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Abstract:  

 

Virtually all machines and mechanisms use mechanical joints that are not perfect from the 

kinematic point of view and for which tolerances, in the fitting of their components, are 

specified. Together with such controlled clearances, mechanical joints may require the use of 

bushing elements, such as those used in vehicle suspensions. Furthermore, in many situations the 

joints exhibit limits (stops) in their translational or rotational motion that have to be taken into 

account when modeling them. The dynamic response of the mechanical systems that use such 

realistic mechanical joints is largely dependent on their characteristic dimensions and material 

properties of the compliant elements, implying that correct models of these systems must include 

realistic models of the bushing/clearance joints and of the joint stops. Several works addressed 

the modelling of imperfect joints to account for the existence of clearances and bushings, 

generally independently of the formulation of the perfect kinematic joints. This work proposes a 

formulation in which both perfect and clearance/bushing joints share the same kinematic 

information making their modelling data similar and enabling their easy permutation in the 

context of multibody systems modelling. The proposed methodology is suitable for the most 

common mechanical joints and easily extended to many other joint types benefiting the 

exploration of a wide number of modelling applications, including the representation of cut-

joints required for some formulations in multibody dynamics. The formulation presented in this 

work is applied to several demonstrative examples of spatial mechanisms to show the need to 

consider the type of imperfect joints and/or joints with stops modelling in practical applications. 

 

Keywords: Kinematic joints, Clearance joints, Bushing joints, Constraint violation, Joint stops, 

Numerical efficiency. 

 

 

1. Introduction 

 

Mechanical joints in any natural or man-made mechanism allow for the relative motion between 

the connected elements of the system. The function and durability of mechanical and biological 

joints is not only associated with the geometry of the mating pairs, which in turn guarantee the 

correct mobility of the system, but also to the materials used in the interface, which may allow 

for some level of energy dissipation and provide local flexibility, and to the tribological fluids to 

ensure the proper friction characteristics and wear control. Joints in mechanisms subjected to 

impact loading or with large transient loads, such as virtually all joints in road or railway 

vehicles, need not only to exhibit some level of compliance but also to provide some isolation to 

the transmission of vibrations between connecting bodies.  

From the physical point of view, when the modelling of local compliance, energy 

dissipation or vibrational isolation/modification on the system kinematics are due to features of the 
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mechanical joints, it is necessary that these are modelled as clearance/bushing joints and not as 

perfect kinematic pairs. From the mathematical, or computational, point of view it is often 

necessary to allow for the modelling of kinematic chains to have cutoff joints, i.e., kinematic joints 

modelled as contact pairs, either because the formulations used cannot handle closed kinematic 

loops, or because the multibody system only works due to slight misalignment of joints or even 

because it is a suitable modelling strategy to overcome the numerical difficulties associated with 

the existence of redundant constraints in the multibody system. In these cases, the availability of 

efficient and accurate models of clearance/bushing joints is a valuable feature in multibody 

computational tools for the development of realistic multibody systems. 

The need for the modeling of clearance joints, in the framework of the dynamics of 

mechanical system, has recognized in earlier theoretical and experimental works by Dubowsky 

(1974), Dubowsky and Gardner (1977), Grant, Fawcett (1979), Haines (1985) or Soong and 

Thompson (1990), among many others. These works showed how clearances can condition the 

dynamical response of mechanisms, affect performance and even interfere with machine control 

systems. In the framework of multibody dynamics Ravn (1998), Schwab, Meijaard and Meijers 

(2002) or Flores and Ambrósio (2004) and Flores et al. (2008) presented some of the basic works 

for the generalized modelling of clearance joints. Most of these works focus on the planar systems 

involving either revolute or translation joints. Based on that early works, the modelling of planar 

clearance joints has been explored by a wide number of researchers to model their lubrication (Li 

et al., 2016), to understand the systems behavior in presence of multiple joints (Ben-Abdallah, 

Khemili and Aifaoui, 2016), to apply their basic formulations in a wider range of contact problems 

(Pereira, Ramalho and Ambrosio, 2015a), to devise controlling strategies for systems in their 

presence (Akhadkar, Acary and Brogliato, 2016; Yaqubi et al.,2016) or simply to implement them 

in computer codes based in different formulations (Gummer A, Sauer B, 2014). 

The solution of any contact problem is not simple and the modelling of clearance joints is 

not an exception. The solution of the contact problem is divided in two parts: the contact detection 

and the modeling of the contact force. Particular care must be put in the numerical issues 

associated with the integration of the equations of motion in the presence of sudden change of 

forces or even discontinuities. The contact detection for planar joints is rather simple being 

solutions for the most common type of joints available in the work of Flores et al. (2008) or Zhang 

and Wang (2016). The modeling of the contact force is either approached by using penalty 

formulations, generally based on Hertz elastic contact (Lankarani and Nikravesh, 1994; Pereira, 

Ramalho and Ambrosio, 2015b), or by using unilateral constraints in the framework of nonsmooth 

contact dynamics (Glocker and Studer, 2005; Flores, Leine et al., 2010; Akhadkar, Acary and 

Brogliato, 2017). A critical issue in the numerical solution of multibody dynamics problems in the 

presence of contact, or impact, is the fitting of the numerical integration method and of the time-

step selected to the correct integration of the equations of motion. This issue is discussed by Flores 

and Ambrosio (2010) in the framework of continuous contact force models using penalty 

formulations, and by Förg, Pfeiffer et al. (2005) or Brogliato (2016) in the context of unilateral 

constraints or nonsmooth contact dynamics. 

The use of multibody models for 3D systems that use of spatial clearance/bushing joints is 

required for a wide number of realistic problems. Road vehicles, whose suspensions use bushing 

elements in the joints (Ambrosio and Verissimo, 2009), railway vehicles for which the extra 

degrees associated with the clearance joints provides the compliance of the suspension systems that 

promote a better wheel-rail contact (Magalhaes, Ambrosio, Pombo, 2016) or in the multibody 

modelling of highspeed train pantographs in which some of the fundamental features of their 

dynamic response are associated with the existence of imperfect joints (Vieira, 2016) or even in the 

modelling of mechanical watches (Robuschi et al., 2017) are examples of the need for using 

imperfect joints. In general, while the numerical issues associated with the numerical methods and 

time-stepping procedures in contact problems are similar in spatial and planar multibody systems, 

the contact detection and the use of the contact force models have different issues in planar and 

spatial clearance/bushing joints. Different computational models for spatial clearance joints, 



 
Page | 3 

mostly revolute joints, are proposed in the literature. Flores et al. (2006) propose a new revolute 

joint model which is revisited later by the same authors, together with models for spatial spherical 

and translation joints (Flores et al., 2008). Alternative formulations for spatial revolute and 

translation joints are proposed by different authors (Brutti et al., 2011; Tian et al., 2015; Yan, 

Xiang and Zhang, 2015; Zhang and Wang, 2016). The main differences between the various 

formulations consist in the approaches used for the contact detection and on the description of the 

continuous contact force model. The contact force models used in most of the current formulations 

for clearance joints are inherited from the analysis of planar contact problems, without fully taking 

into account the characteristics of the three dimensional contact geometry. Continuous force 

models such as that proposed by Lankarani and Nikravesh (1994) or by Pereira et al. (2015b) are 

examples of models that are suitable to be used in planar clearance joints but cannot be applied in 

the exact same manner in general spatial cylindrical or revolute clearance joints. The bushing 

joints, whose use in vehicle suspensions, in particular, are of fundamental importance, are 

examples of joints in which the force models are associated with the material that is included 

between the contacting surfaces, generally elastomers (Ambrosio and Verissimo, 2009). The use 

the strip method, in which one of the cylindrical contact surfaces of the clearance joint is 

discretized in cylindrical patches, being each one of these patches checked independently for 

contact with the mating cylindrical surface, has been proposed to address the roller bearing contact 

(Gupta, 1984). This approach provides a methodology for using continuous contact models, 

originally developed for planar problems, in the context of spatial clearance joints that is applied 

here. 

