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Abstract 

A high pressure experimental setup was used to measure the solubility of CO2 in an aqueous 

solution of different salts (salinity: ~ 80000 ppm) at temperatures from (300 to 424) K and 

pressures up to 41 MPa. To ensure the validity of the experimental results and procedures, CO2 

solubilities in deionised water were measured at the same pressure and temperature conditions. 

For both cases, experimental results were compared against predictions of the simplified cubic 

plus association equation of state (sCPA-EoS) [1] and Duan model [2]. Furthermore, the 

measured solubilities in deionised water were compared with literature experimental data.  

The average absolute deviation (%AAD) of all the measured solubilities in the mixed salts 

aqueous solution in comparison with predictions of the sCPA-EoS and Duan model were found 

to be 6.88% and 4.04%, respectively. A similar comparison was also performed for the 

measured CO2 solubilities in deionised water. The average absolute deviation between 

experimental results and predictions of the sCPA-EoS and Duan model were calculated to be 

7.74% and 4.19%, respectively. The percentage average expanded uncertainty (with 95% level 

of confidence, k=2) for measurements conducted in deionised water and mixed salt aqueous 

solution were found to be 1.20% and 1.57%, respectively. 
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1. Introduction 

Accurate knowledge of CO2 solubility in aqueous solutions has always been of great interest 

for various applications in different industries. For instance, among the methods used in Carbon 

Capture and Sequestration (CCS), injection of CO2 into deep aquifers, is one of the most 

practical methods for reducing CO2 emission. Phase behaviour of the CO2 in contact with an 

aqueous phase and CO2 solubility in the aqueous phase, are of the most relevant information 

required in this method. Moreover, effects of reservoir condition (e.g. reservoir temperature 

and pressure) and aqueous phase salinity on CO2 dissolution are some of the key parameters 

that need to be estimated accurately for planning any CO2 storage project. Apart from 

geological storage, accurate estimation of CO2 solubility in fluids is essential for design, control 

and optimisation of many industrial processes such as gas sweetening and decontamination of 

wastewaters containing dissolved acid gases. 

Although different thermodynamic models have been developed to predict the solubility of 

gases in aqueous solutions, high accuracy experimental data are always necessary to validate 

or improve these predictive tools. Available experimental data in the literature for solubility of 

CO2 in mixed salt aqueous solutions were mostly measured at pressures less than 20 MPa. 

Therefore, additional measurements would be essential to validate models prediction at higher 

pressures. 

In this study, experimental investigations were conducted to measure the solubility of CO2 in 

a mixed salts aqueous solution at different isotherms in the temperature range of (300 to 424) 

K and a pressure up to 41 MPa. Moreover, the solubility of CO2 in deionised water at the same 

range of pressure and temperature were determined to check the validity of results obtained in 

this work. The experimental results were then compared with predictions of the sCPA-EoS [1] 

and Duan model [2]. 

2. Literature review 

Experimental results for solubility of carbon dioxide in deionised water are plentiful in the 

literature. Solubility measurement in NaCl aqueous solution are also widely available in the 

literature. However, experimental results for mixed salt aqueous solutions are scarce. A list of 

the experimental data available in the literature for measurement of CO2 solubility in deionised 

water, NaCl aqueous solutions and mixed salts aqueous solutions are tabulated in Table 1 to 

Table 3. As shown in these tables most of the literature data for CO2 solubilities in the single 
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and mixed salts solutions were measured at low pressure condition. Therefore, further 

measurements at high pressure would be very useful to fill the gap in the literature data 
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Table 1. Experimental data available in the literature for CO2 solubility in deionised water. 

Temperature/ K Pressure / MPa Aqueous phase Reference 

293.15 – 303.15 0.5 – 3 Deionised Water [3] 

273.15 – 373.15 1 – 9 Deionised Water [4] 

323 – 373 0.25 – 7.1 Deionised Water [5] 

285 – 313 0.25 – 5.07 Deionised Water [6] 

283-303 0.1–2 Deionised Water [7] 

473–523 9.8–49 Deionised Water [8] 

323–533 20–200 Deionised Water [9] 

383–533 10–150 Deionised Water [10] 

303–353 1–3.9 Deionised Water [11] 

323–473 0.1–5.4 Deionised Water [12] 

323–373 10–80 Deionised Water [13] 

288–366 0.7–20.3 Deionised Water [14] 

283–343 1.0–16 Deionised Water [15] 

323.2 Up to 20 Deionised Water [16] 

244.82-298.15 0.69-13.79 Deionised Water [17] 

323–348 10.1–15.2 Deionised Water [18] 

343-421 Up to 20 Deionised Water [19] 

288.15-313.15 6–25 Deionised Water [20] 

313.15-383.15 1-34.48 Deionised Water [21] 

278–293 6.4–29.5 Deionised Water [22] 

274-278 0.89-2.09 Deionised Water [23] 

344 10–100 Deionised Water [24] 

298 2.1–7.7 Deionised Water [25] 

294 10–60.0 Deionised Water [26] 

277–283 2–4.2 Deionised Water [27] 

274–288 0.1–2.2 Deionised Water [28] 

298 7.5–30.0 Deionised Water [29] 

274–351 0.2–9 Deionised Water [30] 

278–318 0.5–8 Deionised Water [31] 

298.15-448.15 Up to 18 Deionised Water [32] 

283-363 Up to 13 Deionised Water [33] 

 

Table 2. Experimental data available in the literature for CO2 solubility in single salt-NaCl solutions. 

