7: For ` = 0, . . . , L(k) − 1

8: U
(k,`+1)
1 = ΠD

(
U

(k,`)
1 − Γ

(k)
1 · ∇U1

h(ε(k),U
(k,`)
1 ,U

(k)
2 )

−Γ
(k)
1 · η(U

(k,`)
1 −U (k)

2 )
)

9: end for
10: U

(k+1)
1 = U

(k,L(k))
1

11: For ` = 0, . . . , L(k) − 1

12: U
(k,`+1)
2 = ΠD

(
U

(k,`)
2 − Γ

(k)
2 · ∇U2

h(ε(k),U
(k+1)
1 ,U

(k,`)
2 )

−Γ
(k)
2 · η

(
U

(k,`)
2 −U (k+1)

1

))
13: end for
14: U

(k+1)
2 = U

(k,L(k))
2

15: ε(k+1) = ε(k)

16: end if
17: If the image is updated:
18: ε(k,0) = ε(k)

19: For j = 0, . . . , J(k) − 1

20: ε(k,j+1)=proxτ(k)r
(
ε(k,j)−τ(k)∇εh(ε(k,j),U

(k+1)
1 ,U

(k+1)
2 )

)
21: end for
22: ε(i+1) = ε(k,J

(k))

23:
(
U

(k+1)
1 ,U

(k+1)
2

)
=

(
U

(k)
1 ,U

(k)
2

)
24: end if
25: end for

minimize
x∈RN

‖Φ
(
(d1,t,α,d2,t,α)t,α,x

)
− y‖22 + r̃(x) (12)

with r̃(x) = λ‖Ψ†x‖1 + ι[0,+∞[N (x) for x ∈ RN .
(ii) Imaging with normalized DIEs: in practice, we can

assume that calibration transfer has been performed on the
data prior to the imaging step, thus leading to normalized
DIEs. In this case, the image can be estimated by setting
the DIEs equal to 1 and solving an imaging problem similar
to (12), leading to an estimate x̌.

(iii) Joint DIE calibration and imaging: this approach con-
sists in applying the joint calibration and imaging method
introduced in [24], [25] with S = 1. The reference image
x0 is obtained by thresholding the image x̌ obtained in
(ii) with a threshold set to 0.05 maxn

(
x̌(n)

)
, and ε is

initialized with the value 0.
(iv) Joint DDE calibration and imaging: initialized as the

method (iii), the joint calibration and imaging approach
introduced in [24] is selected to precisely evaluate the
interest of the temporal prior introduced in Section III.

(v) Proposed approach: the proposed procedure is initialized
exactly as the approach described in (iii).

The aforementioned algorithms have been run with the same
hyper-parameter values whenever appropriate, with (λ, η, ϑ) =
(50, 10, 0.5) for M31, and (λ, η, ϑ) = (1, 10, 0.5) for W28.

The best reconstruction performance, obtained when the true
DDEs are known, is reported in Fig 2 in terms of the signal-to-
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Fig. 2: Results obtained with the image of M31 (first two rows) and W28 (last two rows), below which the corresponding SNR and SNRx̃ values are reported
for each method (given in column). For each scene, the estimated images are displayed in a linear and logarithmic scale along the rows. The images displayed
in the first two columns correspond to the solution to the imaging problem (12) with the true DDEs (“True DDEs”) and normalized DIEs (“Normalized DIEs”),
respectively. The third column corresponds to the image estimated by the joint DIE calibration and imaging approach (“DIEs”). The last two columns correspond
to the images estimated with the joint calibration and imaging approach introduced in [24] (“DDEs”) and the proposed method (“Time-regularized DDEs”),
respectively.

noise ratio SNR = 20 log10

( ‖x‖2
‖x∗−x‖2

)
. The performance of the

other approaches is assessed relatively to the reference image x̃.
To alleviate the scaling ambiguity inherent to the problem under
study, we consider the criterion SNRx̃ = 20 log10

( ‖x‖2
‖ν∗x∗−x̃‖2

)
with ν∗ = argmin

ν>0
‖νx∗ − x̃‖22.

The results reported for both datasets in Fig. 2 clearly
illustrate the relevance of the proposed approach to improve
the reconstruction performance. The temporal prior apparently
leads to a moderate improvement in terms of the modified
SNR when compared to the approach introduced in [24] (i.e.,
+1.7 and +0.4 dB for M31 and W28 respectively). This results
from the fact that the SNR mostly accounts for reconstruction
improvements in the estimation of high amplitude pixels. Note
that a visual inspection of the images recovered with the pro-

posed method shows a significant improvement in the estimation
of the low-amplitude background coefficients (last column of
Fig. 2), thus illustrating the effectiveness of the proposed prior
to mitigate the artifacts resulting from calibration errors.

V. CONCLUSIONS

We have extended the joint calibration and imaging approach
for radio interferometry proposed in [25] to account for both
smooth time-variations of the DDEs and non-uniform Fourier
transform embedded in the measurement operator. The parame-
ters involved in the resulting non-convex calibration and imag-
ing problem have been estimated with an alternating forward-
backward algorithm, which benefits from well-established con-
vergence guarantees [30], [31]. Simulations show that time-
regularization is effective in enhancing the image quality.
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