This work proposes a novel approach to the modelling of perfect kinematic joints and of 

clearance/bushing joints in the sense that they both share a similar basic mathematical description 

in terms of the algebraic operations required for their formulation. By also ensuring a common set 

of modelling data, it is simple not only to ensure a computational implementation of the kinematic 

and clearance/bushing joints in a common framework, allowing for the existence of joints with 

mixed features, but also to develop easily recyclable multibody models in which the nature of the 

mechanical joints is interchangeable. Besides the unifying characteristics of the formulation used, 

also the compliance of the joints is treated in the same form, being this the result of contact or of 

the existence of bushing elements. It is also shown that the modelling of joint stops in revolute, 

cylindrical or translation joints is just a particular case of the modelling of clearance joints. Finally, 

two demonstration cases are used to show the performance of the formulations proposed in this 

work with respect to the geometrical and material features of the clearance/bushing joints 

developed here. 

 

 

2. Multibody Formulation of Kinematic and Contact Joints 

 

2.1 Multibody Formulation with Cartesian Coordinates 

 

Without loss of generality, let Cartesian coordinates be used to describe the equations of motion 

of the constrained multibody system. Let q denote the vector of the system coordinates, 

composed with the translation and rotation coordinates of the individual rigid bodies, and q  and 

q  be the velocity and acceleration vectors of the system, respectively (Nikravesh, 1988). The 

constraint equations associated with the kinematic constraints are denoted by , being their 

Jacobian matrix, i.e., the matrix with their derivatives with respect to the system coordinates, 

denoted by q. Then, the dynamic response of the system is obtained by solving the system 

equilibrium equations  

   
T 

 
 

q

q

M q g

0



 
 (1) 
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to obtain q , which in turn is integrated in time to obtain q  and q. In Eq (1) M is the mass 

matrix, g the force vector,  is the vector of Lagrange multipliers, which are related to the joint 

reaction forces, and  is the right-hand-side of the acceleration constraint equations. Note that, 

depending on the rotation coordinates used to describe the spatial kinematics of the rigid bodies, 

the velocity vector q  may not be simply the time derivative of vector q. When using Euler 

parameters to describe rotations, as in the case of this work, the coordinates that describe the 

position and orientation of a rigid body i are *
T

T T

i i
   q r p , where  0 1 2 3

T
e e e ep  are 

the Euler parameters. The time the velocities of the rigid body can be expressed as 
*

T
T T

i i
   q r p  or as 

T
T T

i i
   q r  , in which i

  is the body angular velocity, expressed in 

the body fixed coordinate system. The relation between the time derivatives of the Euler 

parameters and the angular velocities of the rigid body are given by 2i i i
 = Lp , where the 3×4 

Li matrix, made of the Euler parameters is defined in (Nikravesh, 1988).  

 Of particular interest for the developments reported in this work are the kinematic joint 

reaction forces, included in Eq (1), and highlighted here as 

( )c   qg    (2) 

which derive from the application of the Augmented Lagrangian method to add the kinematic 

constraints to the equations of motion. The first row of Eq (1) can be written as 

( )c Mq g g  (3) 

When some joints of the mechanical system are not perfect kinematic joints but, instead, exhibit 

joint clearances and/or bushings, their corresponding joint reaction forces are replaced, in Eq (3), 

by specific force elements. In this case, the system equations of motion are  

( ) ( / )kc c b  Mq g g g  (4) 

in which 
( )kc

g  represents the joint reaction forces of the remaining kinematic joints and ( / )c bg  are 

the forces in the clearance/bushing joints. In what follows, the clearance/bushing joints are 

derived by using the same vector operations required to evaluate the kinematic joints constraints 

and suitable force constitutive equations. 

The integration of the accelerations and velocities of the multibody system lead to a 

numerical drift in the position and velocity constraint equations of the kinematic constraints, as 

these are not explicitly used in the solution process. In all that follows the Baumgarte 

stabilization method (Baumgarte, 1972; Nikravesh, 1988) is used to control the violation of the 

constraint equations. For the joints represented as contact pairs, instead of kinematic constraints, 

there are, naturally, no constraint violations and, consequently, no stabilization method required. 

When dealing with impact/contact between the bodies of a system, such as those that 

form the contact pair in clearance/bushing joints, the detection of the time of initiation of contact 

is fundamental. When variable time step integration algorithms are used and the pre-impact 

dynamics does not involve high frequencies the integration algorithms may use larger time steps 

and the contact between two surfaces may start with initial penetrations that are artificially high. 

Either this fact leads to a stall of the integration algorithm or to contact forces that are physically 

impossible which, in turn, lead to post-impact dynamics that is unrelated to the physical problem. 

The procedure proposed by Flores and Ambrosio (2010) that ensures that for any impact in a 

multibody system the time step of the integration is such that any initial penetration is below a 

prescribed threshold is applied here. When any new contact start, and after a time step is 

complete, the numerical error control of the selected integration algorithm is forced to handle the 

physical criteria to accept/reject time steps in equal terms with the numerical error control that it 

normally uses. In this case, if the initial penetration is higher than the threshold the integrator is 

instructed to reject the time step, implying that its internal control decreases it until the threshold 

is met. 
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2.2 Perfect Kinematic Joints: An Alternative View 

 

Although the general approach proposed in this work can be used for the formulation of all types 

of kinematic and clearance/bushing joints, only the cylindrical, revolute, translation and rigid joints 

are considered here. The formulation for the spherical clearance/bushing joint used in the 

applications presented here is that proposed by Flores at al. (2008) in what contact detection is 

concerned while the use of general constitutive models for the contact force is discussed hereafter. 

 A general representation for cylindrical, revolute, translation or even rigid joints is 

depicted in Figure 1(a). The input required to define the constraint equations of any of the 

kinematic joints referred are the positions of points P and the vectors aligned with the joint axis 

in bodies i and j, respectively denoted as 
P

i
s , P

j
s , 

i
s  and j

s . The superscript (•)′ denotes that the 

quantity (•) is defined in the body fixed coordinate system of the body used in the subscript of 

the same quantity. 

 In all that follows, and without loss of generality, let it be assumed a set of rules to be 

used in the construction of the multibody models that has to be followed for the definition of the 

perfect and clearance/bushing joints: 

 Body j includes the bearing while body i includes the journal; 

 The location of point Pj is half-way along the bearing axial length, defined as lj; 

 The location of point Pi is half-way along the journal axial length, defined as li; 

 The location of point Qj is in one of the ‘edges’ of the bearing axis, such that 2j j jl PQ   

 The location of point Qi is in one of the ‘edges’ of the journal axis, such that 2i i il PQ   

 The journal length is always longer or equal to the bearing length, i.e., li ≥ lj. 

Note that for perfect kinematic joints the concept of bearing and journal, or of their length, is not 

important. However, for clearance joints not only the knowledge of the lengths is important but 

also the location of the points defining the joint axis is used to define the application of the joint 

reactions. Therefore, it is preferred that the same set of rules is used for the definition of 

mechanical joints, regardless of them being perfect or not. 

 

  
 (a) (b) 

Figure 1: Generic representation of perfect cylindrical, revolute, translation or rigid kinematic 

joints; (a) identification of the points required; (b) vectors based on pre-defined points. 