Temperature/ K Pressure / MPa Aqueous phase Reference 

273–323 0.101–0.114 NaCl solution [34] 

303–523 4–12.6 NaCl solution [35] 
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Temperature/ K Pressure / MPa Aqueous phase Reference 

353–471 2–10.2 NaCl solution [36] 

313.15-433.15 Up to 10 NaCl solution [37] 

278–338 0.049–0.084 NaCl solution [38] 

313–393 0.7 -9.2 NaCl solution [39] 

323.1-373.1 Up to 20 NaCl solution [40] 

323.15-423.15 Up to 15 NaCl solution [41] 

323.15-423.15 Up to 20 NaCl solution [42] 

323.15-423.15 Up to 18 NaCl solution [43] 

423–523 10–140 NaCl solution [44] 

303–333 10–20.0 NaCl solution [45] 

323-413 5-40 NaCl solution [46] 

 

Table 3. Experimental data available in the literature for CO2 solubility in mixed salts aqueous solutions. 

Temperature

/ K 

Pressure  

/ MPa 
Aqueous phase  Reference 

308-408 Up to 40 Na+, Ca2+, Mg2+, Cl-, HCO3
-, Fe2+, SO4

2- [47, 48] 

308-328 Up to 16 NaCl + KCl + CaCl2 [49] 

308-424 Up to 40 CaCl2+ MgCl2 [50] 

268-298 1-4.5 NaCl+MgCl2+MgSO4+CaCl2+KCl+NaHCO3+NaBr [51] 

298.15 0.1 NaCl+NaNO3+MgCl2+MgSO4+CaCl2+KCl+KNO3+NH4Cl+ 

(NH4)2SO4+Na2SO4+K2SO4+NaHCO3+Mg(NO3)2+MgSO4+ 

CaCl2+Ca(NO3)2+BaCl2+AlCl3+Al2 (SO4)3 

[52] 

332 29 Ca2+, Mg2+, Na+, K+, Fe2+, Cl-, SO4
2- [53] 
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3. Material and Methods 

3.1 Materials 

In this work, pure CO2 (0.99995 mole fraction), supplied by Air Products, was used to measure 

the solubility of CO2 in deionised water and an aqueous solution of different salts. Properties 

of the aqueous solution used for the second set of experiments are described in Table 4. 

Table 4. Properties of the salts used in the aqueous solution. 

Salt 
CAS 

Number 

wt% in Aqueous 

Phase 

Minimum Purity 

(%) 

Analytical 

Method 
Supplier 

NaCl 4647-14-5 7.013 99.5 None Fisher Scientific 

CaCl2 10043-52-4 0.737 99.0 None Fisher Scientific 

MgCl2 7786-30-3 0.087 99.5 None Fisher Scientific 

KCl 7447-40-7 0.066 99.7 None Fisher Scientific 

SrCl2 10476-85-4 0.059 99.0 None Sigma Aldrich 

BaCl2 10361-37-2 0.036 99.0 None Sigma Aldrich 

  



7 

 

3.2 Methods 

3.2.1 Experimental setup 

The setup used in this work is schematically presented in Figure 1. In this setup, a pneumatic 

rocking system is used to provide mixing of CO2-aqueous phase system ensuring 

thermodynamic equilibrium. The measurement cell is mounted on an adjustable rotary axis of 

the rocking system. The rotation degree of the rotary axis and the time interval between each 

rotation is adjustable. A 300 ml titanium cylindrical high-pressure vessel, manufactured by 

Proserv, is used as the measurement cell. This cell can work at pressures up to 68 MPa and at 

temperatures from 203.15 to 423.15 K. The measurement cell is surrounded by a heating jacket 

connected to a Heating Circulator Bath (Julabo MA-4) to control system temperature. The 

jacket and pipework are insulated to help maintain a constant temperature. A calibrated 

Platinum-Resistance thermometer (PRT) is mounted on the body of the heating jacket to 

measure the cell temperature. As the temperature probe is not located inside the measurement 

cell, a temperature calibration is carried out using a Prema calibrator in the temperature range 

of 273.15 to 423.15 K to correct the fluid temperature inside the measurement cell based on 

the measured temperature of the heating jacket. A precise pressure transducer (Quartzdyne 

QS10K-B, pressure range 0-207 MPa) is used to measure system pressure during the 

measurements. This transducer calibrated regularly using a Budenberg deadweight tester.  

To measure the solubility of CO2 in the solution at the specified temperature and pressure, a  

gasometer (manufactured by VINCI TECHNOLOGIES) is used in this work. The utilised 

gasometer is capable of retaining a maximum capacity of 4000 cm3, with a volume and 

temperature resolution of 0.1 cm3 and 0.1 K, respectively. Moreover, an Erlenmeyer flask is 

used for sampling and gas-liquid separation purpose. While sampling, to maintain 

thermodynamic equilibrium in the measurement cell a bottle of pure CO2 with an initial 

pressure of 5 MPa is employed to stabilise pressure inside the measurement cell by injection 

of pure CO2. In the case of measurements with a required pressure more than 5 MPa, a booster 

(Spragu Products-Model: S86JN100) is used to increase injection pressure up to 41 MPa. 

Furthermore, a Novasina Pro-Labmaster-aw (Novasina AS, Switzerland) is used to measure 

water activity of samples after each measurement. 
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Figure 1. Schematic diagram of the solubility measurement setup 

3.2.2 Measurement Procedure 

For experimental measurement of CO2 solubility in different aqueous solutions, the following 

steps were carried out; 

A. Sample preparation: Firstly, the measurement cell was washed, dried and locked in a 

vertical position. The cell was filled with 230-250 ml of the aqueous solution, following which 

the top cap of the cell was attached. Then, the air was vacuumed and the heating system was 

set to achieve the desired temperature. Once the temperature became stable, pure carbon 

dioxide was injected into the measurement cell (from bottom) to set system pressure to desired 

value. Then, the rocking cell was initialized and mixing was continued (at least for 30 minutes) 

until stable pressure and temperature were observed, ensuring equilibrium in the system.  

B. Sampling: Before starting the sampling procedure, the Erlenmeyer flask weighted, (Mi), 

and then connected to the bottom of the measurement cell while it was in a vertical position as 

shown in Figure 1. Before commencing the sampling, the drainage valve of the gasometer was 

closed, and initial volume (Vi) and pressure (Pg) of the gasometer as well as equilibrium 

pressure and temperature of the mixture inside the measurement cell, (P, T), were recorded to 

be used for further calculations. Then, the bottom valve of the measurement cell was opened 

very slightly to prevent any sudden pressure drop that disrupts the equilibrium condition in the 

measurement cell. At the same time, pure CO2 from the gas bottle was injected into the top of 

the measurement cell to maintain system pressure at equilibrium pressure (P). In all the 
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measurements, the system pressure was controlled manually to ensure not more than 10 psi 

(0.07MPa) change in the pressure of the mixture inside the measurement cell. Following the 

drainage of sample into the flask, the separated gas was transferred to the gasometer and 

pressure in the gasometer chamber was increased due to the further separation of gas from the 

liquid sample. For accuracy purpose, sampling was continued until enough volume of gas (at 

least 400 ml) was collected in the gasometer. Because the maximum allowable operating 

pressure of the gas inside the gasometer chamber was 20 psia (0.14 MPa), the gas pressure 

inside the gasometer was regularly controlled by changing the chamber volume employing the 

rotary crank. When enough sample was collected, the flask was disconnected and left on the 

magnetic stirrer while it was connected to the gasometer. The liquid sample in the flask was 

then mixed for 30 minutes at room temperature to separate the gas from the liquid sample and 

ensure equilibrium in the sample. Then, using the rotary crank,  gasometer volume was adjusted 

to set the gasometer pressure to the same pressure observed at the beginning of the test (Pg), 

and then, the final volume (Vf) and temperature (Tf) of the gas in the gasometer were recorded. 

Also, the mass of the flask including the solution inside was measured (Mf).. Finally, the water 

activity of the sample was measured to ensure the overall composition of the aqueous phase 

has not changed during sampling. 

3.2.3 Solubility Calculations 

In addition to the experimental part, further calculations were required to obtain the dissolved 

amount of CO2 in the aqueous solution.  

The total volume of the gas in the sample taken from the measurement cell was in two parts: 

first, the gas separated from the liquid sample which was collected in the gasometer, (XA), and 

second, the gas remained dissolved in the liquid sample in the Erlenmeyer, (XA). To calculate 

each part, following calculations were conducted; 

A. Separated gas from liquid sample (XA)  

Before starting the measurement, the total volume of sampling system (Erlenmeyer (VEr) and 

gasometer) was defined as: 

𝑉1 = 𝑉𝑖 + 𝑉𝐸𝑟       eq. (1) 

In this equation, V1, Vi and VEr stand for the initial total volume of the sampling system, the 

initial volume of the gasometer and the Erlenmeyer volume, respectively. At the end of the 

measurement, a liquid sample (with the volume of VL) was collected in the Erlenmeyer flask, 
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and the gasometer volume was changed from (Vi) to (Vf) due to the separation of the gas from 

the liquid sample. Therefore, the total volume of the gas in the system at the end of the 

experiment, (V2), was found to be: 

𝑽𝟐 = 𝑽𝒇 + (𝑽𝑬𝒓 − 𝑽𝑳)      eq. (2) 

Therefore, the total volume of the gas separated from the liquid sample (VG) was calculated as: 

𝑉𝐺 = 𝑉2 − 𝑉1 = 𝑉𝑓 − 𝑉𝑖 − 𝑉𝐿      eq. (3) 

Substituting the liquid volume with mass using the measured mass of the flask before (Mi) and 

at the of experiment (Mf) gives; 

𝑉𝐺 = 𝑉𝑓 − 𝑉𝑖 −
𝑀𝐿

𝜌𝐿
= 𝑉𝑓 − 𝑉𝑖 −

(𝑀𝑓−𝑀𝑖)

𝜌𝐿
           eq. (4) 

To calculate the density of the aqueous phase (𝜌𝐿), the IAWPS EoS[54] was used when the 

aqueous phase was deionised water. Moreover, in case of aqueous phase containing dissolved 

salts the following correlation suggested by Lewis & Perkin [55] was used to calculate aqueous 

phase density: 

𝜌𝑠𝑤(
𝑘𝑔

𝑚3
) = (𝑎1 + 𝑎2𝑡 + 𝑎3𝑡2 + 𝑎4𝑡3 + 𝑎5𝑡4) − (𝑏1𝑆 + 𝑏2𝑆𝑡+𝑏3𝑡2𝑆 + 𝑏4𝑡3𝑆 + 𝑏5𝑆2𝑡2) 

            eq. (5) 

In this equation, temperature and salinity of the brine are represented by t and S, respectively. 