 Let two orthogonal sets of vectors be defined, in each one of the body fixed coordinate 

frames, as seen in Figure 1(b), such that 

; ;

; ;

i i i i i i

j j j j j j

       

       

h s t s h t

h s t s h t
 (5) 

Pi

s j

X

Y

Z

Qj

d

Pj

si

rj

(j)

Oj

xj

zj

hj

sP

j

ri

sP

i

(i)

hi
Oi

xi

zi

Qi

sP

i

(i)

hi
Oi

xi

zi

Qi

Pid
hi

tibi

sP

j

Qj

s j h j

t j

b j

Pj

(j)

Oj

xj

zj

hj

si
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Start with vectors bi and bj, in Figure 1(b), which not only are parallel to si and sj, but also have the 

same orientation of si, i.e., /i i i
  b s s  and T

j j i i
 b A A b  at time t0, where matrices Ai and Aj are 

the transformation matrices from bodies i and j coordinate systems, respectively, to the inertial 

referential. Generate vector i
h , in Eq. (5), to be orthogonal to 

i
b , for instance by using a 

Householder transformation (Lopes, Silva and Ambrosio, 2013). From the numerical point of view 

it is assumed that the vectors are generated such a way that 
T

i i i
 h A h  and T

j j i
 h A h . Finally 

vectors 
i
t  and j

t  are such that not only Eq. (5) is fulfilled but also that right-hand vector triads are 

obtained. A joint coordinate system (h, t, b)i is associated with the journal and another coordinate 

system (h, t, b)j is associated with the bearing, being these parallel to each other in the initial time 

t0 of the analysis. Of particular importance in what follows is the transformation of coordinates 

from the journal coordinate system to the body i coordinate system, which is expressed by the 

constant transformation matrix  joint i i i
  A h t b .  In all time steps during the numerical 

integration of the equations of motion of a multibody system, the distance vector d, depicted in 

Figure 1(b), is  

( ) ( )    P P

j j j i i id r A s r A s  (6) 

 The different perfect kinematic joints are described by defining the convenient vector 

operations with the quantities presented in Eqs (5) and (6). The constraint equations for a 

cylindrical joint are defined as 

( ,4)

T

i j

T
c i j

T

i
T

i

 
  

  
 
  

h b

t b
0

h d

t d

  (7) 

For a revolute joint the constraint equations are obtained by adding to the cylindrical joint 

constraint equations a restriction that prevents the axial displacement of body i with respect to 

body j, i.e.,  

( ,4)
( ,5)

2

0

c
r

T d

 
  

 
0

d d


  (8) 

in which the square of the axial distance between points P in bodies i and j, defining the joint, 

 
0

2

0

T

time t
d


 d d , is evaluated for time t0. For a translation joint the constraints equations are 

obtained by adding to the cylindrical joint constraints a restraint that prevents the rotation of 

body i with respect to body j, 

( ,4)
( ,5)

2

0

c
t

T

i j h

 
   

0
h t


  (9) 

being the square of the angular alignment of bodies i and j along the joint axis,  
0

2

0

T

i j time t
h


 h t , 

evaluated for time t0. 

 The rigid joint is obtained with the cylindrical joint constraints plus the restrictions for the 

axial displacement and rotation about the axis defined between bodies i and j, as 

( ,4)

( ,6) 2

0
2

0

c

rig T

T

i j

d

h

 
 

   
  

d d 0

h t



  (10) 

Note that the rigid joint can be expressed by a formulation alternative to that used here, in which 

the set of constraints defining a spherical joint are complemented by a frame alignment 

constraint as that used in the path motion constraint proposed by Pombo and Ambrósio (2003). 
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In fact, if d0=0 and the frames defined by vectors h, t, b, associated with each body, are 

substituted by the unit vectors associated with the body fixed coordinate systems both 

formulations become identical. 

 

2.3 General Description of Imperfect Kinematic Joints or Contact Joints 

 

 Eqs (7) through (9) define the perfect kinematic joints that need to be included in Eq (1) 

using the Augmented Lagrangean method (Nikravesh, 1988). However, in many applications the 

kinematic joints are not perfect, as that illustrated in Figure 2. Instead of enforcing kinematic 

constraints between rigid bodies, the relative displacements and rotations between them lead to 

contact forces which are related to the relative displacements by appropriate constitutive 

relations. 

 A general clearance/bushing joint that restricts all relative motions between two 

connected bodies requires that the axial and radial displacements, axial misalignment and axial 

rotation, identified in Figure 2, are penalized. The penalization forces must be evaluated and 

applied in the bodies constrained by the joint in specific interaction points, which must be clearly 

defined also. The contact forces between the two bodies are proposed by Ambrosio and 

Verissimo (2009), in the case of pure bushing joints, and by Flores at al. (2008), in the case of 

clearance joints. These contact force constitutive models are revisited here with several 

enhancements, not only to accommodate for the simultaneous application of clearances and 

bushings but also to explicitly use the same vectors obtained for the definition of the perfect 

joints, while providing improved numerical performance. 

 

  
Figure 2: General representation of clearance/bushing cylindrical, revolute and translation joints 

with the identification of specific relative motions required for their formulation. 

 

2.3.1 Relative Displacements/Rotations 

 

The concepts of axial and radial displacements, axial misalignment and axial rotation, 

visualized in the graphical aids depicted in Figure 2, are defined first. For this purpose, let the 

distance vector d be decomposed, as illustrated in Figure 2, into axial displacement component 

along vector bi, which specifies the joint axis in body j, defined as 

θam bi

b j

uam

Axial misalignment

Axial rotation

hi

h jaar

ti

t jbi

b j

td

nd

d Axial 

displacement

Radial

displacement

(j)

Oj xj

zj

hj

Pj

rj

X

Y

Z

ri

Pi

h j

t j

hi

ti

bi

b j
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( )T

t i id d b b  (11) 

and an orthogonal component, the radial displacement with respect to the joint axis, defined as 

n t d d d  (12) 

The radial displacement, denoted by n, and the radial direction, urd, are obtained as   

  T

n n nd d  (13) 

rd n nu d  (14) 

The axial displacement, denoted by t, and the radial direction, uad, are obtained as 

  T

t t td d  (15) 

ad t tu d  (16) 

The axial misalignment of joint axis in bodies i and j is described by an angle am measured 

about a vector uam written as 

 arcsinam i j  b b  (17) 

am i j i ju b b b b  (18) 

in which the skew-symmetric matrix of a vector b, denoted by b , is defined in Nikravesh 

(1988). It must be noted that if the axial misalignment is null, i.e., 0i jb b , Eq (18) is not 

required because the conditions of alignment of the axis of the bearing and journal are fulfilled 

and no penalization force needs to be calculated. The axial rotation of the bearing with respect to 

the journal is defined by angle aar, obtained as 

T

ar i jarc sin( )a  h t  (19) 

The measures of misalignments and relative displacements between the joint bearing and 

journal are used to define the clearance/bushing joints.  Note that in their definition only the 

vectors already used for the definition of the perfect kinematic joints are required. 

 

2.3.2 Forces in Clearance/Bushing Joints 

 

A cylindrical clearance/bushing joint is defined by using a proper penalization of the relative 

motion between bearing and journal, i.e., the radial displacement and the axial misalignment lead 

to contact forces during the contact phase. Based on the joint description in Figure 2 and using 

the definitions of Eqs (11) through (18), the clearance/bushing cylindrical joint, requires that the 

forces are applied in points Pi and Pj, of bodies i and j respectively, defined by 

( )

( ) ( )

( , , , , , )cyl

i cyl n n t t am am
cyl cyl

j i

     

 

f f

f f
 (20) 

The force constitutive equation ( , , , , , )cyl n n t t am am     f
 
is, in general, a relation in which all 

relative displacements and misalignments are coupled but that also involves the clearance size, 

bearing and journal geometry and the material constitutive properties, which is discussed in next 

section. Besides the force penalization, also a penalization moment must be considered in the 

cylindrical joint, written in its general form as 
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( )

,

( )

,

( , , , , , )

( , , , , , )

cyl

i cyl i n n t t am am

cyl

j cyl j n n t t am am

     

     

 

 

n n

n n
 (21) 

 For a clearance/bushing revolute joint, the penalization forces due to the axial 

displacement, presented in Figure 2, is also required. Besides the penalization forces and 

moments expressed by Equations (20) and (21) the revolute joint also requires the application of 

contact forces in points Pi and Pj, of bodies i and j respectively, defined by 

( )

( ) ( )

( , ) 

 

ad

i ad t t ad
ad ad

j i

ff u

f f
 (22) 

The axial displacement dt is calculated by using Eq (11). The force relation ( , ) ad t tf  is a 

nonlinear relation that involves the axial displacement, its speed and the geometric and material 

characteristics of the joint. 