The required coefficients and range of validity for this equation are described in Table 5. 

Table 5. Coefficients and validity range for Lewis& Perkin correlation. 

Equation Coefficients  Range of validity 

𝑎1 = 9.999 × 102 𝑏1 = 8.020 × 102  

0 < 𝑡 < 180℃ 

0 < 𝑆 < 0.16 
𝑘𝑔

𝑘𝑔
 

Accuracy: ±0.1% 

𝑎2 = 2.034 × 10−2 𝑏2 = −2.001  

𝑎3 = −6.162 × 10−3 𝑏3 = 1.677 × 10−2  

𝑎4 = 2.261 × 10−5 𝑏4 = −3.060 × 10−5  

𝑎5 = −4.657 × 10−8 𝑏5 = −1.613 × 10−5  

 

Finally, CO2 density was used to calculate total moles of CO2 separated from the liquid sample 

using the below equation; 
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𝑿𝑨 = (𝑽𝒇 − 𝑽𝒊 −
(𝑴𝒇−𝑴𝒊)

𝝆𝑳
) × 𝝆𝑪𝑶𝟐

          eq. (6) 

The value of CO2 density used in this equation was calculated using the Span &Wagner EoS 

[56] at temperature and pressure of the gas in the gasometer condition (Tf, Pg).  

B. Dissolved gas in the liquid sample (XB) 

The solubility of CO2 in the liquid sample in the Erlenmeyer at laboratory temperature (295.15 

K) and atmospheric pressure (14.5 psia), was taken from the NIST Standard Reference 

Database [57] . As a result, the total number of CO2 moles dissolved in the liquid sample (XB) 

was found employing the below formula; 

𝑿𝑩 =  
𝒙𝑪𝑶𝟐

𝟏−𝒙𝑪𝑶𝟐

× [
(𝑴𝒇−𝑴𝒊)×𝑭𝒘

𝑴𝑾𝑾
+

(𝑴𝒇−𝑴𝒊)×(𝟏−𝑭𝒘)

𝑴𝑾𝒔𝒂𝒍𝒕
]      eq. (7) 

In this equation xCO2, MW and FW stand for equilibrium molar composition of CO2 in aqueous 

solution, fluids molecular weight and weight fraction of water in the aqueous solution, 

respectively. Usually, gas solubility is reported based on the mole fraction of gas dissolved in 

water. Therefore, for systems with an aqueous phase containing salts, the weight fraction of 

water (FW) was used in calculations to convert brine mass to water mass. Also, for an aqueous 

phase containing more than one salt (S1, S2, etc.), the above equation can be rewritten as; 

𝑿𝑩 =  
𝒙𝑪𝑶𝟐

𝟏−𝒙𝑪𝑶𝟐

× [
(𝑴𝒇−𝑴𝒊)×𝑭𝒘

𝑴𝑾𝑾
+

(𝑴𝒇−𝑴𝒊)×𝑭𝒔𝟏)

𝑴𝑾𝒔𝟏
+

(𝑴𝒇−𝑴𝒊)×𝑭𝒔𝟐)

𝑴𝑾𝒔𝟐
+ ⋯ ]  eq. (8) 

Finally, the total solubility of CO2 in water was found by dividing the total number of CO2 

moles by the total number of CO2 and water moles. 

𝑿𝑪𝑶𝟐
=

𝑿𝑨+𝑿𝑩

𝑿𝑨+𝑿𝑩+
(𝑴𝒇−𝑴𝒊)×𝑭𝒘

𝑴𝑾𝑾
 
       eq. (9) 

 

4. Thermodynamic Modelling 

 A detailed description of the original thermodynamic model used in this work can be found 

elsewhere [58-60]. The thermodynamic model is based on the uniformity of fugacity of each 

component throughout all the phases. The CPA-EoS was used to determine the component 

fugacities in fluid phases. To take into account the effect of salts on the phase equilibria, the 

fugacity of non-electrolyte compound is calculated by combining the equation of state with the 

Debye-Hückel electrostatic contribution.  

𝑙𝑛𝜑𝑖 = 𝑙𝑛𝜑𝑖
𝐸𝑜𝑆 + 𝑙𝑛𝛾𝑖

𝐸𝐿        eq. (10) 
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where N is the number of non-electrolyte components, i  is the fugacity coefficient of 

component i, 
EoS

i  is the fugacity coefficient of component i calculated by  CPA, neglecting 

the electrostatic effect, and 
EL

i  is the contribution of the electrostatic term.   

5. Result and Discussion 

5.1 Solubility of CO2 in Deionised Water 

In this study, the solubility of CO2 in deionised water was measured at 300.95 K, 307.79 K, 

322.62 K, 373.39 K and 423.48 K and pressure up to 41 MPa. The experimental results were 

compared with the prediction of the sCPA-EoS and Duan model and the average absolute 

deviations (%AAD)* were calculated. Moreover, uncertainties of the measurements were 

calculated employing the procedure detailed in APPENDIX. The measured solubilities of CO2 

in deionised water for each isotherm at different pressures, deviations of results from the 

predictive models and uncertainty of the measurements (with 95% level of confidence, k=2) 

are tabulated in Table 6. Moreover, measured data points, literature data and predictions of the 

sCPA-EoS and the Duan model are shown in Figure 2 to Figure 6.  

Although many experimental results are available in the literature for the solubility of CO2 in 

deionised water, a gap in the literature data was observed in the near-critical region of pure 

CO2. The measured solubilities in this work can be used to fill this gap. Furthermore, as 

depicted in Figure 3 to Figure 6, comparison of the measured data in this study with extensive 

data available in literature proves the validity of the measured results and methods used in this 

study. 

As it can be seen in Table 6, at all isotherms deviations of the experimental results from the 

predictive models decreased as pressure increased. Also, in comparison with the sCPA-EoS, 

smaller deviations were observed when the Duan model was used.  

Furthermore, comparison of the available experimental results found in the literature, the data 

measured in this work and predictions of the models used in this work confirmed the limits of 

the sCPA-EoS in the prediction of the CO2 solubilities in deionised water, especially at lower 

pressures. 

                                                 

* 𝐴𝐴𝐷% =
100

𝑛
× ∑

|𝑋𝑖
𝐸𝑋𝑃−𝑋𝑖

𝑚𝑜𝑑𝑒𝑙|

𝑋𝑖
𝐸𝑋𝑃

𝑛
𝑖=1  
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All measured solubilities and the models predictions are presented in Figure 7. As shown in 

this figure, in the first four isotherms solubility of the gas decreased as temperature increased. 

It was because of the higher kinetic energy of the aqueous phase molecules at a higher 

temperature that broke the intermolecular bonds of the solution and helped the gas molecules 

to escape from solution. However, in the last isotherm (423.48 K) at pressures more than the 

intermediate pressure (20 MPa), the solubility of the gas increased to values more than the 

observed solubilities at lower temperatures.  

As expected, the effect of increasing pressure was to increase the solubility. However, effects 

of pressure on solubility of the gas decreased as pressure increased. As a result of pressure 

increase, the number of gas molecules per unit of volume was increased. Therefore, at higher 

pressures, more gas molecules were in contact with the liquid surface, and the solubility of gas 

increased. 
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Table 6. Measured CO2 solubility in deionised water at different isotherms. 

 Pressure* xCO2 Expanded Uncertainty Deviations (%) *** 

 MPa (mole fraction) (k=2) sCPA-EoS Duan model 

T
 =

3
0

0
.9

5
 K

*
*
 

2.071 0.01099 0.00011 16.0 7.1 

4.782 0.02032 0.00017 5.7 4.5 

7.837 0.02335 0.00023 -5.2 -1.4 

19.445 0.02696 0.00028 -2.9 1.8 

34.753 0.02960 0.00034 -2.8 0.6 

%AAD 6.53 3.08 

T
=

3
0

7
.7

9
 K

*
*
 

1.292 0.00601 0.00011 14.3 3.8 

1.310 0.00601 0.00011 13.2 2.6 

2.243 0.00974 0.00012 10.6 3.0 

3.380 0.01384 0.00014 8.7 4.5 

4.594 0.01704 0.00017 4.0 2.8 

5.543 0.01931 0.00017 2.2 3.1 

7.143 0.02228 0.00022 0.4 3.4 

12.231 0.02414 0.00025 -3.5 3.4 

19.236 0.02589 0.00027 -3.8 3.6 

%AAD 6.75 3.36 

T
=

3
2

2
.6

2
 K

*
*
 

2.991 0.00961 0.00011 11.4 4.0 

4.778 0.01279 0.00012 0.0 -4.1 

5.486 0.01493 0.00013 4.3 1.8 

8.667 0.01959 0.00020 1.1 2.4 

20.727 0.02394 0.00025 -2.8 4.2 

40.349 0.02708 0.00031 -4.6 2.3 

%AAD 4.04 3.12 

T
=

3
7

3
.3

9
 K

*
*
 

3.515 0.00697 0.00011 24.41 13.21 

7.941 0.01286 0.00013  15.57 8.01 

19.34 0.02112 0.00022 8.69 8.33 

42.077 0.02578 0.00025 -1.08 2.01 

%AAD 12.44 7.89 

T
=

4
2

3
.4

8
 K

*
*
 

2.631 0.00327 0.00011 14.3 -3.8 

5.109 0.00665 0.00011 12.4 -3.4 

9.772 0.01170 0.00012 7.1 -5.2 

19.549 0.02063 0.00019 8.3 1.9 

40.690 0.02839 0.00032 -2.6 -3.2 

                                                 

* Uc(P) = 0.068 MPa, **Uc(T) = 0.17 K, ***Deviation (%)=100 ×
(𝑥𝐸𝑥𝑝−𝑥𝑚𝑜𝑑𝑒𝑙)

𝑥𝐸𝑥𝑝  
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 Pressure* xCO2 Expanded Uncertainty Deviations (%) *** 

 MPa (mole fraction) (k=2) sCPA-EoS Duan model 

%AAD 8.93 3.50 
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Figure 2. Mole fraction of CO2 dissolved in deionised water at T= 300.95 K.                                                                      

This work (О), the Duan model (▬), the sCPA-EoS ( ). 
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Figure 3. Mole fraction of CO2 dissolved in deionised water at T= 307.79 K.    

This work (О), Models: the Duan model (▬), the sCPA-EoS ( ), literature data: Sander [24] ( ), Vilcu 

et al. [61] ( ), Wiebe et al. [6] ( ). 
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Figure 4. Mole fraction of CO2 dissolved in deionised water. 