 For a clearance/bushing translation joint, the penalization forces due to the axial rotation 

between bearing and journal, shown in Figure 2, is required together with the contact forces and 

moments expressed by Eqs (20) and (21). The penalization of the axial rotation requires the 

application of penalty moments in bodies i and j defined by 

( )

( ) ( )

( , )ar T

i ar i i
ar T ar

j j i i

f a a 

  

n A b

n A A n
 (23) 

The relation ( , )a aarf ( , )ar ar arf a a  is a nonlinear relation that includes the axial rotation angle, 

its speed and the geometric and material characteristics of the joint. 

 The total forces and moments to be applied on bodies i and j resulting from the 

clearance/bushing constitutive equations are defined independently by Eqs (20) through (23), 

being the forces applied on points Pi and Pj, in bodies i and j, respectively. Therefore, their 

transference to the center of mass of each body, where the fixed coordinate system is assumed to 

be attached, must be considered. The contribution of the clearance/bushing joints to the force 

vector of the bodies connected by one of those joints is given by 

 
 

 

( ) ( )

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )

cyl ad

i i

i P T cyl ad cyl ar

i i i i i i

cyl ad

j j

P T cyl ad cyl arj

j j j j j j

  
  

      

  
        

f f
g

s A f f n n

f f
g

s A f f n n

 (24) 

 All penalization forces and moments defined in Eqs (20) through (23) involve relative 

displacements and rotations and their time derivatives. For the evaluation of the relative 

displacement and rotation speeds the reader is directed to reference (Ambrosio and Verissimo, 

2009). In the definition of the penalty moments, defined by Eqs (21) and (23) the penalization of 

the axial displacement and axial rotation are decoupled from each other, and from the other 

relative motion penalizing force components. In some particular applications, the relative motion 

components may be coupled as, for instance, in biological structures, such as intervertebral disk 

in the human spine, where the axial deformation is coupled with the axial rotation. 

 

2.4 Application to a Clearance/Bushing Cylindrical Joint 

 

The computational treatment of a clearance/bushing joint has a computational implementation 

similar to that of any other contact problem. First the general contact detection has to be solved. 

The contact detection depends on the geometry of the contact pair being its implementation more 

or less specialized for particular geometries (Hippmann, 2004; Mazhar, Heyn and Negrut, 2011), 
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being in general the most, computationally, expensive part of the solution of the contact problem. 

When contact is detected, an appropriate constitutive force model is applied to obtain the contact 

forces. The force modelling may be more or less costly, depending on the constitutive relations 

involved, eventually leading to numerical integration difficulties that need to be handled (Förg, 

Pfeiffer and Ulbrich, 2005; Flores and Ambrosio, 2010; Brogliato, 2016). To overcome the 

computational cost of solving the contact problem online, it is common the use of contact lookup 

tables to obtain the contact forces based on the relative position of the two surfaces of the contact 

pair (Bozzone, Pennestrì and Salvini, 2011; Machado, Flores and Ambrosio, 2014), represented in 

this work by Eqs (20) through (23). To demonstrate the calculations required for the solution of the 

contact detection problem in clearance/bushing joints, the case of a cylindrical joint is presented 

here. 

 

2.4.1 Contact Detection 

 

Let the clearance/bushing cylindrical joint be shown in Figure 3(a). Let the journal be a cylinder 

defined in the journal coordinate system (h, t, b)i by the parameters i and bi, shown in Figure 

3(b), and the bearing be another cylinder discretized by a selected number of circular patches 

defined in the bearing coordinate system (h, t, b)j by parameters j, also shown in Figure 3(b). 

 

  
 (a) (b) 

Figure 3: Representation of clearance/bushing cylindrical joint: (a) Exploded view for contact 

detection; (b) Parametric description of the surfaces in the contact pair. 

 Let two points, Ci and Cj, in bodies i and j, respectively, be candidates to contact points. 

Their coordinates, in journal and bearing coordinate systems, are written as: 

cos

sin

i i

C

i i i

i

R

R

b





 
 

   
 
 

s  (25) 

cos

sin

j j

C

j j j

j

R

R

b





 
 

   
 
 

s  (26) 

(j)
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in which the circumference located with the coordinate bj along the axis of the bearing cylinder is 

considered for contact. Note that in what follows bj is known while j, i and bi are unkown 

parameters that need to be calculated. The bearing surface tangent vector at point Cj is defined by 

sin

cos

0

j

C

j j





 
 

   
 
 

t  (27) 

The normal, tangent and binormal vectors to the journal cylindrical surface at point Ci are  

cos

sin

0

i

C

i i





 
 

   
 
 

h  (28) 

sin

cos

0

i

C

i i





 
 

   
 
 

t  (29) 

0

0

1

C

i

 
 

   
 
 

b  (30) 

 For convenience, the local journal coordinate system (h, t, b)i is used to carry all the 

calculations required for the contact search. The rotation of the bearing coordinate frame to the 

journal coordinate frame is defined by a sequence of two rotations. The first rotation, by am, 

represented in Figure 2 and described by Eqs (17) and (18), leads to the alignment of axis bj with 

bi by a set of Euler parameters pam, which are related to the axial misalignment as: 

 
 

,0

,1 ,0

,2

,3

cos 2

sin 2

am

am am am
am

am amam am

am

e

e e

e

e





 
 

        
       

      
 
 

p
ue

 (31) 

The transformation matrix, for the first rotation, defined as Aam, is obtained by using the Euler 

parameters as shown in (Nikravesh, 1988). The second rotation, aar, represented in Figure 2, 

defined about the axis bi leads to a transformation matrix Aar. Therefore, the rotation that aligns 

(h, t, b)j to (h, t, b)i, is defined as Aj2i = Aar Aam. 

 The location of point Cj with respect to point Ci, represented in Figure 3, is given by 

C C C

j bearing2j j i journal2i i
   d d A A s A A s  (32) 

where the transformation matrices from bearing to body j frame and from journal to body i frame 

are given by bearing2j j j j
     A h t b  and  journal2i i i i

  A h t b , respectively. Vector 
C

i
d  is now 

expressed, in the journal coordinate system, as: 

C T T T T C C

i bearing2i i bearing2i i j journal2j j i
    d A A d A A A A s s  (33) 

by observing Eq (33) it is clear that the transformation from the journal frame to the bearing 

frame is given by 
2

T T

bearing2i i j journal2jj i  A A A AA . Noticing that the same transformation is, 

alternatively, given by Aj2i = Aar Aam, Eq (33) is re-written as 

C T T C C

i bearing2i i ar am j i
    d A A d A A s s  (34) 
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 The conditions for points Cj and Ci to be candidates to contact points require not only that 

the displacement between them is normal to the journal surface, but also that the journal normal 

vector in point Ci is normal to the tangent vector in point Cj, written as (Pombo et al., 2007): 

 
 
 

T
C C

i i

T
C C

i i

T
C C

i j

 
 
 

  
 
  

b d

t d 0

h t

  (35) 

which is transformed to the journal coordinate system leading to 

 
 
 

T
C C

i i

T
C C

i i

T
C C

i ji

  
 
 

   
 

   

b d

t d 0

h t

  (36) 

where C T T C

ji bearing2i i j journal2j j
 t A A A A t  or, using the sequence of two rotations between the 

bearing and journal frames, is given by C C

ji j2i j
 t A t . Eq (36) is a nonlinear system that must be 

solved for j, i and bi in order to identify the candidates to contact points, as defined in Eqs (25) 

and (26). The interference between the journal and bearing at these points is evaluated as 

 
T

C C

i i   h d  (37) 

If >0 there is contact, being Cj and Ci the contact points, the contact forces need to be 

calculated. Otherwise, there is no contact and no force penalization is applied in the 

clearance/bushing joint.  