This work at T= 322.57 K.  (О), Models: the Duan model (▬), the sCPA-EoS ( ),                                   

literature data at 323.15 K: Oleinik [15] ( ), Hou et al. [32] ( ), Zel’vinskii [4] ( ), Wiebe et al. [6] ( ), 

Matous et al. [11] ( ), Zawisza et al. [12]( ), Bamberger et al. [62] ( ), Malinin et al. [63] ( ). 
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Figure 5. Mole fraction of CO2 dissolved in deionised water at T=373.39 K.   

This work (О), Models: the Duan model (▬), the sCPA-EoS ( ), literature data: Shagiakhmetov et al. 

[13]( ),  Hou et al. [32] ( ), Zel’vinskii [4] ( ), Wiebe et al. [6] ( ), Zawisza et al. [12] ( ). 
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Figure 6. Mole fraction of CO2 dissolved in deionised water at T=423.48 K.                                          

This work (О), Models: the Duan model (▬), the sCPA-EoS ( ),                                                                                

literature data: Takenouchi et al. [10] ( ), Hou et al. [32] ( ). 
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Figure 7. Mole fraction of CO2 dissolved in deionised water at different isotherms.  

This work (О), Models: the Duan model (▬), the sCPA-EoS ( ),  

T=300.95 K, 307.79 K, 322.57 K, 373.39 K, 423.48 K. 

 

 

 

5.2 Solubility of CO2 in the mixed salts aqueous solution 
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solubilities were calculated using two assumptions; in the first calculation, the aqueous solution 

was assumed to be a mixture of water and NaCl (single salt). In the second calculation, different 

salts in the aqueous solution were considered (mixed salts). Assuming the brine as a single salt 

mixture, the average absolute deviation (%AAD) of the measured data points in comparison 

with the sCPA-EoS and the Duan model were found to be 4.71% and 3.00%, respectively. 

Using the second assumption, brine as a mixed salts, did not change the calculated %AADs 

notably. In this case, the %AAD of the measured results in comparison with the sCPA-EoS and 

the Duan model were found to be 4.71% and 3.05%, respectively. The experimental results and 

model predictions for both cases (single salt/mixed salts) are depicted in Figure 8 and Figure 

9. Individual figures of the results for each isotherm can be found in the Supporting 

Information. 

Similar to measured solubilities in deionised water, larger deviations of the results from the 

predictive models were observed when measurements were conducted at low pressure 

condition. Also, in comparison to the measured solubilities of CO2 in deionised water, less gas 

was dissolved in the brine which can be explained using the salting-out effect. This effect can 

be shown using the Setschenow constant (ks) in the below equation [64]: 

log (
𝑆0

𝑆
) = 𝑘𝑠𝐶𝑠        eq. (11) 

Where S0 and S are the solute’s solubility in deionised water and brine, respectively. Also, ks 

is the Setschenow constant, and Cs represents the concentration of salt in the brine. Using this 

formula Setschenow constant was found for each data point. For all the data points the values 

of ks were almost similar and the average value was found to be 0.08694 kg.mole-1. 
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Table 7. Measured CO2 solubility in the mixed salts aqueous phase at different isotherms 

 Pressure* xCO2 
Expanded 

Uncertainty 
Deviations (%)*** 

 

MPa 
(mole 

fraction) 
(k=2) 

Single salt (NaCl) 
Mixed salts (all 

salts) 

 
sCPA-

EoS 

Duan 

model 

sCPA-

EoS 

Duan 

model 

T
=

3
0

3
.1

6
 K

*
*
 

1.625 0.00527 0.00011 -0.77 -10.29 -0.56 -12.15 

6.612 0.01649 0.00019 -0.32 0.26 -0.11 -1.46 

8.675 0.01804 0.00024 2.35 5.02 2.55 3.38 

20.519 0.01913 0.00028 -3.09 -0.49 -2.87 -2.21 

35.386 0.02096 0.00031 -2.17 -2.33 -1.94 -4.02 

%AAD 1.74 3.68 1.61 4.64 

T
=

3
2

3
.2

0
 K

*
*
 

1.763 0.00443 0.00011 10.88 2.02 10.95 0.48 

6.257 0.01192 0.00011 2.31 0.72 2.36 -0.89 

10.719 0.01540 0.00018 -0.05 1.04 0.02 -0.57 

18.172 0.01708 0.00023 -1.47 2.88 -1.40 1.30 

38.860 0.01975 0.00029 -1.90 0.80 -1.82 -0.75 

%AAD 3.32 1.49 3.31 0.80 

T
=

3
7

3
.1

9
 K

*
*
 

1.929 0.00232 0.00011 18.33 6.47 18.33 6.47 

8.172 0.00860 0.00008 6.68 0.56 6.65 -0.96 

22.895 0.01561 0.00019 3.35 3.95 3.32 2.46 

38.808 0.01877 0.00026 -0.70 1.14 -0.73 -0.37 

%AAD 7.27 3.03 7.26 2.57 

T
=

4
2

3
.1

9
 K

*
*
 

2.415 0.00244 0.00011 16.48 3.31 16.68 1.92 

5.434 0.00498 0.00006 1.22 -10.82 1.48 -12.50 

9.253 0.00879 0.00007 8.10 -0.18 8.35 -1.75 

24.335 0.01720 0.00018 4.21 2.81 4.49 1.22 

36.949 0.01999 0.00021 -2.62 -19.3 -2.30 -3.63 

%AAD 6.53 3.81 6.66 4.20 

 

                                                 

* Uc (P) = 0.068 MPa, **Uc (T) = 0.17 K, ***Deviation (%)=100 ×
(𝑥𝐸𝑥𝑝−𝑥𝑚𝑜𝑑𝑒𝑙)

𝑥𝐸𝑥𝑝  
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Figure 8. Mole fraction of CO2 dissolved in the mixed salts aqueous solution at different isotherms. 