 In the case of contact, the normal and tangential contact forces need to be applied on 

points Pi, of the journal, and Pj, of the bearing, so that the expressions for the body forces, given 

by Eq (24), can be applied. The contact forces applied at point Ci, of the journal are written as: 

( )cyl C t C b C

i normal i tangential i tangential if f f   f h t b  (38) 

where the normal and tangential components of the contact force, fnormal, f
 t

tangential and f
  b

tangential 

are discussed in section 2.4.2. The normal and tangential vectors of the journal cylindrical 

surfaces, in global coordinates, are defined as: 

C C

i i bearing2i i

C C

i i bearing2i i

C C

i i bearing2i i







h A A h

t A A t

b A A b

 (39) 

 The moment 
( ) cyl

in  applied in the journal body is the result, in the case of the cylindrical 

clearance/bushing joint proposed here, of the transport of the force from point Ci to Pi, is: 

( ) ( )cyl C T cyl

i i i i
 n s A f  (40) 

where C C

i bearing2i i
 s A s  is the vector of the position of point Ci with respect to point Pi in the 

coordinates of body i. Similarly, the bearing transport moment due to moving the point of 

application of force ( )cyl

jf from point Cj to Pj, is evaluated as 

( ) ( )cyl C T cyl

j j j j
 n s A f  (41) 

 The contact search with the bearing must be done for the top circle of the bearing 

cylindrical surface, defined by Eq (26) when bj = lj/2, and, at least, also for the lower circle in the 

same surface. In general, it is better that the complete bearing cylindrical surface is discretized by a 
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finite number of contact patches, as seen in Figure 4. The discretization of the surface in this form 

easily accommodates surfaces of revolution for the bearing that are not necessarily cylindrical. Let 

each of the N contact patch of the bearing cylindrical surface, with a length of lj/N, be represented 

by its mid-circle. The bearing cylindrical surface is discretized by N circles, defined by 

,

cos

sin , 1, ,

2 1

2

j j

C

k j j j

j

R

R k N

lN k

N





 
 
  

   
 

    
   

s  (42) 

Then, the contact search problem is solved for each one of the circles, using Eqs (25) through 

(41), playing 
,

C

k j
s  in Eq (42) the role of C

j
s  in Eq (26). The sum of all contributions of all 

patches are accounted for in the vector of the bodies forces by using Eqs (38) through (41). Note 

that the constitutive force model must take it into account the discretization in contact patches. 

 

 
Figure 4: Discretization of the surface of the bearing and its contact with the cylindrical 

surface of the journal. 

 

2.4.2 Clearance/Bushing Constitutive Force Models 

 

The penalization forces for the clearance/bushing joints, defined by Eqs (20) through (24) require 

that proper constitutive relations for the continuous contact force models are used. Here, the 

contact detection problem is solved independently for each strip of the bearing, illustrated in 

Figure 4. It is shown by Pereira et al. (2015b) that in the internal cylindrical contact the Hertz 

elastic contact theory can still be applied. Therefore, any of the cylindrical contact force models 

overviewed by Pereira et al. (2011) can be applied to the problem in hand, within the limitation 

inherent to each one of the models, identified in the referenced work.  

In general, the penalization of displacements, or moments, is described by a force-

displacement relation as that depicted in Figure 5(a). A known model, for spherical clearance 

joints, is the contact force model proposed by Lankarani and Nikravesh (1994), suitable for low 

impact velocities in which local plasticity effects do not develop or are negligible, is given by 

  ( )

1
2* 2

( )

0 0

3(1 )4
, 1 0

3 4

j inormal c n e
R Rf cE

f
N R




   







    
     

    

 (43) 

where  is evaluated using Eq (37) and include  * 22 1E E   , which is the composite 

modulus, assuming materials with similar elastic modulus, E, and Poisson coefficients, υ, and 

R=Rj-Ri, is the radial clearance between the two contacting bodies, the pseudo-penetration 

exponent n and the restitution coefficient ce dependent on the geometry and material of the 

contacting surfaces.   is the velocity of indentation and 
( )




 is the velocity of indentation at the 

N

0
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initial instant of contact. Note that in Eq (43) the number of cylindrical stripes that discretize the 

journal is N, shown in Figure 4.  

The Lankarani and Nikravesh contact force model (1994) provides a representation of the 

damping coefficient present in the Hunt-Crossley model as hysteresis damping, which in turn is 

related to the material properties and coefficient of restitution, leading to Eq (43). It must also be 

noted that ratio 
( )

/ 


 leads to numerical problems for very small velocities of indentation at the 

start of contact, i.e., when 
( )

0


 . In the computational implementation of the Lankarani and 

Nikravesh model, or any other that has the dissipative part written in the same form, the ratio 
( )

/ 1 


  anytime the penetration velocity  exceeds 
( )




 or when 
( )

0


 . 

Of practical interest to the modelling of the forces in cylindrical and revolute clearance 

joints are the cylindrical contact force models. After a critical overview of the most commonly 

used cylindrical contact models Pereira et al. (2011) concluded that all of them have serious 

limitations on their range of application. As a result of this study, Pereira, Ramalho and 

Ambrosio (2015b) proposed an enhanced cylindrical contact model suitable for the type of 

geometries and materials more commonly encountered in clearance joints. The cylindrical 

contact force model is 

 
( )

* 2Δ + 3(1 )
1

Δ 4

n e
normal

a R b L E c
f

N R




  
  

 
 (44) 

in which 

0 965 for internal contact

0 39 for external contact


 


.
a

.
 (45) 

0 0965 for internal contact

0 85 for external contact


 


.
b

.
 (46) 

0 005 for internal contact

1 094 for external contact

.Y R
n

.

 
 


 (47) 

   

 

0 151

1 51 1000 if 0 005 0 34954

0 0151 1 151 if 0 34954 10 0

       
   

.

. ln R R . , . mm
Y

. R . R . , . mm
 (48) 

For internal contact R=Rj-Ri and for external contact R=Rj+Ri. The remaining quantities in Eq 

(44) are similar to those used in the Lankarani and Nikravesh model. 

Note that the relative displacement refers, in this section, in generic terms to the axial or 

radial displacements present in Eqs (20) and (22), i.e., =n or =t, respectively, or to the radial 

and axial displacements in Eqs (13), (15) or (37). The same type of penalization constitutive 

relation can be used for the angular misalignment or rotation appearing in Eqs (17) or (19), for 

which =am and =aar, respectively, provided that proper penalization parameters are identified. 

 

 
 (a) (b) (c) 

Figure 5: Representation of force-displacement constitutive relations for: (a) Clearance with 

free-flight displacement c; (b) Bushing with maximum compression of b; (c) 

Clearance with a free-flight displacement, a bushing compression and ‘hard’ material 

deformation. 

dc

fn

d

fn

dc

fn

cbb
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For bushing joints several models are available in the literature (Ledesma. et al.,1996; 

Park and Nikravesh, 1998; Ambrosio and Verissimo, 2009) The common approach is to penalize 

the relative displacement between two bodies by a constitutive force relation that reflects the 

material response of the deformable media, such as that shown in Figure 5(b). The constitutive 

relations, obtained by experimental testing, detailed finite element analysis, such as those 

proposed by Ambrosio and Verissimo (2009) or analytical approaches, are written in the form 

   ( ) ,b

normalf f f b       (49) 

where  f  is the radial stiffness and b is the damping characteristics of the bushing. Depending 

on the material properties, including its strain-rate sensitiveness, and geometry the relation 

expressed by Eq (49) may be a nonlinear function of both relative displacement and relative 

velocity. 

 Assume that a bushing element can only be compressed until a point after which it either 

breaks or becomes excessively rigid. Afterwards, the relation between the force and the 

displacement becomes similar to that of the dry contact model, expressed by Eq (44), for 

cylindrical contact. A unified formulation for joints with clearances and bushings is expressed by 

allowing an initial clearance on the joint, followed by a bushing loading relation that is maintained 

until a maximum compression, after which dry contact starts. In order to have a smooth numerical 

transition between the constitutive relations either a weighted sum (Flores et al., 2008) or an 

exponential blending function (Tandl and Kecskemethy, 2006) can be used, over a preset range. 

Using a weighted sum blending function, the general constitutive relation for the clearance/bushing 

penalization forces is 

 

   

 
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c b
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f f
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 

    

    
       

 
    


  


       

  


 (50) 

in which 1 c     and 2 b    , being the free-flight displacement c, and the maximum 

bushing compression b, shown in Figure 5. Functions  ( )

1,
bf   , representing the bushing 

normal force, and  ( )

2,cf   , representing the ‘hard’ material contact force due to a pure 

clearance joint, which appear in Eq (50) are defined in Eqs (49) and (43), or (44), respectively. 

The blending displacement  is a small number define by the user, for instance  = 0.01 b. The 

relative velocity between the two bodies connected by the joint, referred to in Eqs (43) through 

(50), is given in references (Flores et al., 2008; Ambrosio and Verissimo, 2009) for the different 

displacement/rotation penalizations. 

Although the modeling of friction forces in the clearance/bushing joints is not explicitly 

described in this example, they can be included in the force contact model in the same way they 

are in any contact application using a formulation with the nature of that presented in this work. 

After evaluating the location of the contact points, the component of the relative velocity 

between the contacting points along the tangent plane to the contacting surfaces is easily 

obtained by subtracting the normal component of the relative velocity from the total relative 

velocity. Then any selected friction force model can be applied (Marques et al., 2016), being the 

friction force calculated in this form added to bodies force vectors gi and gj, depicted by Eq (24). 

 

2.5 Joint Motion Limits 

 

Translation and cylindrical joints are, often, subject to limits on the relative translation motion 

between the two bodies, such as that pictured in Figure 6(a). Revolute joints can also have a 

limited range for the relative rotation between its two bodies, as the joint exemplified in Figure 
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6(b). The definition of the joint motion limits, for perfect kinematic joints or for 

clearance/bushing joints, can now be handled as a penalization on the joint motion to which 

limits are defined.  

 

   
 (a) (b) 

Figure 6: Kinematic joints with limits in their range of motion: (a) cylindrical joint with limits 

on its translation displacement; (b) revolute joint with limits on its rotation range. 

 The penalization is achieved by including in the force vector of the bodies that share the 

joint the appropriate force relation, i.e., one of the relations defined by Eqs (20) through (23). For 

instance, a perfect kinematic translation joint, with limits in the translation degree-of-freedom, 

includes the following contributions to the system constraint equations and force vector 

5in constraint equations:

 
in force vector:
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 (51) 

in which the range of motion is defined in Figure 6(a) as c. For a revolute joint with limits on its 

rotation degree of freedom, as that shown in Figure 6(b), the contributions for the constraint 

equations and force vector are 

5in constraint equations:

 
in force vector:

( r , )

i

j
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i i

T ( ar )
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 (52) 

where the range of motion is defined in Figure 6(b) as c=c1+c2. For a cylindrical joint with 

limits on translation and rotation d.o.f. the contributions to the constraint equations and force 

vector are 
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hi
Oi

xi

zi

(j)

Oj

xj

zj

hj

c

c1

c2

(j)

Oj

xj

zj

hj

(i)

hi
Oi

xi

zi



 
Page | 17 

4in constraint equations:

 
in force vector:

( c , )
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T P ( ad ) ( ar )
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 (53) 

When the joint motion limits are hard stops the penalization of the relative motion is 

defined only with the clearance part of the constitutive relation defined by Eq (50), i.e., by 

defining b=c and =0. When the joint limits are defined with soft stops, such as the bounce 

stops in the vehicle suspensions, all terms in Eqs (49) through (53) must be defined according to 

their physical characteristics. 

 

3. Demonstrative Applications 

 

3.1 3D Slider-Crank Mechanism 

 

Consider the 3D rigid slider-crank mechanism depicted in Figure 7, part of the library of multibody 

benchmark problems (Masoudi et al., 2013). The mechanism consists of a crank AB of length 

0.08 m, a connecting rod BC of length 0.3 m, and a sliding block DE. The crank, connected to the 

ground by revolute joint A, is driven from initial position  = 0 rad with initial angular speed of 6 

rad/s. There is a spherical joint at B and a universal joint at C. The block is constrained to the 

ground by a translation joint DE, allowing only its sliding displacement. All joints are frictionless. 

Three rigid bodies, plus the ground, are used to represent the 3D slider-crank. A local 

reference frame (ξ,η,ζ) is rigidly attached to the center of mass of each body in such a way that 

the axes are aligned with the principal inertia directions of the bodies. In this way, the inertial 

tensor of the bodies is completely defined by the inertia moments Iξξ , Iηη and Iζζ. The mass and 

the inertia properties of each body are defined in Table 1. The first column of the table lists the 

reference numbers that identify the bodies in the model shown in Figure 7. 

 

  
Figure 7: 3D slider-crank mechanism 

 

ID Body Mass (kg) 
Inertia properties (kg/m

2
) 

Ixx Ihh Izz 

0 Ground 1.00 1.0 1.0 1.0 

1 Crank 0.12 1.010-4 1.010-4 1.010-5 

2 Connecting Rod 0.50 4.010-4 4.010-3 4.010-3 

3 Sliding Block 2.00 1.010-4 1.010-4 1.010-4 
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Table 1: Mass and moments of inertia of rigid bodies of the slider-crank 

The Cartesian coordinates and Euler parameters, which define, respectively, the initial 

position of the center of mass and the orientation of the local frame of each body with respect to 

the global reference frame (x,y,z), are defined in Table 2 according to the benchmark problem 

specifications (Masoudi et al., 2013). Also the initial Cartesian velocities, with respect to the global 

frame, and the angular velocities, defined with respect to the local reference frames (ξ,η,ζ) are 

specified in Table 2. 

 

ID 
Initial position (m) Initial orientation Initial velocities (m/s) Angular velocities (rad/s) 

x0/y0/z0 e1/e2/e3 0 0 0, ,x y z  x/h/z 

0 0.000/0.000/0.000 0.000/0.000/0.000 0.000/0.000/0.000 0.000/0.000/0.000 

1 0.000/0.100/0.160 0.000/0.000/0.000 0.000/-0.240/0.000 6.000/0.000/0.000 

2 0.100/0.050/0.100 -0.210/0.397/-0.094 0.120/-0.240/0.000 -1.600/-1.073/1.431 

3 0.200/0.000/0.000 0.000/0.000/0.000 0.240/0.000/0.000 0.000/0.000/0.000 

Table 2: Initial position and velocity of rigid bodies of the slider-crank 

Five scenarios are considered here to demonstrate the methodology presented in this 

work. First, the dynamic behavior of the 3D slider-crank is analyzed considering all its joints as 

perfect, i.e., considering the classical kinematic formulation (Nikravesh, 1988). The second and 

third scenarios consider that the mechanism has an imperfect spherical joint and an imperfect 

revolute joint, respectively, with clearances of 0, 10
-3

, 10
-1

 and 1 mm. Notice that when the joints 

have clearances of 0 mm, it means that, although these are perfect joints, as there are no gaps 

between the ball/journal and the socket/bearing, they are still modeled as clearance/bushing 

joints. In all cases the clearance sizes refer to radial direction, for the spherical joints, and to 

axial and radial displacements, for the revolute joints. 