 This work (О), Models (single salt): the Duan model (▬), the sCPA-EoS ( ).

T= 303.16 K, 323.20 K, 373.19 K, 423.19 K. 
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Figure 9. Mole fraction of CO2 dissolved in the mixed salts aqueous solution at different isotherms. 

 This work (О), Models (mixed salts): the Duan model (▬), the sCPA-EoS ( ).

T= 303.16 K, 323.20 K, 373.19 K, 423.19 K. 
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6. Conclusion 

In this work, the solubility of CO2 in deionised water was measured in a pressure range up to 

41 MPa and for different isotherms up to 423.48 K. first, the solubility of CO2 in deionised 

water was measured and compared against the available data in the literature to validate the 

experimental setup and procedures used in this study. Then, CO2 solubility in a mixed salt 

aqueous solutions (salinity: ~ 80000 ppm) was measured in a pressure range up to 39 MPa and 

for different isotherms up to 423.19 K. 

All the measured solubilities were compared against the prediction of the sCPA-EoS and the 

Duan model. The average absolute deviations (%AAD) of results in comparison with the 

sCPA-EoS were found to be 7.74% and 4.71% for deionised water and the aqueous solution 

(single salt-NaCl), respectively. For both cases, deviations were observed mostly at low 

pressure, confirming limits of sCPA-EoS in solubility prediction at low pressure when tuned 

over a wide pressure range. Also, when results were compared with the prediction of the Duan 

model, the calculated average absolute deviations (%AAD) were 4.19% and 3.00% for 

deionised water and the aqueous solution (single salt-NaCl), respectively. Also, the average 

uncertainty of the measurements conducted to obtain CO2 solubility in deionised water and 

mixed salts aqueous solution were found to be 1.20% and 1.57%, respectively. 
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7. Appendix-Uncertainties of the measurements 

a. Temperature uncertainty: In this setup uncertainty of temperature measurement was 

calculated according to: 

𝑈𝑐(𝑇) = √𝑢𝑡ℎ𝑒𝑟𝑚𝑜𝑚𝑒𝑡𝑒𝑟
2 + 𝑢𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛

2 + 𝑢𝑟𝑒𝑝𝑒𝑎𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦
2   eq. (A1) 

The system and repeatability uncertainties were found to be 0.1 K. Moreover, the calibration 

function used to convert the measured temperature in the jacket of the cell to the actual 

temperature in the cell was: 

𝑇𝐶𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑒𝑑(𝑇) = 0.9633T + 0.9208      eq. (A2) 

Therefore, 𝑢𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛was obtained according to: 

𝑢𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛 = |
𝑑𝑇𝐶𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑒𝑑

𝑑𝑇
| . ∆𝑇    eq. (A3) 

In this equation, ∆𝑇 was equal to 0.1 K and derivative of the calibration function was 0.9633. 

As a result 𝑈𝑐(𝑇) was found to be 0.17 K for all points. 

 

b. Pressure uncertainty: similar to the temperature uncertainty, the uncertainty of pressure 

measurements was calculated according to the following equations: 

𝑈𝑐(𝑃) = √𝑢𝑠𝑦𝑠𝑡𝑒𝑚
2 + 𝑢𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛

2 + 𝑢𝑟𝑒𝑝𝑒𝑎𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦
2     eq. (A4) 

The high accuracy pressure transducer used in this work was regularly calibrated. Also, 

𝑢𝑟𝑒𝑝𝑒𝑎𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 for this transducer was found to be 0.007 MPa. In this experiment during 

sampling, system pressure was controlled by injecting the gas to prevent any pressure change 

more than 10 psi (0.068 MPa) in the system. Therefore, 𝑢𝑠𝑦𝑠𝑡𝑒𝑚 for these measurements was 

found to be 0.068 MPa. 

As a result 𝑈𝑐(𝑃) was found to be 0.068 MPa with three digits accuracy for all the 

measurements. 

 

c. Uncertainty of solubility measurement 
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In comparison with the previous uncertainty calculations, no calibration uncertainty are 

required for the sampling part of this experiment. Therefore, the uncertainty of the 

measurements was calculated using the following equation: 

∆U = √𝑢𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡
2 + 𝑢𝑟𝑒𝑝𝑒𝑎𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦

2     eq. (A5) 

Some of the measurements were repeated, and the average standard deviation of the repeated 

tests was reported as the uncertainty of repeatability. The u repeatability for the experiments 

conducted in this study was found to be 0.000053. 

To calculate the uncertainty of the measurements, the main formula used to calculate the 

solubility of the gas in water was split into different parts for ease of calculations. 