The contact force model with hysteresis damping proposed by Lankarani and Nikravesh 

(1994), in Eq (43), is considered for the imperfect spherical kinematic joints while the cylindrical 

contact model, in Eq (44), is used for the revolute joints. It is assumed a stiffness coefficient K = 

5.010
6
 N/m, an exponent of the Hertz contact force model n = 1.5 and a restitution coefficient e = 

0.75. The MUltiBOdy Dynamic analysis program MUBODyn (Ambrosio and Pombo, 2016) is 

used to perform the dynamic analyses of the scenarios described here. The differential and 

algebraic equations of motion are numerically integrated with the Gear multistep integration 

algorithm (Gear, 1981) and a sparse matrix solver (Duff, Erisman and Reid, 1986) is used for the 

system of linear equations. The time stepping physical control procedure proposed by Flores and 

Ambrosio (2010) is applied to detect the start of contact. The dynamic analyses are carried out for 

5 s simulation time.  

 The time histories of the slider block position and crank angle, for all scenarios with null 

or small spherical clearances, are presented in Figure 8 and Figure 9, respectively. The results 

show that, for the perfect kinematic joints, the amplitude of the slider motion is constant, as there 

is no friction or energy dissipation in the joints due to the contact, being the results coincident 

with those of the benchmark (Masoudi et al., 2013). When the clearance in the spherical joint 

starts to increase it is observed that not only the slider position but also the crank angle start to 

have some delay with respect to that of the benchmark in virtue of the energy dissipation that 

occurs in the clearance and bushing joints. For longer simulations the energy dissipated 

eventually leads to a point in which the crank is unable to complete a rotation and starts to work 

as a pendulum. 
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 (a) (b) 

Figure 8: Slider position of the slider-crank model with spherical clearance joint for: (a) null or 

small clearances; (b) large clearances 

 

 
 (a) (b) 

Figure 9: Crank angle of the slider-crank model with spherical clearance joint for: (a) null or 

small clearances; (b) larger clearances 

The joint reaction forces observed in the spherical joint, along X, are displayed in Figure 

10 for the cases with perfect kinematic joints and clearance joints. It is observed that large peaks 

in the force develop at the instants that the slider reaches its end of range, or end of the stroke, 

and inverts the direction of the motion. For perfect spherical joints modeled either as spherical 

kinematic constraints or as imperfect joints with null clearance the response is rather smooth, 

i.e., no oscillations in the reaction force are observed. However, when the clearance increases the 

joint reaction force exhibits oscillations during the slider mid-stroke, being the amplitude of the 

force oscillations higher as the clearance increases. 

 

  
 (a) (b) 

Figure 10: Joint reaction force in the spherical joint (X component) for: (a) null or small 

clearances; (b) larger clearances. 

Selected results for the slider-crank models with a clearance revolute joint are presented in 

Figure 11 through Figure 13. The results, depicted in Figure 11(a) show that as the clearance in the 
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revolute joint starts to increase, the time at which the slider reaches its end of stroke is increasingly 

delayed. For a clearance of 1 mm it is observed, in Figure 11(b), that the crank angle is unable to 

develop more than two revolutions, after which the crank starts to oscillate about its static 

equilibrium position. The effect of the energy dissipation due to the inclusion of the non-elastic 

restitution parameter in the contact force model is visible when comparing the responses of the 

models with a null clearance revolute joint with and without damping. It is visible in Figure 11(a) 

and (b) that just the existence of the damping favors that the slider oscillation experiences an 

increasing delay reaching its end of stroke. 

 

 
 (a) (b) 

Figure 11: Slider-crank model with revolute clearance joint: (a) slider position; (b) crank angle 

The joint reaction forces observed in the revolute joint, along X and Z, are displayed in 

Figure 12 for the cases with perfect kinematic joints and revolute clearance joints. Just as for the 

cases in which the models considered the spherical clearance joints, for the models with perfect 

revolute joints modeled either as revolute kinematic constraints or as imperfect joints with null 

clearance no oscillations in the reaction force are observed. However, when the clearance 

increases the joint reaction force exhibits oscillations, mostly during the slider mid-stroke, being 

the amplitude of the force oscillations higher as the clearance increases. 

It is interesting to observe the effect of the damping, due to the use of non-elastic restitution 

parameters in the contact force models, on the joint reaction forces. The joint reaction forces in the 

revolute joint, along X and Z, are displayed in Figure 13 for the model with a null clearance of the 

revolute joint. It is clear that, if no damping is considered, the oscillations in the contact force 

develop mostly as a result of the slider reaching its end of stroke, which enhances the impact of the 

journal and bearing, leads to alternate periods of relative free-flight motion and contact following 

motions. 

 
 (a) (b) 

Figure 12: Joint reaction force for the revolute joint slider crank models with perfect and with 

clearance revolute joint: (a) force component X; (b) force component Z. 
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 (a) (b) 

Figure 13: Joint reaction force for the revolute joint slider crank models with perfect and with 

clearance revolute joint with and without damping in the contact model: (a) force 

component X; (b) force component Z. 

 

The presence of hysteresis damping in the normal contact model of the clearance joint 

eliminates the oscillations of the joint reaction forces observed in Figure 13. It has been observed 

in some cases that the friction forces, when present, also mitigate the oscillatory behavior 

observed in the contact joint (Ambrosio et al., 2015). The use of different numerical integrator 

schemes, with fixed or variable time steps or with internal damping can also mask, or emphasize, 

the observed oscillatory behavior. In any case, the clearance joint behavior for a null clearance 

can be expected to be similar to that of a perfect kinematic joint not only in terms of kinematic 

behavior, as observed on the displacements depicted by Figures 8, 9 or 11, but also in terms of its 

kinetic response. Therefore, not only the source of the large amplitude oscillations but also the 

numerical methods used to handle the dynamics of the problem are worth being investigated in 

future works. 

 

3.2 Triple Pendulum with Joint Limits 

 

Consider the triple pendulum mechanism depicted in Figure 14. Body 1, of length 0.6 m, is 

constrained to the ground by a revolute joint with a horizontal axis. Body 2 has also a length of 

0.6 m and is linked to body 1 by the vertical cylindrical joint with limits on its translation 

displacement. Body 3, of length 0.3 m, is connected to body 2 by the revolute joint with limits on 

its rotation range, with an orientation of 45º with respect to the Z axis. The bodies have no initial 

velocity being acted by gravitational forces only. All joints are frictionless. 

  

 
Figure 14: Triple pendulum with joint limits 

-120

-90

-60

-30

0

30

60

0.0 0.5 1.0 1.5 2.0 2.5

J
o

in
t 
F

o
rc

e
 X

 (
N

)

Time (s)

Rev_Perfect
Rev_0.000mm_NotDamp
Rev_0.000mm_WithDamp

-120

-90

-60

-30

0

30

60

0.0 0.5 1.0 1.5 2.0 2.5

J
o

in
t 
F

o
rc

e
 Z

 (
N

)

Time (s)

Rev_Perfect

Rev_0.000mm_NotDamp

Rev_0.000mm_WithDamp

x2

h2

z2

2
x3

h3

z3

3

x1

h1
1

z1

1X

Y

Z0

0.25

0.3 0.3 0.3 0.3 0.3

0.25

0.5

45º



 
Page | 22 

The mass and the inertia properties of the bodies that compose the triple pendulum 

mechanism are defined in Table 3. The reference numbers in the first column of the table 

identify the bodies in the model shown in Figure 14. The Cartesian coordinates that define the 

initial position of the center of mass of each body are also defined in Table 3, together with the 

Euler parameters that express the orientation of the body-fixed frames (ξ,η,ζ) with respect to the 

global reference frame (x,y,z). 

Two scenarios are considered to demonstrate the joint motion limits methodology. Both 

consider all joints modelled by using kinematic constraints in which limits in the relative motion 

between the joined bodies are included. Limits of c1 = c2 = 45º are imposed on the rotation 

range of the revolute joint connecting bodies 2 and 3, as shown in Figure 14. The triple 

pendulum has a revolute joints between bodies 0 and 1 and a cylindrical joint, between bodies 1 

and 3 with relative translation limits c1 = c2 = 0.25 m, as represented in Figure 14.  