𝑥𝐶𝑂2
=

𝑋𝐴+𝑋𝐵

𝑋𝐴+𝑋𝐵+
(𝑀𝑓−𝑀𝑖)×𝐹𝑤

𝑊𝑀𝑊
 
       eq. (A6) 

To simplify this equation, Z and R were defined as 

𝑍 = 𝑋𝐴 + 𝑋𝐵           eq. (A7) 

𝑅 =
(𝑀𝑓−𝑀𝑖)×𝐹𝑤

𝑊𝑀𝑊
         eq. (A8) 

The uncertainties of Z and R were calculated by  

∆𝑍 = √(∆𝑋𝐴)2 + (∆𝑋𝐵)2         eq. (A9) 

∆𝑅 =
𝐹𝑤

𝑊𝑀𝑊
× √(∆𝑀𝑓)2 + (∆𝑀𝑖)2       eq. (A10) 

To calculate ∆Z, XA was split to C1 and C2. Also, uncertainties of volume measurements in 

the gasometer, mass measurements and density calculations were used to calculate total 

uncertainty of the measurements. (∆𝑉𝑓 = ∆𝑉𝑖 = 0.1 𝑚𝑙 , ∆𝑀𝑓 = ∆𝑀𝑖 = 0.01 𝑔, ∆𝜌𝐿 =

0.001𝜌𝐿 and ∆𝜌𝐶𝑂2
=  0.0005𝜌𝐶𝑂2

) 

𝑋𝐴 = (𝑉𝑓 − 𝑉𝑖 −
(𝑀𝑓−𝑀𝑖)

𝜌𝐿
) × 𝜌𝐶𝑂2

       eq. (A11) 

𝐶1 = 𝑉𝑓 − 𝑉𝑖 ⇛  ∆𝐶1 = √(∆𝑉𝑓)
2

+ (∆𝑉𝑖)2      eq. (A12) 

𝐶2 =
(𝑀𝑓−𝑀𝑖)

𝜌𝐿
 ⇛  

∆𝐶2

𝐶2
= √(

√(∆𝑀𝑓)2+(∆𝑀𝑖)2

𝑀𝑓−𝑀𝑖
)

2

+ (
∆𝜌𝐿

𝜌𝐿
)

2

    eq. (A13) 
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∆𝑋𝐴

𝑋𝐴
= √(

√(∆𝐶1)2+(∆𝐶2)2

𝐶1−𝐶2
)

2

+ (
∆𝜌𝐶𝑂2

𝜌𝐶𝑂2

)
2

      eq. (A14) 

Also, to calculate the uncertainty of XB, D1 and D2 were defined for ease of calculations. 

𝑋𝐵 =  
𝑥𝐶𝑂2

1−𝑥𝐶𝑂2

× [
(𝑀𝑓−𝑀𝑖)×𝐹𝑤

𝑀𝑊𝑊
+

(𝑀𝑓−𝑀𝑖)×(1−𝐹𝑤)

𝑀𝑊𝑁𝑎𝐶𝑙
]     eq. (A15) 

𝐷1 =  
𝑥𝐶𝑂2

1−𝑥𝐶𝑂2

 ⇛  
∆𝐷1

𝐷1
= √ (

∆𝑥𝐶𝑂2

𝑥𝐶𝑂2

)
2

+ (
∆𝑥𝐶𝑂2

1−𝑥𝐶𝑂2

)
2

     eq. (A16) 

𝐷2 =
(𝑀𝑓−𝑀𝑖)×𝐹𝑤

𝑀𝑊𝑊
+

(𝑀𝑓−𝑀𝑖)×(1−𝐹𝑤)

𝑀𝑊𝑠𝑎𝑙𝑡
 ⇛      eq. (A17) 

∆𝐷2

𝐷2
=

𝐹𝑤

𝑀𝑊𝑊
√(∆𝑀𝑓)2 + (∆𝑀𝑖)2 +

1 − 𝐹𝑤

𝑀𝑊𝑠𝑎𝑙𝑡
√(∆𝑀𝑓)2 + (∆𝑀𝑖)2 

Finally, the uncertainty of ∆XB can be obtained using: 

∆𝑋𝐵

𝑋𝐵
= √ (

∆𝐷2

𝐷2
)

2

+ (
∆𝐷1

𝐷1
)

2

        eq. (A18) 

Finally, using the defined functions, the uncertainty of measurements was found using 

following equation: 

𝑢𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡𝑠 = ∆𝑋𝐶𝑂2
= 𝑋𝐶𝑂2

× √(
∆𝑍

𝑍
)

2

+ (
√(∆𝑍)2+(∆𝑅)2

𝑍+𝑅
)

2

    eq. (A19) 

The expanded uncertainty of these measurements can be found using the equation below: 

𝑈𝐸𝑥𝑝𝑎𝑛𝑑𝑒𝑑 = 2 × √𝑢𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡
2 + 𝑢𝑟𝑒𝑝𝑒𝑎𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦

2    eq. (A20) 
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Results for solubility of CO2 in mixed salts aqueous solution: 

  

Figure 10. Mole fraction of CO2 dissolved in the mixed salts aqueous solution at 303.16 K.  

This work (О), Models: Duan (∆), sCPA-EoS (▬). 
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Figure 11. Mole fraction of CO2 dissolved in the mixed salts aqueous solution at 323.20 K.  

This work (О), Models: Duan (∆), sCPA-EoS (▬). 
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Figure 12. Mole fraction of CO2 dissolved in the mixed salts aqueous solution at 373.19 K.  

This work (О), Models: Duan (∆), sCPA-EoS (▬). 
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Figure 13. Mole fraction of CO2 dissolved in the mixed salts aqueous solution at 423.19 K.  

This work (О), Models: Duan (∆), sCPA-EoS (▬) 
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