In the first scenario the penalization force is described by the Lankarani and Nikravesh 

model (1994) being K=1.010
5
, n=1.5 and e=0.75 for the translational joint stops of the 

cylindrical joint and K=1.010
3
 for the rotation joint stops. In the second scenario a modified 

Kelvin-Voigt's visco-elastic contact model (Flores et al., 2008) is used in both joint stops, 

formulated as,  

  2 3

0

0

0

1 3 2 0

e

normal e e

K c

f K c c r r v

K v

 

 

 

 
         
 

 (54) 

with the ratio between the penetration velocity and the penetration velocity tolerance being 

0/r v . In this case the penalty stiffness K is equal to that in the first scenario, the coefficient 

of restitution is ce=0.01 and the penetration velocity tolerance is v0=0.1 m/s. Note that the 

modified Kelvin-Voigt normal contact force model includes the penetration velocity tolerance to 

smooth the discontinuity in the contact force in the transition between compression and 

restitution.  

The dynamic analyses are carried out for 4 s simulation time. Snapshots representative of 

the motion of the triple pendulum are depicted in Figure 15. 

 

ID Body 
Mass 

(kg) 

Inertia properties (kg/m2) Initial position (m) Initial orientation 

Ixx/Ihh/Izz x0/y0/z0 e1/e2/e3 

0 Ground 1.00 1.0/1.0/1.0 0.0/0.0/0.0 0.0/0.0/0.0 

1 Body 1 0.10 3.010-3/3.010-2/3.010-2 0.3/0.0/0.0 0.0/0.0/0.0 

2 Body 2 0.04 1.210-3/1.210-2/1.210-2 0.9/0.0/0.0 0.0/0.0/0.0 

3 Body 3 0.02 0.610-3/0.610-2/0.610-2 1.5/0.0/0.0 -0.383/0.0/0.0 

Table 3: Mass, moments of inertia, and initial position and orientation of rigid bodies of the 

triple pendulum 

 
(a) 
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 (b) (c) 

Figure 15: Kinematics of the triple-pendulum, using the Lankarani and Nikravesh contact force 

model, with joint stops in key positions: (a) Sequence of snapshots; (b) Forward 

swing (1
st
); (c) Backward swing (1

st
). 

The behavior of the joint stops and contact forces that develop are of interest to understand 

of the methodology proposed here. The time history of the relative translation between bodies 1 

and 2, the corresponding joint stops contact forces, and the relative rotation between bodies 2 and 

3, and respective joint stops moments, are depicted in Figure 16, using the Lankarani and 

Nikravesh contact force, and in Figure 17, using the Kelvin-Voigt contact force model.  

 

  
Figure 16: Relative translation between bodies 1 and 2, with the corresponding joint stops 

contact forces, relative orientation between bodies 2 and 3, with the joint stops 

moments, in which the joint limit forces/moments use the Lankarani and Nikravesh 

force model. 
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Figure 17: Relative translation between bodies 1 and 2, with corresponding joint stops contact 

forces, and relative orientation between bodies 2 and 3, with respective joint stops 

moments, in which the joint limit forces/moments use the Kelvin-Voigt force model. 

As expected the contact with the end stops in the pendulum model in which the Lankarani 

and Nikravesh contact force model is used have a lower energy dissipation and do not present 

any residual deformation. Therefore, the bodies rebound from contact when a joint stop is 

reached, eventually leading the joint displacement, or rotation, to be such that soon after the 

contact takes place with the joint stop in the other side of the joint. 

 When the Kelvin-Voigt contact model is used, with a residual restitution coefficient 

value, not only there is an appreciable energy dissipation during the contact but also there is a 

residual deformation, as seen in Figure 17 in which the contact deformation in the cylindrical 

joint translation stops becomes permanent. For the rotation stops the same tendency for the 

permanent deformation during contact exists. It is only due to the gravitational acceleration that 

the body 3 tend to rotate with respect to body 2 bringing the joint out of contact with its end 

stops. It is also observed that while for the model in which the Lankarani and Nikravesh contact 

force is used the amplitude of the pendulum swing decreases slightly in each period, for the 

model using the Kelvin-Voigt contact force the amplitude of the pendulum swings decreases 

very quickly in each following period. Actually, for the scenario with the Kelvin-Voigt contact 

with null restitution coefficient the swing amplitude decreases there are no more contact events 

with any of the joint stops, remaining basically constant afterwards as no more energy dissipative 

events take place. This behavior is shown in Figure 18 in which the angular velocity of body 1 is 

displayed together with the relative displacements and orientations of bodies connected with 

joints with joint stops. 

 

6. Conclusions 

 



 
Page | 25 

The work now presented proposes a common framework for the formulation of common kinematic 

joints and mechanical joints with clearances and/or bushings, with or without joint stops. This 

formulation is novel in the sense that it not only unifies the different vector quantities required for 

the formulation of the joints as kinematic constraints or as contact force elements but also because 

the input data for each type of approach is composed with a common set of topological 

information. This approach leads to the ability to have mixed descriptions of a joint in which some 

relative motions are prevented by kinematic constraints while others are penalized by contact force 

elements, as for instance in the case of the joint stops. The formulation is demonstrated by studying 

two mechanical systems, a spatial slider-crank and a triple pendulum, that include some of the 

features that can be represented by the formulations proposed here. In the process of presenting the 

proposed formulation a new model for contact detection of the pairs of cylindrical clearance joints 

is developed. 
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Figure 18: Response of the triple pendulum model with the Kelvin-Voigt contact model, with a 

null restitution coefficient, for a long simulation: Angular velocity of body 1; Relative 

translation between bodies 1 and 2; Relative orientation between bodies 2 and 3. 

The study of two demonstrative mechanisms allows verifying the use of clearance/bushing 

joints with extremely small clearances have a kinematic behavior very similar to that of the 

mechanisms modeled with perfect kinematic joints, as it was to be expected. The size of the 

clearances and their contact mechanics becomes determinant in the mechanism behavior for large 

clearance sizes but is almost unobservable for very small clearances, i.e., for clearances generally 

associated with precision machining tolerances. The energy dissipation, not existing in 

mechanisms with perfect kinematic joints, is represented in clearance/bushing joints via the contact 

force models used. Actually, joints with larger clearances and with contact models, even with 

contact models in which the energy dissipation is small, lead to a behavior of the mechanism in 

which the continued motion is not possible without external actions applied to the system, as 

shown in the case of the spatial slider-crank demonstrates in which the crank is unable to continue 

having a complete 360º rotation after some revolutions. One of the aspects of the formulation of 

the clearance joints concerns the penalty factor for the contact force law which is of primary 

importance.  When the contact stiffness is underestimated the differences in mechanical behavior 

between mechanisms with different clearance sizes becomes difficult to be appraised. Therefore, it 

is recommended to use penalty factors that result from elastic contact theories, such as those based 

in Hertzian contact or obtained via experimental identification. 

In the process of testing the new formulations proposed here no evidence that the 

computational time required for the simulations increase when clearance/bushing joints are used in 

the model instead of the perfect kinematic joints. In one hand the lower number of equations used 

to describe the constrained equations of motion, as the number of constraint equations decreases 

leads to lower computational times. On the other hand the contact models with less energy 

dissipation, used here, introduce higher frequency contents in the dynamic response that require a 

reduction on the variable time-step integrators, which lead to smaller time-steps and higher 

computational costs, while the lack of constraint violations associated with these joints removes an 

important dynamic contribution to the increase of higher frequencies in the system dynamic 

response, thus removing this contributions for the decrease their time step in virtue of such 

violations. Future studies should be developed to clarify the relative computational efficiency of 

either of the modelling approaches, i.e., the use of kinematic perfect joints versus the use of 

clearance/bushing joints in the models of multibody systems. 
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